
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

103

Manuscript received November 5, 2008

Manuscript revised November 20, 2008

A Rough Set based Data Inconsistency Checking Method for Relational
Databases

Hyontai Sug,

Division of Computer & Info. Eng., Dongseo University, Busan, Korea

Summary
In order to deal with data inconsistency problems in relational
databases, a new method based on rough set theory which checks
data consistency solely based on data is presented. The
inconsistent data that exist under the attribute sets in the relations
having possible functional dependencies can be found effectively
by applying the suggested rough set based consistency checking
method. The method is illustrated by examples.
Key words:
Rough sets, data integrity, functional dependency.

1. Introduction

Nowadays, computers as well as related software systems
like database management systems are available widely, so
that lots of databases are created and used. Moreover, it is
relatively easy to use the database management systems
for small and medium sized computers because of the
development of good user interfaces. But, this ease of use
might play a role of some bad points in the respect of data
integrity.
Because relational databases are consisted of relations that
resemble conventional tables, users or designers of the
databases might consider that the relations are just like
conventional tables and they want to store data in a small
number of tables as much as possible, because the
complexity of making queries from the tables is increased
as the number of tables is increased. Therefore, it is highly
possible that the relations are not normalized well, so that
the relations might contain some redundant information
due to the small number of tables.
For example, consider that we have a book lending shop
where the shop can lend some books to customers. The
shop’s database has a table called LENDING to store the
book lending information. The table has an attribute set
like {customerNumber, customerName, telephoneNumber,
address, bookRegistrationNumber, lentDate, returnDate}.
The underlines represent the attributes’ role as a primary
key, and there is a functional dependency, {customerName,
telephoneNumber} → {address}. The following table
contains some example data that contain redundant data.

Table 1: An example table, LENDING

C#

CNm

Tel.

Addr.

Book#

lntDt

rtnDt
C1 John 555.. 25 m.. B089 … …
C2 Tom 555.. 11 s.. B010 … …
C3 Mary 555.. 13 o.. B400 … …
C4 Judy 555.. 44 h.. B101 … …
C3 Mary 555.. 13 o.. B653 … …
C2 Tom 555.. 11 s.. B356 … …

In the table C#, CNm, Tel., Addr., Book#, lntDt, rtnDt
represent customerNumber, customerName,
telephoneNumber, address, bookRegistrationNumber,
lentDate, returnDate respectively.
The designer of the database might not want to have a
separate table to store the customer’s information, because
reports to be printed out need most of the data in the table
LENDING. Separate table structures like
LNT{bookRegistrationNumber, lentDate, returnDate},
and CUST{customerNumber, customerName,
telephone_number, address} make printing out the reports
slightly more troublesome, because we need an additional
join operation.

Table 2: An example table, LNT

Book#

lntDt

rtnDt
B089 07.05.05 07.05.25
B010 08.10.03
B400 06.04.25 06.05.23
B101 07.11.01 07.12.20
B653 08.09.15
B356 08.07.14 08.07.28

Table 3: An example table, CUST

C#

CNm

Tel.

Addr.
C1 John 555.. 25 m..
C2 Tom 555.. 11 s..
C3 Mary 555.. 13 o..
C4 Judy 555.. 44 h..
C3 Mary 555.. 13 o..
C2 Tom 555.. 11 s..

If some customers borrow books more than once,
redundant data for attributes {customerName,

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

104

telephoneNumber, address} can reside in the table many
times. This redundancy may cause data inconsistency
problem, if the redundant data have not been updated
unanimously. The inconsistency problem might happen
whenever some customers moved somewhere else. The
problem can become worse when the structure of the
database is more complex, which is common in real world
situations.
This paper suggests a method to solve the problem of data
inconsistency based on an approach inspired by rough set
theory. The method is applied to the attribute sets in a
relation that have possible functional dependencies
between attributes. We will first discuss related works in
section 2, in section 3 we present our method in detail and
in section 4 we illustrate our method through examples.
Finally in section 5, we present conclusions. This paper is
a modified version of a conference paper [1].

2. Related Work

Because rough set theory considers data dependency
solely based on data, many researchers tried to investigate
attribute dependency in algebraic aspects [2], or in
statistical aspects [3]. There are also many researchers
who tried to find decision rules from databases [4, 5].
ROSETTA [6] and RSES [7] are some examples of data
mining tools for such efforts. There is some size limitation
of input data set for the systems due to time complexity.
Because rough set theory concerns concepts that exit in a
table, some researchers tried to combine rough set theory
with other well-known theories. Ytow et al. [8] combined
formal concepts having objects and attributes with rough
sets to have upper and lower approximations, and Guo and
Tanaka [9] showed similarity between possibility theory
and rough set theory. In paper like [10] we can find a
survey on feature subset selection based on rough set
theory to optimize knowledge models for given data sets.

3. Proposed Method

3.1 Definitions

The main advantage of rough set theory is that concept
approximation is solely based on data, so it does not need
any preliminary or additional information about the data.

Definition 1: If we are given a finite set U ≠ ∅ of objects,
called a universe, and R is an equivalence relation over U,
then U/R represents the family of all equivalence classes
of R called categories, and [x]R indicates a category of x
∈U in R.

The following definition extends the equivalence relation
R in definition 1 to the family of equivalence relations
over U.

Definition 2: If we are given a finite set U ≠ ∅ of objects,
called a universe, and a family of equivalence relations
over U, called R, then a relational system K = (U, R) is a
knowledge base. A family of equivalence relations R
represents the set of equivalence relations having the
following properties.
⋅ If R is a family of equivalence relations over U then U/R
means the family of all equivalence classes of R.
⋅ IND(P) means the intersection of all equivalence
relations belonging to P and is called an indiscernibility
relation over P where P ⊆ R and P ≠ ∅.
⋅ U/IND(P) means the family of all equivalence classes of
the IND(P).
⋅ [x]p indicates a category of x ∈U in P.

Definition 3: Rough sets are sets that are defined using
two approximations, upper approximations and lower
approximations. Let X ⊆ U and R ∈ IND(R) then
⋅ R-lower approximation, RlowerX = { Y ∈ U/R: Y ⊆ X }
⋅ R-upper approximation, RupperX = { Y ∈ U/R: Y ∩ X ≠
∅ }
⋅ R-boundary region of X, BNR(X) = RupperX - RlowerX
Additionally, we can define the following terms:
⋅ R-positive region of X, POSR(X) = RlowerX
Let P and Q be equivalence relations over U, then
⋅ P-positive region of Q is POSP(Q) = ∪x∈U/Q Plowerx.

Let IND(P) ⊆ IND(R), then the same definitions are
applied for IND(P) as R above. So, we have the following
definition 4 for the degree of dependency between P and
Q ⊆ R.

Definition 4: The degree of dependency between P and Q
where P, Q ⊂ R is defined as follows.
P ⇒k Q where k = |POSP(Q)| / |U|.
⋅ k = 1 : Q totally depends on P.
⋅ 0<k<1 : Q partially depends on P.
⋅ k = 0 : Q is independent on P.

So, if we have a larger positive region, we can see more
dependency between P and Q. So, we apply the definition
4 to check dependency between sets of attributes in
relations. In any functional dependencies of a relational
table P corresponds to the left hand side of the functional
dependency and Q corresponds to the right hand side of
the functional dependency, and moreover, k = 1.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

105

3.2 Suggested Method

The functional dependencies we want to use in checking
data inconsistency have the property that each right hand
side (RHS) of the functional dependencies consists of one
attribute. But there is no restriction on the left hand side
(LHS) of the functional dependencies. If some functional
dependencies have several attributes in their right hand
side, we need to separate the attributes of the RHS one by
one for efficiency. But, this separation doesn’t matter,
because we can always decompose the right hand side of a
functional dependency, and the two functional
dependencies made from the separation is equivalent to
the original one by Armstrong’s axiom [11]. For example,
the functional dependency A→{B, C} is equivalent to
functional dependencies A→B, and A→ C. In order to
find inconsistent data in a given relation we apply the
following steps for each user-selected functional
dependency in the relation.
__

For each user-selected functional dependency in the
relation do

(i) Select a functional dependency (FD) for data
inconsistency check.

(ii) Project the relation with respect to the attribute
set in the FD.

(iii) Find inconsistent objects where the attribute
values of the subsets of RHS are different, even
though attribute values of LHS are the same.

(iv) Calculate the degree of dependency, k.
(v) Display k and the sets of inconsistent objects.

End do
__
Note that in (v) users consider the value of degree of
dependency and the set of objects’ multiple values, and
users can determine whether the attribute set has a real
functional dependency or not. And more importantly,
users can determine whether data are in inconsistency or
not.

4. Examples

Let’s see a relation in table 4 having two functional
dependencies, {A, B} → C, {A, B} →D.

Table 4: An example table
Object

Number

A

B

C

D
1 0 0 1 1
2 0 1 2 1
3 0 2 2 1
4 1 0 1 2
5 1 1 1 2
6 1 1 2 2

If we represent the table in functional dependency form
with values like AiBj ⇒ Ck, AiBj ⇒ Dk where A, B, C, and
D represent attribute names and i, j, and k represent
respective values, then we have the following two tables,
table 5 and table 6.

Table 5: FD {A, B} → C with attribute values

Object number

FD with values
1 A0B0 ⇒ C1
2 A0B1 ⇒ C2
3 A0B2 ⇒ C2
4 A1B0 ⇒ C1

5, 6 A1B1 ⇒ {C1 , C2}

Table 6: FD {A, B} → D with attribute values

Object number

FD with values
1 A0B0 ⇒ D1
2 A0B1 ⇒ D1
3 A0B2 ⇒ D1
4 A1B0 ⇒ D2
5 A1B1 ⇒ D2
6 A1B1 ⇒ D2

Therefore, we can find inconsistent data sets for the
functional dependency, {A, B} → C, and the degree of
dependency for the functional dependency is 0.67. On the
other hand, there is no inconsistency in the values of the
functional dependency, {A, B} → D, so that the degree of
dependency is 1.
Note that because we have no inconsistency in data
according to the table, we may also find an additional
functional dependency between attribute A and D as
indicated by table 7.

Table 7: A possible FD A → D with attribute values

Object number

FD with values
1, 2, 3 A0 ⇒ D1
4, 5, 6 A1 ⇒ D2

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

106

But we have to consider the meaning of attribute A and D
precisely to decide whether there is functional dependency
between A and D or not, because in the future we may
have some inconsistency, if there is no functional
dependency between A and D.
By considering these values of degree of dependencies
and the objects in boundary region, users can determine
inconsistent data effectively.

5. Conclusions

As the development of computer technology as well as
computer industry, it is not difficult to use the database
management systems because of the advancement of user
interface technologies, so that nowadays lots of small and
medium databases are created and used. But, this ease of
use might play a role of some bad points in the respect of
data integrity. Because relational databases have relations
that resemble conventional relations and the complexity in
making queries from the relations is increased as the
number of tables is increased, the designers of the
databases might want to use smaller number of tables. But,
due to the small number of tables it is highly possible that
the relations might contain some redundant data, and the
redundant data might cause some inconsistency as a result
of negligent updates to the redundant information.
This paper suggests an effective method to find such
inconsistent data based on possible functional
dependencies between attributes in a relation. Rough set
theory based method can be applied effectively to find out
the inconsistent data. The method measures the size of
positive region to reflect the dependency between the left
hand side and the right hand side of the functional
dependency. In addition, the method also can find some
hidden functional dependencies so that it is also useful for
data integrity for the future.

References
[1] H. Sug, “Applying rough sets to maintain data consistency

for high degree relations”, NCM’2008, Vol. 22, 2008, pp.
244-247.

[2] I. Düntsch, and G. Gediga, “Algebraic aspects of attribute
dependencies in information systems”, Fndamenta
Informaticae, Vol. 29, 1997, pp. 119-133.

[3] I. Düntsch, and G. Gediga, “Statistical evaluation of rough
set dependency analysis,” International journal of human-
computer studies, Vol.46, 1997.

[4] T.Y. Lin, and H. Cao, “Searching decision rules in very large
databases using rough set theory,” Lecture notes in artificial
intelligence, Ziarco and Yao eds., 2000, pp. 346-353.

[5] R. Stowinski, ed., Intelligent decision support: Handbook of
applications and advances of the rough set theory, Kluwer
Academic Publishers, 1992.

[6] A. Øhrn, Discernibility and rough sets in medicine: tools and
applications, PhD thesis, Department of computer and
information science, Norwegian University of Science and
Technology, 1999.

[7] J.G. Bazan, M.S. Szczuka, and J. Wroblewski, “A new
version of rough set exploration system,” Lecture notes in
artificial intelligence, Vol.2475, 2002, pp. 397-404.

[8] N. Ttow, D.R. Morse, and D.M. Roberts, “Rough set
approximation as formal concept,” Journal of advanced
computational intelligence and intelligent informatics, Vol.10,
No.5, 2006, pp. 606-611.

[9] P. Guo, and H. Tanaka, “Upper and lower possibility
distributions with rough set concepts,”, In Rough set theory
and granular computing, M. Inuiguchi, S. Hirano, and S.
Tsumoto eds., Springer, 2002, pp. 243-250.

[10] R. Jensen and Q. Shen, “Rough set based feature selection:
A review,” http: //hdl.handle.net/2160/ 490, in Rough
computing: theories, technologies and applications, A.E.
Hassanien, Z. Suraj, D. Slezak, and P. Lingras, eds. IGI
global, 2007.

[11] C.J. Date, An Introduction to Database Systems, 8th ed.,
Addison Wesley, 2004.

 Hyontai Sug received the B.S.
degree in Computer Science and Statistics
from Pusan National University, M.S.
degree in Computer Science from Hankuk
University of Foreign Studies, and Ph.D.
degree in Computer and Information
Science and Engineering from University
of Florida in 1983, 1986, and 1998
respectively. During 1986-1992, he worked

for Agency of Defense Development (ADD) as a researcher, and
during 1999-2001, he was a full-time lecturer of Pusan
University of Foreign Studies. He is now with Dongseo
University as an associate professor since 2001.

