
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

54

Manuscript received November 5, 2008

Manuscript revised November 20, 2008

Hardware Implementation of Multiple Vector Quantization Decoder

Noritaka Shigei†, Hiromi Miyajima†, Shingo Hashiguchi†, Michiharu Maeda††, Lixin Ma†††

†Kagoshima University, Kagoshima, Japan
††Fukuoka Institute of Technology, Fukuoka, Japan

†††University of Shanghai for Science and Technology, Shanghai, China

Summary
Vector Quantization (VQ) is successfully applied to data
compression. In image compression, Multiple-VQ with Index
Inference (MVQII) can provide a much better restored image
quality than conventional VQ methods. However, the index
inference increases the computational complexity of the decoding
process in proportion to the number of weights. In this paper, in
order to accelerate the decoding process of MVQII, we
present three types of digital circuit design for the decoder.
The presented designs are implemented on FPGAs and are
evaluated in terms of operating speed, processing time.
The results show that two versions achieve good
improvement in processing speed at reasonable expenses
of circuit size and that the fastest version is nearly ten
times faster than a software implementation on a modern
standard computer.
Key words:
Vector quantization, decoder, multiple vector quantization,
digital circuit, FPGAs.

1. Introduction

Vector Quantization (VQ) is a process for approximating a
large set of input vectors by a smaller set of weight vectors.
VQ is a useful technique in many applications such as data
compression, data mining and pattern recognition [1,2,4].
VQ is successfully applied to data compression [8].
However, the quality of the restored data greatly depends
on the number of weights (codebook size) and the
dimension of weights (block size). One of the methods
relaxing the trade-off is Multistage Residual VQ (MRVQ),
in which multiple quantizers are concatenated in series [2].
In MRVQ, the first stage quantizer operates on the input
vectors, and the second stage operates on the errors
between the input vector and the first stage output. MRVQ
is a serial approach. On the other hand, we have proposed
multiple-VQ (MVQ) as a parallel approach [3]. The MVQ
method performs independently multiple VQ processes,
and combines the independent low quality results into a
high quality one. We have shown that, with the useful
technique index inference, MVQ with Index Inference
(MVQII) is effective in data compression [5,6]. However,
the index inference increases the computational
complexity of decoder in proportion to the codebook size.
For example, when decoders with κ codebook vectors are

implemented on a CPU, an MVQII decoder has κ times
lower throughput than conventional VQ decoders.

Digital circuit implementation is effective in terms of
processing speed and power consumption when compared
with software implementation on a general purpose PC.
Some systems based on VQ have been implemented in
digital circuits [9,10,11]. In [9], a speaker identification
system based on VQ has been implemented in FPGAs. In
[10], a processor for self-organizing map (SOM), which is
one of VQ methods[4], has been implemented in FPGAs.
In [11], a systolic architecture of SOM has been proposed
and also implemented in FPGAs.

In this paper, in order to accelerate the decoding
process of MVQII, we study hardware implementation of
MVQII decoders. Specifically, we present three types of
digital circuit design for the decoder. The first one is a
naive implementation, and the second and third ones are
improved versions, respectively, with “pipeline” and
“parallelization”. The presented designs are implemented
in FPGAs and are evaluated in terms of operating speed,
processing time and circuit size. The results show that the
last two versions achieve good improvement in processing
speed at reasonable expenses of circuit size and that the
parallel version is nearly ten times faster than a software
implementation on a modern standard computer.

The rest of this paper is organized as follows. Section
2 describes VQ, MVQ and MVQII, and shows some
simulation results for performance comparison. Section 3
presents our proposed digital circuit designs for MVQII
decoder. Section 4 shows the performance evaluation
results. Finally, section 5 concludes the paper and presents
future works.

2. Vector Quantization and Multiple Vector
Quantization

2.1 Vector Quantization

Vector Quantization (VQ) is to approximate a large set of
input vectors 1{ , , }X ν= x xL by a smaller set of weight
vectors 1{ , , }W κ= w wL , where , n

i j ∈ℜx w are n-
dimensional Euclidean vectors and X is a random sample
from a probability density function (PDF) ()p x . W and

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

55

jw are also referred to, respectively, as codebook and
codebook vector. In VQ, an input vector X∈x is
replaced with a weight vector

winkw ∈ W such that

(,)
winkd x w = {1, , } (in)m , kk dκ∈ x wL , where

(,) || ||d = −x w x w . In other word, the VQ process divides
the input space nℜ into κ sub-spaces 1 ,,S SκL such that

kS = { n∈ℜx | (,)kd x w ≤ (,), }.l kd l≠x w The
approximation accuracy of VQ is evaluated in terms of the

average distortion error
{1, , }

1 (,)
k

kk S
dE

κν ∈ ∈
= ∑ ∑ x

x w
L

.

A fundamental method minimizing the error E is
Competitive Learning (CL), which is based on gradient
descent [4]. The CL procedure iterates a simple adaptation
step. At t-th iteration, the CL procedure calculates the
closest weight (called winner)

winkw to a given input

vector X∈x , and then updates
winkw as follows:

 ()(),
win win wink k itε+← −w w x w (1)

where (,)
winkd x w = {1, , } (min), kk dκ∈ x wL and ()tε is a

learning rate decreasing with t.

2.2 VQ based Image Compression

This section describes single-VQ based data
compression (SVQ). We assume G-bit gray images of
M N× pixels. Let , {0, , 2 1}G

i jp ∈ −L ({1, , }Mi∈ L ,
{1, , }Nj∈ L) be the gray level of the pixel at coordinates

(,)i j . Then an image is represented as an M N× matrix

,)(i jP p= . The algorithm SVQ is as follows.

Algorithm SVQ
Step 1 (Input Preparation)

Given an input image P . The M N× pixels in P
are divided into) / (()NM J K× × blocks of size J K× .
The blocks are represented as JK-dimensional vectors

1 /(), , MN JKx xL .
Step 2 (Vector Quantization)

The set of weight vectors 1{ , , }W κ= w wL , called
codebook, is trained by using the set of vectors

1 /(), , }{ MN JKX = xx L as input data. The training is
performed by Eq.(1).
Step 3 (Index Calculation)

For each {1, , / ()}MNi JK∈ L , the index number il
is calculated, where (,)

ii ld =wx {1, , }in (,)m j i jdκ∈ x wL .
End of SVQ.

The compressed data is composed of the codebook W
and the index sequence 1 /(),(), MN JKlL l= L . From W and L,

an image is restored. In the restored image, each block
i X∈x in the original image is replaced with

il
w . The

quality of the restored image is evaluated in terms of mean
square error (MSE) as follows:

{1, , / ()}

(, ,) ,1)(
ii li MN JK

d
MN

MSE X W L
∈

= ∑ x w
L

2.3 Multiple-VQ based Image Compression

In this subsection, we describe multiple-VQ (MVQ) and
index inference for image compression. The fundamental
idea of MVQ is that a high quality image can be created by
averaging multiple low quality images that independently
restored from different pairs of codebook and index
sequence. The MVQ algorithm for compression phase is as
follows.

Algorithm MVQ
Step 1 (Input Preparation)

From the input image P , two input data sets (0)X
and (1)X are generated as follows:

() ()

()
(, ,1), (, ,1) (, ,), (, ,1)

(, ,1), (, ,2) (, ,), (, ,2)

(, ,1), (, ,) (, ,), (, ,)

|

(, ,

{ {1, , }} for {0,1},

,

, ,

, ,

,

),

c

c

c c c

c c
i

c c

c
i i c i c i c J i c

i c i c i c J i c

i c i c K i c J i c K

MN cX i

p

p

J K

p

p

p p

φ ψ φ ψ

φ ψ φ ψ

φ ψ φ ψ

=

=

∈ ∈x

x

L

L

L

L

L

 (2)

where

(, ,) (((1)mod) 1) od 1mc
c

M Mi c j i J c j
J

φ = − + − ++ and

(, ,) ((1) / mo1 1d)c
c

Mi c j i K
J

c j Nψ += −− + +d t . Fig. 1 is a

schematic explanation of ()c
ix .

Step 2 (Vector Quantization)
Perform VQ twice to generate two codebooks (0)W

by using data sets (0)X and (1)X , respectively. The
training is performed by Eq. (1).
Step 3 (Index Calculation)

The index sequence
0 0

(0) (0) (0)
1 / ()(), , MN J Kl lL = L is

calculated from (0)W .
End of MVQ.

In Step 2, two codebooks (0)W and (1)W are
generated from different input data sets (0)X and (1)X ,
respectively. The use of different data sets is an essential
requirement for obtaining a good quality [4].

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

56

(a) For (0)X .

(b) For (1)X .
Fig. 1 Segmentation of P for generating ()cX

In Step 3, only (0)L is calculated, and the compressed
data are (0)W , (1)W and (0)L . If, in addition to the
compressed data, (1)L is used, a better quality image can
be restored. However, in this case, the compressed data
size significantly increases, and as a result, the restored
image quality is too low for a fixed data size. Instead, the
lost data (1)L is restored by a decoder side technique index
inference [11]. The algorithm is as follows.

Algorithm MVQ with Index Inference
Step 1 (Image Restoration by SVQ)

Restore an image (0) (0)
,()i jP p=% % from (0)W and (0)L .

Step 2 (Input Preparation for Inference)
From the restored image (0)P% , an input data set

1 1

(1) (1) (1)
1)/ ({ ,, }KMN JX = x x% % %L is generated as in Eq. (2).

Step 3 (Index Calculation)
For each 1 1{1, , / ()}MN J Ki∈ L , the index number

(1)
il is calculated, where (1)

(1) (1)(,)
i

i l
d =x w% %

(1) (1)
{1, , } (m n)i ,j i jdκ∈ x wL

% .
End of Index Inference.

Now, after index inference, we have (0)W , (1)W , (0)L
and

1 1

(1) (1) (1)
1 / ()(, ,)MN J Kl lL = L . Next, two images (0)P% and

(1)P% are independently restored from two pairs (0) (0),)(LW
and (1) (1),)(LW , respectively. And then, a restored image

,()j jP p=% % is generated by combining the two restored
images as follows.

 (0) (1)
, , ,

1 (),
2i j i j i jp p p= +% % % (3)

where () ()
,()c c

i jP p=% % for {0,1}c∈ .
In the following, the method described in this section

is referred as MVQ with Index Inference (MVQII).

 (a) Lena (b) Goldhill

Fig. 2 Test images.

2.4 Performance Comparison

In order to demonstrate the effectiveness of MVQII, we
show some simulation results on SVQ, MRVQ (Multistage
Residual VQ) and MVQII. SVQ is the algorithm described
in Sect. 2.2. MRVQ is performed by a software package
QccPack[7]. For MRVQ, the number of stages is two and
each stage uses the same codebook size. MVQII is
performed with 0 0 4 4J K× = × , 1 1 2 2J K× = × and

0 1κ κ= . The used test images are shown in Fig. 2. The
two images consists of 512 512× pixels of 256 gray level,
that is 512M N= = .

The simulation results are shown in Fig. 3, where the
compression rate is the ratio of the original data size
(512 512 8× × bits) to the compressed data size (the total
size of codebooks and index sequence). For all images,
MVQII achieves the best performance among all the
methods when the compression rate is high.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

57

 30

 40

 50

 60

 70

 80

 90

 100

 12 14 16 18 20 22 24 26

M
SE

Compression rate

SVQ
MRVQ
MVQII

(a) For Lena.

 50

 60

 70

 80

 90

 100

 110

 12 14 16 18 20 22 24 26

M
SE

Compression rate

SVQ
MRVQ
MVQII

 (b) For Goldhill.

Fig. 3 MSE versus compression rate for SVQ, MRVQ
and MVQII.

3. Hardware Implementation of MVQII
Decoder

MVQII described in the previous section requires
1()O κ times as more time as SVQ method, because unlike

SVQ, MVQII requires finding nearest weights for (1)W as
in Step 3. In this section, in order to accelerate the
decoding process of MVQII, we present its hardware
implementation.

3.1 MVQII Algorithm for Hardware Implementation

In this subsection, we rewrite the MVQII algorithm
into a form suitable for hardware implementation. As a
preliminary step, we give some definitions.

()
(, ,1), (, ,1) (, ,), (, ,1)

(, ,1), (, ,2) (, ,), (, ,2)

(, ,1), (, ,) (, ,), (, ,)

(, ,

,

,

, ,

, ,,)

c

c

c c c

c
i i c i c i c J i c

i c i c i c J i c

i c i c K i c J i c K

p

p

p

p

p p

φ ψ φ ψ

φ ψ φ ψ

φ ψ φ ψ

=x% %L

%L

L

%

%

%

%L

where ,()j jP p=% % is the matrix that will store the final
restored image.

When 0 1J J J= = and 0 1K KK= = , the rewritten
version is given as follows.

Algorithm MVQII for Hardware Implementation
Input:

0

(0) (0) (0)
1{ , },W κ= w wL ,

1

(1) (1) (1)
1{ , },W κ= w wL ,

(0) (0) (0)
1 / ()(, ,)MN JKL l l= L

Output: ,()j jP p=% %

(1

/ 1

/

)

(0) (0)

(0) (0)

(0) (0)

* (1)

(1)

/ 1

/

/ 1 / 1
*

1: For : 1 to / do
2:

3: End for
4: For : 1 to / do
5:

6: For 2 to / do
7:

8: Find such that
9: (i (m n,)

jM J

jM J i

i

jM J

jM J i

jM J i j

i l

l

M J

l

W i

i M J

j N K

i M J

d d
W

+

+

+

+

+ − ∈ + −

←

←

←

=

=

=

∈

=
w

w

w

w

x

x

x

w
x w x

%

%

%

% % (

/ 1 /

1)

(1) (1) *
1

1 (
2

,)

10:)

11: End for
12: End for

jM J i jM J i+ − + −← + w

w

x x% %

The difference between two versions is that the above
version does not explicitly calculate the index sequence

(1)L . Although we assume 0 1J J= and 0 1K K= , the
algorithm can be generalized by modifying lines 5 and 7 to
“if” statements. The statements from lines 7 to 10 can be
processed in pipeline fashion.

3.2 MVQII Hardware Design

We implement the proposed MVQII algorithm on
FPGA. We present three different circuit design: (I), (II)
and (III).
Circuit Design (I)

The top view of design (I) is shown in Fig. 4. In the
figure, a box with “>” means a synchronous circuit block
and the other boxes are combinatorial circuit blocks. Note
that a synchronous circuit block must be connected with a
clock line and some control signal lines, which are omitted
for simplicity in the figure. The design consists of a

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

58

counter, four RAMs, combinatorial circuit units Average
and Find Nearest. Four RAMs store (0)L , (0)W , P% and

(1)W , respectively. The Counter sequentially outputs
memory addresses of (0) (0)

il L∈ , (0) (1)
1 W∈w , (0)

ix% and
(1)
ix% . The unit Find Nearest outputs the closest weight
* (0)W∈w to (1)x% , after

1

(1) (1)
1 ,, κw wL are inputted. That is,

for a given (1)x% , the calculation requires 1κ clocks. This
unit, which is a key module in our design, will be
explained in detail later. And then, the average of *w and

(1)x% is calculated and written to RAM P% . Fig. 5 shows
the inside of the unit Find Nearest for design (I). The unit
DIST calculates (1) (0) 2|| ||d = −wx% by performing
subtraction and squaring. The unit CMP performs the
comparison between d and mind . If mind d< then CMP
sets 1f = . Otherwise it sets 0f = . The signal f is used
as the enable signal of two registers. That is, if 1f = then
the two registers latch mind and (0)w . The operating speed
of the design (I) is dominated by the unit DIST. Because
the unit performs subtraction and squaring and involves
the longest combinatorial logic path among all logic
blocks in the design.

Fig. 4 The top view of design (I).

Fig. 5 The unit Find Nearest for design (I).

Fig. 6 The unit Find Nearest for design (II).

Fig. 7 The parallelized Find Nearest in design (III).

Circuit Design (II)
In order to improve the processing speed, we consider

dividing the most complex logic, DIST, in the design (I)
into two parts. The unit Find Nearest for the improved
version, the design (II), is shown in Fig. 6. In this design,
the unit DIST in design (I) is divided into two logic blocks
SUB & ABS and SQ. The unit SUB & ABS calculates

1 1(| |, ,| |)xx w wκ κ= − −d L , where (1)
1 ,)(,x xκ=x% L and

(1)
1,(),w wκ=w L . The unit SQ calculates ·d d . Although

this modification can improve the critical path delay in the
circuit, two clocks are needed to calculate

(1) (0) 2|| ||d = −wx% . In order to hide the increased step, an
additional register REG (2) is added. With REG (2), the
unit Find Nearest operates in pipeline fashion. Its pipeline
operation calculates m closest weights in 1· 1mκ + clocks.
Circuit Design (III)
In order to reduce the number of clocks for calculating the
closest weight, we consider the parallelization of the unit
Find Nearest. The parallelized circuit is shown in Fig. 7. In
the circuit, the weight set (1)W is divided into two sub-sets

1

(1) (1) (1)
0 1 / 2{ , },W κ= w wL and

1 1

(1) (1) (1)
1 /2 1 ,{ , }W κ κ+= w wL , which

are stored in RAM (1)
0W and RAM (1)

1W , respectively.
Two Find Nearest units calculate the closest weights

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

59

(1)
0 0win W∈w and (1)

1 1win W∈w to (1)x% in parallel. This
calculation completes in 1 / 2 1κ + clocks. Note that each
Find Nearest unit is same as in Fig. 6. The unit SEL
outputs 0win win=w w for 0 1d d< and otherwise

1win win=w w . That is, winw is the closest weight in (1)W .
The number of clocks required for processing Q

vectors are summarized in Table 1, where Q corresponds
to 1 1)/ (MN J K . The difference of required clocks between
designs (I) and (II) is just one clock. Design (III) needs
only about half the number of clocks required for design
(I).

Table 1 The number of clocks required for processing
Q vectors.

Design Number of clocks
(I) 1(1) 2Q κ + +

(II) 1(1) 3Q κ + +

(III) 1(/ 2 1) 4Q κ + +

4. Implementation Results

We implement the proposed designs on FPGA and
evaluate their operating frequency, processing time and
circuit size. The design environment is Xilinx ISE Design
Suite 10.1, the targeted device is Spartan 2E XCS300E,
and the design is coded in VHDL. Major specifications of
the implemented circuits are summarized in Table 2.

Table 2 Specifications of the implemented MVQII.
Item Spec.

Numeric coding 8 bits integer

Dimension of vectors 2 22, 1J K= = or

2 22, 2J K= =
Number of weight

vectors 2 16κ =

The evaluation results on operating frequency are
shown in Table 3. For any vector dimension, each design
operates at almost the same frequency, and the design (II)
achieves the highest operating frequency among all the
designs. Fig. 8 compares our three designs and a software
implementation in terms of the processing time required
for processing Q vectors. The processing time for each
design is calculated by dividing the number of clocks in
Table 1 by the operating frequency in Table 3. “Soft”
indicates the processing time (CPU time) for software
implementation, where the program compiled with the
GNU Compiler GCC 4.2 runs on a GNU/Linux PC with
2.6.24 kernel, Intel Core2 Quad CPU Q6600 (2.40GHz)

and 4GB of RAM. This result shows that the design (III) is
the fastest among all the methods. The design (III) is about
five times, twice and ten times faster than (I), (II) and Soft,
respectively.

The evaluation results on circuit size are summarized
in Table 4. The number of Slice Flip Flops (SFFs)
corresponds to the circuit size of registers and counters,
and the number of 4 input LUTs (4LUTs) corresponds to
the circuit size of combinatorial logic circuits. For each
design type, the extension from 2 22, 1J K= = to

2 22, 2J K= = increases SSFs and LUTs by 1.67~1.95
times, because the number of bits for representing the
weight vectors is doubled. For each dimension of vectors,
the designs (II) and (III) use approximately twice and 4
times as many SFFs as the as the design (I), respectively.
On the other hand, the design (II) uses fewer 4LUTs than
the design (I), and the design (III) uses 1.69~1.78 times as
many 4LUTs as the design (I).

Finally, we mention the difference between the
proposed designs and a naive implementation of algorithm
MVQII described in subsection 2.3. The algorithm MVQII
initially restore a whole image (0) (0)

,()i jP p=% % from (0)W

and (0)L , and then calculates the index sequence for (1)W .
Therefore, the naive implementation requires about twice
as much clocks as the designs (I) and (II).

Table 3 Maximum operating frequency of implemented
circuits.

Design 2 22, 1J K= = 2 22, 2J K= =
(I) 28.91 MHz 25.38 MHz
(II) 75.22 MHz 72.86 MHz
(III) 71.52 MHz 71.38 MHz

Table 4 Numbers of slice Flip Flops and 4 input LUTs
for implemented circuits.

Dim.of
vectors Design # of Slice Flip

Flops
of 4 input

LUTs
(I) 72 204
(II) 143 172 2

2

2
1

J
K

=
= (III) 256 346

(I) 120 369
(II) 273 326 2

2

2
2

J
K

=
= (III) 500 656

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

60

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 2000 4000 6000 8000 10000

Pr
oc

es
si

ng
 ti

m
e

[s
ec

]

Number of processed vectors Q

(I)
(II)

(III)
Soft

Fig. 8 Processing time for 2 22, 2J K= = .

5. Conclusions

In this paper, we have presented three types of digital
circuit designs for Multiple-VQ with Index Inference
(MVQII) decoders. The first one, which is a naive
implementation, is of the smallest circuit size, but its
operating speed is slow due to its long combinatorial path.
The second and third ones improve the processing time by
introducing “pipeline” and “parallelization”, respectively.
The latter two versions achieve the good improvement in
processing speed at a reasonable expense of circuit size. In
particular, the design (II) and (III) are about 2.87 times and
5.32 times faster than the design (I), respectively, while
the designs (II) and (III) require about twice and four times
larger circuits than the design (I), respectively. Further, the
processing speed of the circuits (I), (II) and (III) is about
1.72 ~ 9.15 times faster than a software implementation on
a modern standard computer.

Another problem related to MVQII is the training
process of codebooks, which is performed in the
compression phase. The computational complexity for
MVQII is twice larger than for SVQ. One of our future
works is to develop effective digital circuit design for the
training process.

Acknowledgments

This research is partly supported by the Grant-in-Aid
for Scientific Research (C) (No. 19500195) of the Ministry
of Education, Culture, Sports, Science and Technology of
Japan.

References
[1] R.M. Gray, “Vector Quantization,'' IEEE ASSP Magazine,
pp.4-29, 1984.

[2] A. Gersho and R.M. Gray, Vector Quantization and Signal
Compression, Kluwer Academic Publishers, 1992.
[3] N. Shigei, H. Miyajima and M. Maeda, “A Multiple Vector
Quantization Approach to Image Compression,” Proc. of
International Conference on Natural Computation, Lecture Notes
in Computer Science, Vol.3611, pp.361-370, 2005.
[4] T. Kohonen, Self-Organizing Maps, Springer-Verlag, Berlin
Heidelberg, New York, 1997.
[5] N. Shigei, H. Miyajima, M. Maeda and L. Ma,
“Compression Rate Improvement of Multiple Vector
Quantization Based Image Compression,” Proc. of International
Conference on Intelligent Technologies, pp.133-140, 2005.
[6] N. Shigei, H. Miyajima and M. Maeda, “Learning
Algorithm for Multiple Vector Quantization Based on Image
Compression,” Proc. of International Symposium on Nonlinear
Theory and its Applications, pp.836-839, 2006.
[7] J. E. Fowler, “QccPack: An Open-Source software Library
for Quantization, Compression, and Coding,” in Applications of
Digital Image Processing XXII (Proc. SPIE 4115), A. G. Tescher,
ed., pp.294-301, 2000.
[8] C. Amerijckx, J.-D. Legat, M. Verleysen, “Image Compres-
sion Using Self-Organizing Maps," Systems Analysis Modelling
Simulation, 43, pp.1529-1543, 2003
[9] F.A. Elmisery, A.H. Khaleil, A.E. Salama, F. El-Geldawi,
"An FPGA Based VQ for Speaker Identification," The 17th
International Conference on Microelectronics, pp.130-132, 2005.
[10] J.J. Raygoza-Panduro, S. Orega-Cisneros, E. Boemo,
"FPGA implementation of a synchronous and self-timed
neuroprocessor," Proc. of the 2005 International Conference on
Reconfigurable Computing and FPGAs, 2005.
[11] I. Manolakos, E. Logaras, "High Throughput Systolic SOM
IP Core for FPGAs," Proc. of IEEE International Conference on
Acoustics, Speech and Signal Processing, Vol. 2, pp.61-64, 2007.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

61

Noritaka Shigei received the B.E., M.E.,
D.E. degrees from Kagoshima University,
Japan, espectively, in 1992, 1994, and
1997. He is an Assistant Professor in the
Dept. of Electrical & Electronic Eng. at
Kagoshima University. His research
interests include neural networks, digital
circuit design, mobile agent system, and
energy efficient communication in sensor
networks. He is a member of the IEEE, the

ACM and the IEICE.

Hiromi Miyajima received the B.E.
degree in electrical engineering from
Yamanashi University, Japan, in 1974, and
the M.E. and D.E. degrees in electrical and
communication engineering from Tohoku
University, in 1976 and 1979, respectively.
He is currently a Professor in the
Department of Electrical & Electronics
Engineering at Kagoshima University. His
current research interests include fuzzy

modeling, neural networks, quantum computing, and parallel
computing.

Shingo Hashiguchi received the B.E. and
M.S. degrees in electrical and electronics
engineering from Kagoshima University in
2006 and 2008, respectively. His research
interests have been digital circuit design
and digital wireless communication system.
Currently, he is working at Fujitsu
Microelectronics Limited, Japan.

Michiharu Maeda received the B.E. and
M.S. degrees in theoretical physics in 1990
and 1992, respectively, and the Ph.D.
degree in information and computer
science in 1997, from Kagoshima
University, Japan. He is currently an
Associate Professor in the Department of
Computer Science & Engineering at
Fukuoka Institute of Technology. His
research interests include computational

intelligence, mathematical & physical computation, and signal
processing.

Lixin Ma received the D.E. degree in
System Information Engineering from
Kagoshima University, Japan in 1999. He
is currently a Professor at College of
Computer and Electrical Engineering in
University of Shanghai for Science and
Technology. His research interests include
neural networks, fuzzy theory and its
industrial applications.

