
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

96

Manuscript received November 5, 2008

Manuscript revised November 20, 2008

Efficient Co-Scheduling of Parallel Jobs in Cluster Computing

A.Neela madheswari
Research Scholar, Anna University

Coimbatore, Tamilnadu, India

Dr.R.S.D.Wahida Banu
Research Supervisor, Anna University, Coimbatore

Tamilnadu, India

Summary
Co-scheduling of parallel jobs in the chips is well-known to
produce benefits in both system and individual job efficiency.
The existing works have shown that job co-scheduling can
effectively improve the contention, yet the question on the
determination of optimal co-schedules still remains unanswered.
The need for co-scheduling has been typically associated with
communication bandwidth and the memory. In our work we have
proposed a novel scheduling algorithm for optimal co-scheduling
of parallel jobs. This algorithm facilitates the scheduling of
parallel jobs using bandwidth and memory concepts. The co-
scheduling of the processes in the chips using the proposed
algorithm shows satisfactory improvement in performance of
running the parallel jobs.
Key words:
Co-scheduling, Bandwidth, Cache Memory, Scheduling
Algorithms.

1. Introduction

Since the incorporation of a number of off-the-shelf
commodity computers and resources incorporated through
hardware, networks and software to act as a single
computer [4], [8], [15], Cluster computing is best
characterized. The communication of data across the
clusters mostly deals with the data latency time and the
bandwidth in cluster computing environment. An
interesting feature of a network cluster is that it has private
communication bandwidth with respect to other network
clusters despite a shared bandwidth about the processor
clusters [2]. So as to support high-bandwidth and low
latency inter-processor communication between the
processors in the chips [14], Clusters require to incorporate
fast interconnection technologies. Several processors are
present in a chip and many such chips may exist. The
intra-chip processor communication is of little significance
whereas inter-chip processor communications share the
communication bandwidth.

The choice of processors to use for the execution of each
of the parallel jobs and the time of execution are some of
the constituents in the scheduling of parallel jobs on a
parallel supercomputer [6]. The processes to be run of
different chips pose a similar scenario and hence
scheduling becomes inevitable for obvious reasons. It is
inefficient to perform the scheduling of numerous
scientific and high-performance computing applications be

composed of multiple processes running on dissimilar
processors in the chips [7]. The entire parallel applications
are dependent on communication practically, but the
communication pattern can differ considerably between
applications. Between sequential applications with similar
speedup to extremely parallel and distributed applications
with linear speedup, the degree of parallelism of an
application too differs a lot (depending on application
type). Service time and resource requirements for instance
memory size and network bandwidth are the additional
parameters for showing high inconsistency in parallel
applications [10].

Both the existing computational resources and efficient
communication bandwidth have been degraded by the load
of the processors in the chip. It is required to co-schedule
the jobs running on the processors in the chips
consequently. To create advantages in both system and
individual job efficiency [3] [11] [1], Co-scheduling of
parallel jobs across the chips is eminent. The processes
constituting a parallel job endure high communication
latencies due to processor thrashing [3] without
synchronized scheduling. In timeshared environments, Co-
scheduling has been exposed to be an unfavorable factor in
achieving well-organized parallel execution [15]. Owing to
the fact that co-scheduling is supposed to resolve the
demands of parallel and local computations apart from
stabilizing parallel efficiency against local interactive
response the challenges faced while applying co-
scheduling for chips are huge [3]. A co-scheduling system
can efficiently play the role of a batch-scheduled system
for parallel jobs besides being a timesharing system for
interactive users. With coordinated time-slicing between
them, the entire processes in a parallel application are
scheduled at the same time. Generally, this yields good
parallel program performance and this is widely used to
schedule parallel processes involving frequent
communication [9].

There exist many researches in scheduling of parallel jobs
by using many parameters like memory, latency time,
bandwidth, and so on [2] , [7] , [10] and [11]. In addition,
many scheduling techniques strive to co-schedule jobs that
communicate frequently. However the combined usage of
the memory and bandwidth has not been given
considerable significance. Therefore, the performance of
parallel job scheduling of the processors in the chips by

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

97

using the major parameters like bandwidth and the cache
memory has been chiefly focused in this paper. Co-
scheduling comprises of a number of interacting tasks that
scheduled to run at same time on different processors.

The rest of the paper is organized as follows. Section 2
presents a brief overview of the concepts used in the
proposed algorithm. The proposed efficient co-scheduling
algorithm is presented in Section 3. The experimental
results are given in Section 4 and conclusions are summed
up in Section 5.

2. Concepts Utilized in the Proposed
Algorithm

The scheduler must have information on the content of
each machine's disk cache in addition to the availability of
compute-slots on each machine to attain co-scheduling
[12]. An acute complexity faced by the classes of co-
scheduling is the computation of optimal co-schedules.
This complexity stays unanswered. Detection of optimal
co-schedules is significant for two reasons. First, the
evaluation of a variety of scheduling systems has been
facilitated by this. Second, a well-organized optimal co-
scheduling algorithm can directly fit the necessity of
practical co-scheduling. To find out their rate of
communication, the communication between processes or
threads has been monitored by the runtime activities. The
need for co-scheduling has been typically associated with
communication. Latency and bandwidth are two metrics
associated with communication and memory. Neither of
them is uniform, but is precise to a particular component
of the memory hierarchy [5]. For competent scheduling of
processes in the chips, a new scheduling algorithm has
been proposed based on the bandwidth and the memory.

2.1 Cache Memory

To decrease the average time to access memory, a cache is
utilized by the central processing unit of a computer.
Numerous caches are found in modern computers. Their
internal organization is classically dissimilar across the
cache memory with the variation in their size and
functionality. The cache is a smaller, faster memory and
the copies of the data taken from the most repeatedly used
main memory locations are stored in this. For lessening
inter-thread latency, the cache sharing is essential. This
fetches cache contention between the processes in the
chips too.

2.2 Bandwidth

The bandwidth is an important metric for several
applications such as grid, clusters, video and voice
streaming, overlay routing, and p2p file transfers. In

addition, it gives information to network applications
concerning the way to control their outgoing traffic and
moderately share the network bandwidth [16]. Depending
on the communication between the processors [13],
bandwidth necessities differ from one network to another
network. It is significant for upholding a fast, functional
network, the determination of the number of bits per
second travel across the network and the amount of
bandwidth for each application users.

3. Efficient Co-scheduling Algorithm

A job can be split into a limited number of processes.
These processes may have the communication to achieve
the faster execution of a job. As the processes of a job are
assigned to more than one chip, the bandwidth and the
memory usage is mainly concerned. That is, the
communication between the processes is noticed to run a
particular job very efficiently. So we have proposed a
scheduling algorithm which is based on the bandwidth
usage and memory concepts. The processes have been
grouped by the communication cost of each processes and
assigned to the chip which is having significant amount of
memory.

The processes of a particular job can be represented by the
graph structure named as Bandwidth Usage Graph. In this
graph, each vertex represents the processes (P) of a
particular job. The cost of each edge denotes the
bandwidth usage between the two processes which has
been calculated by using the number of communication
and the bandwidth needed between the two processes.

Fig. 1 Bandwidth Usage Graph

In the above graph, P represents the processes of a
particular job and Bik denotes the bandwidth used by the
two processes (Pi, Pk) of a particular job.

The proposed scheduling algorithm aims to schedule the
processes of a job in chips by grouping them as a set of
processes based on their communication and memory

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

98

requirements. If all the processes of a job cannot be
assigned in a chip because of less memory then the
processes will be formed as a group. This grouping is done
level by level. It can be done by using the Multi-Level
Preliminary Grouping (MLPG) and Communication-Cost
Effective Grouping (CCEG) algorithms. The grouping of
all the processes is mainly based on the communication
between each of the processes of a job. This grouping can
be done by calculating the communication cost of each of
the processes. Then the grouped processes are scheduled to
be assigned to the chip having sufficient amount of
memory to accommodate all the processes in the group. If
the available memory is not sufficient for any group, the
processes of that job would be moved to the job queue.
The diagrammatic representation of the scheduling
algorithm is given by

Fig. 2 Flow Diagram of Scheduling Algorithm

3.1 Multi-Level Preliminary Grouping (MLPG)
Algorithm

In this algorithm, the processes of a job can be initially
grouped on the basis of the communication cost between
the processes. The grouping can be done level by level.
But this initial grouping is not enough for grouping of all
the processes of a job. So we have to group the processes
more effectively by using the Communication-Cost
effective grouping (CCEG) algorithm.

Assumptions

CJP Processes of a current job

CN Number of communications between two
 processes

RB Bandwidth required for communication
 between two processes

CPG Vector of process groups having
 communication with other processes

NCPG Vector of process groups not having
 communication with other processes

CJPin p processeach for
 processes)other with escommunicat (Pif

 PPGC << ;

 if end
for end

CCJNC PGPPG \=

The processes of the current job are divided into two sets
based on their communication with other processes. The
processes having communication with other processes are
grouped into a set as CPG and those not having

communication into other set named as NCPG .

} .{ jobcurrentaofprocessesofNoN =
 N ofelement singleany be e Let

 T}X{e}{X),(∈∪=TeF

 }{\ eNT =
))(,()()(TPeFTPNP ∪=

The number of sets with k elements, in the power set of a
set with n elements, will be a combination of),(knC ,
where

 α<>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= k

k
n

knC 1,),(

Where n = number of processes of the current job. The
processes of a particular job can be grouped level by level.
Select),(knC groups from the set)(NP and each
group having k number of processes.

The communication cost between two processes and the
total cost of each group is calculated by using the
following equations.

2/)*(RC BNCost =

)(cos
nCr

1groupeach ofcost
1 1
∑ ∑
= +=

=
n

i

n

ij
ijtTotal

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

99

Where n = number of processes of each group and r = 2 i.e.
communication between 2 processes. Then the total costs
are sorted in descending order and stored in pgS .

dscpg gttotsortS))(cos(=

Assumptions

pgS Sorted group of processes

iS Each group of processes in pgS

nS Selected groups for scheduling

)(1 pgSsizetoifor =

 then)(φ=in SSif I

inn SSS <<=

if end
 for end

The sorted groups are used to schedule the groups that
cover all the processes of a job but no two groups have
common processes.

 then0k)! mod(n =if

 nCnn SPGSS \<<=

if end

If any process is left alone without being added to the
process groups, then it is added to the nS .

3.2 Communication-Cost Effective Grouping (Cceg)
Algorithm

The processes which have been already grouped by MLPG
algorithm are again regrouped by using this CCEG
algorithm. This grouping is done on the basis of
communication costs between all the processes of a
particular job and is found to be effective. This grouping is
used to separate the processes which are not having any
communication in the current group and such processes
are reassigned to another group having maximum
communication cost with any one of the processes in that
particular group.

} the cos { processesalloftsioncommunicatSC =

Each value in CS represents the communication cost

between the current process iP and the other process in

the process set nS . Each value in CS is represented by

ijN If there is no communication, then the value of ijN is
zero.

)}(:{ xPxX =
 0)(≠= ijNxP

Where km1j and 1 <>=<>= nli

 m
iIlm XG][Δ=

 iQ PS <<

Here m
iI X][Δ represents the index of the maximum

value of the communication cost between iP and the
corresponding process group and l is the corresponding
qualified group namely QS . After regrouping all the
processes based on the communication costs, the processes
set can be represented by

{=nS

 }........,,.........,,{ 321 iPPPP

 }.......,..........,.........,,{ 321 jPPPP

 },,.........,{ 21 kPPP

 }...,,.........,,{ 1321 PPPP
 .
 .

 .
}.......,....................,.........,,{ 321 nPPPP

}
 Where njilk <<<< .

3.3 Scheduling Algorithm

In this algorithm, the number of processes (n) of a
particular job has been scheduled to be assigned to any of
the chips. The processes have been grouped based on their
communication costs. For this algorithm to take effect, we
have to check the following conditions level by level. For
each level, the processes can be split into n / l, where l is
the level for each stage. The following conditions should
be checked for each level.

Assumptions

mP Total memory of each group of processes

mC Available free memory in each chip

iS Each group of processes

)}(:{ iij SPSC = where ni ,,1K= and cj ,,1K=

 jii CmpmSP <==)(

If all the processes of a job cannot be assigned to chips at
first level due to the shortage of memory, then it would go

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

100

to next level and check the above conditions. After
assigning each process group to chip

jC ,then the memory
of the chip gets reduced.

i.e., ijj PmCmCm −=

4. Experimental Results

This section contains an extensive experimental evaluation.
We have implemented the proposed scheduling algorithm
in Java. The proposed algorithm has effectively grouped
the processes of a job based on their communication and
memory requirements and scheduled in right chips for
better performance. The results thus obtained were
analyzed and were proved to be better in terms of
communication between the processes of a particular job.
The communication between the processes and the
memory required for storage were the two criterions upon
which the processes were grouped. In the results, we have
compared the communication costs within the grouped
processes to that of the individual processes.

The processes of a particular job have been grouped on the
basis of their cost of communication with the other
processes. In the tables given below, the grouped
processes sets have been compared with the same
processes and the other processes of a particular job with
communication cost being the condition for comparison.
Communication cost between the processes of the same
group assigned in one chip is found to be maximum than
the other processes group. This can be verified upon
analysis of the tables and charts given subsequently.
Considering the communication costs between the
processes of a job, the proposed algorithm was found to
perform better. The processes table of the job and the
respective charts are given below.

Table 1: Communication costs between the processes of same group
assigned on one chip of a particular job.

process p1 p2 p5 p9
P1 0 25 54 30
P2 25 0 12 0
P5 54 12 0 0
P9 30 0 0 0

Table 2: Communication costs between the group of one processes and
group of other processes assigned on another chip of a particular job

process p3 p7 p8 p4 p6
p1 0 0 5.5 0 0
p2 15 5 5 0 0
p5 0 10 0 0 0
p9 15 0 18 0 0

0

10

20

30

40

50

60

p1 p2 p5 p9

p1
p2

p5
p9

p1
p2
p5
p9

Chart 1: Communication costs between the processes of same group
assigned on one chip of a particular job.

p3 p7 p8 p4 p6
p1

p2
p5

p9

0

10

20

30

40

50

60

p1
p2
p5
p9

Chart 2: Communication costs between the group of one processes and
group of other processes assigned on another chip of a particular job

The processes tables and charts of another one job is given
as follows.

Table. 3 Communication costs between the processes of same group
assigned on one chip of a particular job

process p11 p12 p13 p15
p11 0 25 54 0
p12 25 0 0 12
p13 54 0 0 63
p15 0 12 63 0

Table. 4 Communication costs between the group of one processes and
group of other processes assigned on another chip of a particular job

process p14 p16 p17 p18 p19
p11 0 4 2.5 0 0
p12 0 4 5 0 0
p13 13 0 0 0 12.5
p15 0 1.5 0 0 0

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

101

p11 p12 p13 p15
p11

p12
p13

p15

0

10

20

30

40

50

60

p11
p12
p13
p15

Chart 3: Communication costs between the processes of same group
assigned on one chip of a particular job

p14 p16 p17 p18 p19
p11

p12
p13

p15

0

10

20

30

40

50

60

p11
p12
p13
p15

Chart 4: Communication costs between the group of one processes and
group of other processes assigned on another chip of a particular job

5. Conclusion

This paper investigated the problem of optimal job co-
scheduling on the chip multiprocessors. We have proposed
the scheduling algorithm to improve the optimal co-
scheduling of the processes of a job by utilizing the main
parameters such as bandwidth and memory. Based on the
usage of both the bandwidth and memory, the processes of
a particular job are assigned to the chips having sufficient
amount of memory. The tables and the charts have shown
better results when the communication costs between the
processes of the same group assigned in a single chip is
found to be maximum than the other group of processes.
All the processes in the chips have co-scheduled
simultaneously while running the parallel jobs.

References
[1] Dror G. Feitelson, Larry Rudolph., “Gang Scheduling

Performance Benefits for Fine-Grained Synchronization”,
Journal of Parallel and Distributed Computing, pp. 306-318,
December 1992.

[2] Jon B. Weissman, “Scheduling Parallel Computations in a
Heterogeneous Environment”, University of Virginia,
August 1995.

[3] Patrick G. Sobalvarro, Scott Pakin, William E. Weihl,
“Dynamic coscheduling on
workstation clusters”, Proceedings of the Workshop on Job

Scheduling Strategies for Parallel Processing, Vol.1459, pp.
231-256, 1998.

[4] R. Buyya, Rajkumar, “High Performance Cluster
Computing : Architectures and Systems”, Published by
Prentice Hall, Vol. 1, 1999.

[5] “Memory Hierarchy in Cache-Based Systems”, Technical
report, High Performance Computing, Sun Microsystems,
2003.

[6] Yair wiseman, Dror G.Feitelson, “Paired Gang scheduling”,
IEEE transactions on parallel and distributed systems, Vol.
14, No. 6, pp. 581-592, 2003.

[7] D. G. Feitelson, L. Rudolph, U. Schwigelshohn., “Parallel
job scheduling– A status report”, Proceedings of the Tenth
Workshop on Job Scheduling Strategies for Parallel
Processing, Vol. 3277, pp. 1–16. , 2004.

[8] “Cluster Computing”, White paper from Cisco Systems, USA,
2004.

[9] Gyu Sang Choi, Jin-Ha Kim, Deniz Ersoz , Andy B. Yoo,
Chita R. Das, ”Coscheduling in Clusters: Is It a Viable
Alternative?”, Proceedings of the ACM/IEEE Conference
on Supercomputing, page. 16, November 2004.

[10] Eitan Frachtenberg, Dror G. Feitelson, “Pitfalls in Parallel
Job Scheduling Evaluation”, 11th Workshop on Job
Scheduling Strategies for Parallel Processing, Vol. 3834, pp.
257-282, 2005.

[11] Frachtenberg, E. Feitelson, G. Petrini, F. Fernandez, J.,
“Adaptive parallel job scheduling with flexible
coscheduling” , IEEE Transactions on Parallel and
Distributed Systems, Vol. 16, pp.1066- 1077, 2005.

[12] A. Romosan, D Rotem, A Shoshani, D Wright , “Co-
Scheduling of Computation and Data on Computer
Clusters”, Proceedings of the 17th International Conference
on Scientific and Statistical Database Management, pp. 103-
112, 2005.

[13] Darius Buntinas, Guillaume Mercier, William Gropp,
"Data Transfers between Processes in an SMP System:
Performance Study and Application to MPI”, Proceedings
of the IEEE International Conference on Parallel Processing,
pp. 487 - 496, 2006.

[14] Chee Shin Yeo et.al, "Cluster Computing: High-
Performance, High-Availability, and High-Throughput
Processing on a Network of Computers", White Papers on
University of Melbourne, pp.521-551, 2006.

[15] P. Sammulal, A. Vinaya Babu, “Efficient and Collective
Global, Local Memory Management For High Performance
Cluster Computing”, International Journal of Computer
Science and Network Security, Vol. 8 , No. 4, pp. 81-84,
2008.

[16] Platonov, A. P., Sidelnikov, D. I., Strizhov, M. V., Sukhov,
A. M., “Estimation of available bandwidth and
measurement infrastructure for Russian segment of Internet”,
arXiv:0803.1723, RIPE 56 Meeting, March 2008.

A.Neela Madheswari received her Master of Computer Science
and Engineering degree from Vinayaka Missions University, on
June 2006. Currently, she is doing his research in the area of
Parallel and Distributed systems under Anna University,
Coimbatore. Earlier she completed her B.E, in Mahendra
Engineering College from Madras University of Computer
Science and Engineering, Chennai on April 2000. Later, she

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

102

joined as Lecturer at Mahendra Engineering College in
CSE department from 2002 and now she serves as Lecturer at
Vinayaka Missions University. Her research interest includes
Distributed Computing and Web Technologies. She is a
member of the Computer Society of India, Salem.

Dr.R.S.D.Wahida Banu obtained B.E. degree in 1981 and her
M.E. degree in Jan ‘85 from GCT, Coimbatore, Madras
University. She got the Ph.D. degree in 1998 from Anna
University, Chennai. First lady to acquire Ph.D. in Chennai zone
and second qualified Ph.D. supervisor in the area of Computer
Science and Engineering related areas. As expertise is less it
continues in the Directorate of Technical Education, Tamilnadu.
She is the member of ISOC, IAENG, VDAT and life member of
ISTE, IE, CSI and SSI. She is currently working as Professor and
Head of Electronics and Communication Engineering,
Government College of Engineering, Salem.

