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Summary 
Vector Quantization (VQ) is successfully applied to data 
compression. In image compression, Multiple-VQ with Index 
Inference (MVQII) can provide a much better restored image 
quality than conventional VQ methods. However, the index 
inference increases the computational complexity of the decoding 
process in proportion to the number of weights. In this paper, in 
order to accelerate the decoding process of MVQII, we 
present three types of digital circuit design for the decoder. 
The presented designs are implemented on FPGAs and are 
evaluated in terms of operating speed, processing time. 
The results show that two versions achieve good 
improvement in processing speed at reasonable expenses 
of circuit size and that the fastest version is nearly ten 
times faster than a software implementation on a modern 
standard computer. 
Key words: 
Vector quantization, decoder, multiple vector quantization, 
digital circuit, FPGAs. 

1. Introduction 

Vector Quantization (VQ) is a process for approximating a 
large set of input vectors by a smaller set of weight vectors. 
VQ is a useful technique in many applications such as data 
compression, data mining and pattern recognition [1,2,4]. 
VQ is successfully applied to data compression [8]. 
However, the quality of the restored data greatly depends 
on the number of weights (codebook size) and the 
dimension of weights (block size). One of the methods 
relaxing the trade-off is Multistage Residual VQ (MRVQ), 
in which multiple quantizers are concatenated in series [2]. 
In MRVQ, the first stage quantizer operates on the input 
vectors, and the second stage operates on the errors 
between the input vector and the first stage output. MRVQ 
is a serial approach. On the other hand, we have proposed 
multiple-VQ (MVQ) as a parallel approach [3]. The MVQ 
method performs independently multiple VQ processes, 
and combines the independent low quality results into a 
high quality one. We have shown that, with the useful 
technique index inference, MVQ with Index Inference 
(MVQII) is effective in data compression [5,6]. However, 
the index inference increases the computational 
complexity of decoder in proportion to the codebook size. 
For example, when decoders with κ  codebook vectors are 

implemented on a CPU, an MVQII decoder has κ  times 
lower throughput than conventional VQ decoders. 

Digital circuit implementation is effective in terms of 
processing speed and power consumption when compared 
with software implementation on a general purpose PC. 
Some systems based on VQ have been implemented in 
digital circuits [9,10,11]. In [9], a speaker identification 
system based on VQ has been implemented in FPGAs. In 
[10], a processor for self-organizing map (SOM), which is 
one of VQ methods[4], has been implemented in FPGAs. 
In [11], a systolic architecture of SOM has been proposed 
and also implemented in FPGAs. 

In this paper, in order to accelerate the decoding 
process of MVQII, we study hardware implementation of 
MVQII decoders. Specifically, we present three types of 
digital circuit design for the decoder. The first one is a 
naive implementation, and the second and third ones are 
improved versions, respectively, with “pipeline” and 
“parallelization”. The presented designs are implemented 
in FPGAs and are evaluated in terms of operating speed, 
processing time and circuit size. The results show that the 
last two versions achieve good improvement in processing 
speed at reasonable expenses of circuit size and that the 
parallel version is nearly ten times faster than a software 
implementation on a modern standard computer. 

The rest of this paper is organized as follows. Section 
2 describes VQ, MVQ and MVQII, and shows some 
simulation results for performance comparison. Section 3 
presents our proposed digital circuit designs for MVQII 
decoder. Section 4 shows the performance evaluation 
results. Finally, section 5 concludes the paper and presents 
future works. 

2. Vector Quantization and Multiple Vector 
Quantization 

2.1 Vector Quantization 

Vector Quantization (VQ) is to approximate a large set of 
input vectors 1{ , , }X ν= x xL  by a smaller set of weight 
vectors 1{ , , }W κ= w wL , where , n

i j ∈ℜx w  are n-
dimensional Euclidean vectors and X  is a random sample 
from a probability density function (PDF) ( )p x . W  and 
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jw  are also referred to, respectively, as codebook and 
codebook vector. In VQ, an input vector X∈x  is 
replaced with a weight vector 

winkw ∈ W  such that 

( , )
winkd x w =  {1, , } (in )m , kk dκ∈ x wL , where 

( , ) || ||d = −x w x w . In other word, the VQ process divides 
the input space nℜ  into κ  sub-spaces 1 ,,S SκL  such that 

kS  =  { n∈ℜx  |  ( , )kd x w  ≤  ( , ), }.l kd l≠x w  The 
approximation accuracy of VQ is evaluated in terms of the 

average distortion error 
{1, , }

1 ( , )
k

kk S
dE

κν ∈ ∈
= ∑ ∑ x

x w
L

. 

A fundamental method minimizing the error E  is 
Competitive Learning (CL), which is based on gradient 
descent [4]. The CL procedure iterates a simple adaptation 
step. At t-th iteration, the CL procedure calculates the 
closest weight (called winner) 

winkw  to a given input 

vector X∈x , and then updates 
winkw  as follows: 

 ( )( ),
win win wink k itε+← −w w x w  (1) 

where ( , )
winkd x w =  {1, , } (min ), kk dκ∈ x wL  and ( )tε  is a 

learning rate decreasing with t. 

2.2 VQ based Image Compression 

This section describes single-VQ based data 
compression (SVQ). We assume G-bit gray images of 
M N× pixels. Let , {0, , 2 1}G

i jp ∈ −L  ( {1, , }Mi∈ L , 
{1, , }Nj∈ L ) be the gray level of the pixel at coordinates 

( , )i j . Then an image is represented as an M N×  matrix 

, )( i jP p= . The algorithm SVQ is as follows. 

Algorithm SVQ 
Step 1 (Input Preparation) 

Given an input image P . The M N×  pixels in P  
are divided into ) / (( )NM J K× ×  blocks of size J K× . 
The blocks are represented as JK-dimensional vectors 

1 /( ), , MN JKx xL . 
Step 2 (Vector Quantization) 

The set of weight vectors 1{ , , }W κ= w wL , called 
codebook, is trained by using the set of vectors 

1 /( ), , }{ MN JKX = xx L  as input data. The training is 
performed by Eq.(1). 
Step 3 (Index Calculation) 

For each {1, , / ( )}MNi JK∈ L , the index number il  
is calculated, where ( , )

ii ld =wx  {1, , }in ( , )m j i jdκ∈ x wL .  
End of SVQ. 

The compressed data is composed of the codebook W 
and the index sequence 1 /( ),( ), MN JKlL l= L . From W and L, 

an image is restored. In the restored image, each block 
i X∈x  in the original image is replaced with 

il
w . The 

quality of the restored image is evaluated in terms of mean 
square error (MSE) as follows: 

 
{1, , / ( )}

( , , ) ,1 )(
ii li MN JK

d
MN

MSE X W L
∈

= ∑ x w
L

 

2.3 Multiple-VQ based Image Compression 

In this subsection, we describe multiple-VQ (MVQ) and 
index inference for image compression. The fundamental 
idea of MVQ is that a high quality image can be created by 
averaging multiple low quality images that independently 
restored from different pairs of codebook and index 
sequence. The MVQ algorithm for compression phase is as 
follows. 

Algorithm MVQ 
Step 1 (Input Preparation) 

From the input image P , two input data sets (0)X  
and (1)X  are generated as follows: 

 

( ) ( )

( )
( , ,1), ( , ,1) ( , , ), ( , ,1)

( , ,1), ( , ,2) ( , , ), ( , ,2)

( , ,1), ( , , ) ( , , ), ( , , )

|

( , ,

{ {1, , }} for {0,1},

,

, ,

, ,

,

),

c

c

c c c

c c
i

c c

c
i i c i c i c J i c

i c i c i c J i c

i c i c K i c J i c K

MN cX i

p

p

J K

p

p

p p

φ ψ φ ψ

φ ψ φ ψ

φ ψ φ ψ

=

=

∈ ∈x

x

L

L

L

L

L

 (2) 

where 

( , , ) ((( 1)mod ) 1) od 1mc
c

M Mi c j i J c j
J

φ = − + − ++ and 

( , , ) ( ( 1) / mo1 1d)c
c

Mi c j i K
J

c j Nψ += −− + +d t . Fig. 1 is a 

schematic explanation of ( )c
ix . 

Step 2 (Vector Quantization) 
Perform VQ twice to generate two codebooks (0)W  

by using data sets (0)X  and (1)X , respectively. The 
training is performed by Eq. (1). 
Step 3 (Index Calculation) 

The index sequence 
0 0

(0) (0) (0)
1 / ( )( ), , MN J Kl lL = L  is 

calculated from (0)W . 
End of MVQ. 

In Step 2, two codebooks (0)W  and (1)W  are 
generated from different input data sets (0)X  and (1)X , 
respectively. The use of different data sets is an essential 
requirement for obtaining a good quality [4]. 
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(a) For (0)X . 

 

(b) For (1)X . 
Fig. 1 Segmentation of P  for generating ( )cX  

In Step 3, only (0)L  is calculated, and the compressed 
data are (0)W , (1)W  and (0)L . If, in addition to the 
compressed data, (1)L  is used, a better quality image can 
be restored. However, in this case, the compressed data 
size significantly increases, and as a result, the restored 
image quality is too low for a fixed data size. Instead, the 
lost data (1)L  is restored by a decoder side technique index 
inference [11]. The algorithm is as follows. 

Algorithm MVQ with Index Inference 
Step 1 (Image Restoration by SVQ) 

Restore an image (0) (0)
,( )i jP p=% %  from (0)W  and (0)L . 

Step 2 (Input Preparation for Inference) 
From the restored image (0)P% , an input data set 

1 1

(1) (1) (1)
1 )/ ({ ,, }KMN JX = x x% % %L  is generated as in Eq. (2). 

Step 3 (Index Calculation) 
For each 1 1{1, , / ( )}MN J Ki∈ L , the index number 

(1)
il  is calculated, where (1)

(1) (1)( , )
i

i l
d =x w% %  

(1) (1)
{1, , } (m n )i ,j i jdκ∈ x wL

% . 
End of Index Inference. 

Now, after index inference, we have (0)W , (1)W , (0)L  
and 

1 1

(1) (1) (1)
1 / ( )( , , )MN J Kl lL = L . Next, two images (0)P%  and 

(1)P%  are independently restored from two pairs (0) (0), )( LW  
and (1) (1), )( LW , respectively. And then, a restored image 

,( )j jP p=% %  is generated by combining the two restored 
images as follows. 

 (0) (1)
, , ,

1 ( ),
2i j i j i jp p p= +% % %    (3) 

where ( ) ( )
,( )c c

i jP p=% %  for {0,1}c∈ . 
In the following, the method described in this section 

is referred as MVQ with Index Inference (MVQII). 

   
 (a) Lena (b) Goldhill 

Fig. 2 Test images. 

2.4 Performance Comparison 

In order to demonstrate the effectiveness of MVQII, we 
show some simulation results on SVQ, MRVQ (Multistage 
Residual VQ) and MVQII. SVQ is the algorithm described 
in Sect. 2.2. MRVQ is performed by a software package 
QccPack[7]. For MRVQ, the number of stages is two and 
each stage uses the same codebook size. MVQII is 
performed with 0 0 4 4J K× = × , 1 1 2 2J K× = ×  and 

0 1κ κ= . The used test images are shown in Fig. 2. The 
two images consists of 512 512×  pixels of 256 gray level, 
that is 512M N= = . 

The simulation results are shown in Fig. 3, where the 
compression rate is the ratio of the original data size 
( 512 512 8× ×  bits) to the compressed data size (the total 
size of codebooks and index sequence). For all images, 
MVQII achieves the best performance among all the 
methods when the compression rate is high. 
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 (b) For Goldhill. 

Fig. 3 MSE versus compression rate for SVQ, MRVQ 
and MVQII. 

3. Hardware Implementation of MVQII 
Decoder 

MVQII described in the previous section requires 
1( )O κ times as more time as SVQ method, because unlike 

SVQ, MVQII requires finding nearest weights for (1)W  as 
in Step 3. In this section, in order to accelerate the 
decoding process of MVQII, we present its hardware 
implementation. 

3.1 MVQII Algorithm for Hardware Implementation 

In this subsection, we rewrite the MVQII algorithm 
into a form suitable for hardware implementation. As a 
preliminary step, we give some definitions.  

( )
( , ,1), ( , ,1) ( , , ), ( , ,1)

( , ,1), ( , ,2) ( , , ), ( , ,2)

( , ,1), ( , , ) ( , , ), ( , , )

( , ,

,

,

, ,

, ,, )

c

c

c c c

c
i i c i c i c J i c

i c i c i c J i c

i c i c K i c J i c K

p

p

p

p

p p

φ ψ φ ψ

φ ψ φ ψ

φ ψ φ ψ

=x% %L

%L

L

%

%

%

%L

 

where  ,( )j jP p=% %  is the matrix that will store the final 
restored image. 

When 0 1J J J= =  and 0 1K KK= = , the rewritten 
version is given as follows. 

Algorithm MVQII for Hardware Implementation 
Input: 

0

(0) (0) (0)
1{ , },W κ= w wL , 

1

(1) (1) (1)
1{ , },W κ= w wL , 

(0) (0) (0)
1 / ( )( , , )MN JKL l l= L  

Output: ,( )j jP p=% %  

(1

/ 1

/

)

(0) (0)

(0) (0)

(0) (0)

* (1)

(1)

/ 1

/

/ 1 / 1
*

1: For : 1 to /  do
2:

3: End for
4: For : 1 to /  do
5:

6: For 2 to /  do
7:

8: Find  such that
9: ( i (m n, )

jM J

jM J i

i

jM J

jM J i

jM J i j

i l

l

M J

l

W i

i M J

j N K

i M J

d d
W

+

+

+

+

+ − ∈ + −

←

←

←

=

=

=

∈

=
w

w

w

w

x

x

x

w
x w x

%

%

%

% % (

/ 1 /

1)

(1) (1) *
1

1 (
2

, )

10: )

11: End for
12: End for

jM J i jM J i+ − + −← + w

w

x x% %

 

The difference between two versions is that the above 
version does not explicitly calculate the index sequence 

(1)L . Although we assume 0 1J J=  and 0 1K K= , the 
algorithm can be generalized by modifying lines 5 and 7 to 
“if” statements. The statements from lines 7 to 10 can be 
processed in pipeline fashion.  

3.2 MVQII Hardware Design 

We implement the proposed MVQII algorithm on 
FPGA. We present three different circuit design: (I), (II) 
and (III).  
Circuit Design (I) 

The top view of design (I) is shown in Fig. 4. In the 
figure, a box with “>” means a synchronous circuit block 
and the other boxes are combinatorial circuit blocks. Note 
that a synchronous circuit block must be connected with a 
clock line and some control signal lines, which are omitted 
for simplicity in the figure. The design consists of a 
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counter, four RAMs, combinatorial circuit units Average 
and Find Nearest. Four RAMs store (0)L , (0)W , P%  and 

(1)W , respectively. The Counter sequentially outputs 
memory addresses of (0) (0)

il L∈ , (0) (1)
1 W∈w , (0)

ix%  and 
(1)
ix% . The unit Find Nearest outputs the closest weight 
* (0)W∈w  to (1)x% , after 

1

(1) (1)
1 ,, κw wL  are inputted. That is, 

for a given (1)x% , the calculation requires 1κ  clocks. This 
unit, which is a key module in our design, will be 
explained in detail later. And then, the average of *w and 

(1)x%  is calculated and written to RAM P% . Fig. 5 shows 
the inside of the unit Find Nearest for design (I). The unit 
DIST calculates (1) (0) 2|| ||d = −wx%  by performing 
subtraction and squaring. The unit CMP performs the 
comparison between d  and mind . If mind d<  then CMP 
sets 1f = . Otherwise it sets 0f = . The signal f  is used 
as the enable signal of two registers. That is, if 1f =  then 
the two registers latch mind  and (0)w . The operating speed 
of the design (I) is dominated by the unit DIST. Because 
the unit performs subtraction and squaring and involves 
the longest combinatorial logic path among all logic 
blocks in the design. 

 

Fig. 4 The top view of design (I). 

 

 

Fig. 5 The unit Find Nearest for design (I). 

 

 

 

Fig. 6 The unit Find Nearest for design (II). 

 

 

Fig. 7 The parallelized Find Nearest in design (III). 

Circuit Design (II) 
In order to improve the processing speed, we consider 

dividing the most complex logic, DIST, in the design (I) 
into two parts. The unit Find Nearest for the improved 
version, the design (II), is shown in Fig. 6. In this design, 
the unit DIST in design (I) is divided into two logic blocks 
SUB & ABS and SQ. The unit SUB & ABS calculates 

1 1(| |, ,| |)xx w wκ κ= − −d L , where (1)
1 , )( ,x xκ=x% L  and 

(1)
1,( ),w wκ=w L . The unit SQ calculates ·d d . Although 

this modification can improve the critical path delay in the 
circuit, two clocks are needed to calculate 

(1) (0) 2|| ||d = −wx% . In order to hide the increased step, an 
additional register REG (2) is added. With REG (2), the 
unit Find Nearest operates in pipeline fashion. Its pipeline 
operation calculates m  closest weights in 1· 1mκ +  clocks. 
Circuit Design (III) 
In order to reduce the number of clocks for calculating the 
closest weight, we consider the parallelization of the unit 
Find Nearest. The parallelized circuit is shown in Fig. 7. In 
the circuit, the weight set (1)W  is divided into two sub-sets 

1

(1) (1) (1)
0 1 / 2{ , },W κ= w wL  and 

1 1

(1) (1) (1)
1 /2 1 ,{ , }W κ κ+= w wL , which 

are stored in RAM (1)
0W  and RAM (1)

1W , respectively. 
Two Find Nearest units calculate the closest weights 
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(1)
0 0win W∈w  and (1)

1 1win W∈w  to (1)x%  in parallel. This 
calculation completes in 1 / 2 1κ +  clocks. Note that each 
Find Nearest unit is same as in Fig. 6. The unit SEL 
outputs 0win win=w w  for 0 1d d<  and otherwise 

1win win=w w . That is, winw  is the closest weight in (1)W . 
The number of clocks required for processing Q  

vectors are summarized in Table 1, where Q  corresponds 
to 1 1)/ (MN J K . The difference of required clocks between 
designs (I) and (II) is just one clock. Design (III) needs 
only about half the number of clocks required for design 
(I). 
 
Table 1 The number of clocks required for processing 
Q  vectors. 

Design Number of clocks 
(I) 1( 1) 2Q κ + +  

(II) 1( 1) 3Q κ + +  

(III) 1( / 2 1) 4Q κ + +  

4. Implementation Results 

We implement the proposed designs on FPGA and 
evaluate their operating frequency, processing time and 
circuit size. The design environment is Xilinx ISE Design 
Suite 10.1, the targeted device is Spartan 2E XCS300E, 
and the design is coded in VHDL. Major specifications of 
the implemented circuits are summarized in Table 2.  

Table 2 Specifications of the implemented MVQII. 
Item Spec. 

Numeric coding 8 bits integer 

Dimension of vectors 2 22, 1J K= =  or 

2 22, 2J K= =  
Number of weight 

vectors 2 16κ =  

 

The evaluation results on operating frequency are 
shown in Table 3. For any vector dimension, each design 
operates at almost the same frequency, and the design (II) 
achieves the highest operating frequency among all the 
designs. Fig. 8 compares our three designs and a software 
implementation in terms of the processing time required 
for processing Q  vectors. The processing time for each 
design is calculated by dividing the number of clocks in 
Table 1 by the operating frequency in Table 3. “Soft” 
indicates the processing time (CPU time) for software 
implementation, where the program compiled with the 
GNU Compiler GCC 4.2 runs on a GNU/Linux PC with 
2.6.24 kernel, Intel Core2 Quad CPU Q6600 (2.40GHz) 

and 4GB of RAM. This result shows that the design (III) is 
the fastest among all the methods. The design (III) is about 
five times, twice and ten times faster than (I), (II) and Soft, 
respectively. 

The evaluation results on circuit size are summarized 
in Table 4. The number of Slice Flip Flops (SFFs) 
corresponds to the circuit size of registers and counters, 
and the number of 4 input LUTs (4LUTs) corresponds to 
the circuit size of combinatorial logic circuits. For each 
design type, the extension from 2 22, 1J K= =  to 

2 22, 2J K= =  increases SSFs and LUTs by 1.67~1.95 
times, because the number of bits for representing the 
weight vectors is doubled. For each dimension of vectors, 
the designs (II) and (III) use approximately twice and 4 
times as many SFFs as the as the design (I), respectively. 
On the other hand, the design (II) uses fewer 4LUTs than 
the design (I), and the design (III) uses 1.69~1.78 times as 
many 4LUTs as the design (I). 

Finally, we mention the difference between the 
proposed designs and a naive implementation of algorithm 
MVQII described in subsection 2.3. The algorithm MVQII 
initially restore a whole image (0) (0)

,( )i jP p=% %  from (0)W  

and (0)L , and then calculates the index sequence for (1)W . 
Therefore, the naive implementation requires about twice 
as much clocks as the designs (I) and (II). 

Table 3 Maximum operating frequency of implemented 
circuits. 

Design 2 22, 1J K= =  2 22, 2J K= =  
(I) 28.91 MHz 25.38 MHz 
(II) 75.22 MHz 72.86 MHz 
(III) 71.52 MHz 71.38 MHz 

Table 4 Numbers of slice Flip Flops and 4 input LUTs 
for implemented circuits. 

Dim.of 
vectors Design # of Slice Flip 

Flops 
# of 4 input 

LUTs 
(I) 72 204 
(II) 143 172 2

2

2
1

J
K

=
= (III) 256 346 

(I) 120 369 
(II) 273 326 2

2

2
2

J
K

=
= (III) 500 656 
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Fig. 8 Processing time for 2 22, 2J K= = . 

5. Conclusions 

In this paper, we have presented three types of digital 
circuit designs for Multiple-VQ with Index Inference 
(MVQII) decoders. The first one, which is a naive 
implementation, is of the smallest circuit size, but its 
operating speed is slow due to its long combinatorial path. 
The second and third ones improve the processing time by 
introducing “pipeline” and “parallelization”, respectively. 
The latter two versions achieve the good improvement in 
processing speed at a reasonable expense of circuit size. In 
particular, the design (II) and (III) are about 2.87 times and 
5.32 times faster than the design (I), respectively, while 
the designs (II) and (III) require about twice and four times 
larger circuits than the design (I), respectively. Further, the 
processing speed of the circuits (I), (II) and (III) is about 
1.72 ~ 9.15 times faster than a software implementation on 
a modern standard computer. 

Another problem related to MVQII is the training 
process of codebooks, which is performed in the 
compression phase. The computational complexity for 
MVQII is twice larger than for SVQ. One of our future 
works is to develop effective digital circuit design for the 
training process. 
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