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Abstract 
Continuous valued dimensions in OLAP data cubes are 
usually grouped into countable disjoint intervals using naïve 
methods such as equal width binning, histogram analysis, or 
splitting into intervals defined by domain experts according 
to their understanding of the data.  This paper explores an 
integration of ‘intelligent’ discretization techniques 
currently available in data mining research into the 
construction of a SEER breast cancer survivability data 
cube with continuous dimension.  Observational and 
empirical evaluations on the resulting cube with discretized 
intervals show that ‘intelligent’ discretization methods 
provide the same benefits to OLAP data cubes as in data 
mining algorithms, that is, they are able to simplify the data 
representation with minimal or no loss of information.  
Additionally, it was found that an unsupervised 
discretization method using k-means algorithm had 
exhibited equivalent performance as the supervised 
counterparts, namely, the entropy-based (ID3) and χ2–based 
(CHAID) methods. 
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1. Introduction 
Data mining and On-Line Analytical Processing (OLAP) 
are two key technologies highly discussed in data 
warehousing architecture.  Initially, both technologies were 
focusing on respective non-overlapping functionalities to 
support warehouse data analysis i.e. OLAP technology was 
concentrated on enhancing the interaction and visualization 
of data, but lacking the functionalities to guide user on the 
drill-path to locate interesting information, whereas data 
mining applications automated discovery of implicit 
patterns and interesting knowledge hidden in the large 
amount of data, but they do not facilitate user-friendly 
exploration interface to present the mined result [1].  
 
Knowing that both OLAP and data mining can complement 
each other to better support user’s data analysis, many 
efforts from the research community have started to gear 
towards integrating them as a combined component in data 
warehousing implementations. [1] has introduced a new On-
Line Analytical Mining (OLAM) server in his commercially 
available software DBMiner™ 2.0.  [4] initiated the i3 (i-
cube) project on discovery-driven exploration of OLAP data 

cubes, and [6], [7] designed an advanced cube operator 
called cubegrade and a constrained gradient analysis that 
can calculate and highlight “grade-of-change” between 
surrounding cube cells using association mining rules.  
 
In this paper, we are looking into another area of integration 
between OLAP and data mining, that is, the discretization 
of continuous-valued data.  Discretization is a process that 
generalizes an attribute from the ratio or interval scale that 
may contain infinitely many data values into a set of 
countable disjoint intervals and thereby reduces and 
simplifies the original data.   Currently, ‘intelligent’ 
discretization methods are deployed as either built-in 
functions or implemented as data pre-processing steps in 
many data mining algorithms such as ID3, C4.5, CART, 
CHAID, Naïve Bayesian classifier and association mining.  
Generally, mined results using discretized values are more 
usable, easier to understand and closer to human 
knowledge-level representation.  However, OLAP tools still 
do not incorporate discretization as an automated function 
in their applications.  Continuous valued dimensions are 
usually split into intervals manually using naïve methods 
such as binning and histogram analysis, or based on the 
knowledge of the data by domain experts without making 
inference from the database.  Therefore, we are keen to find 
out if these ‘intelligent’ discretization methods can be used 
in OLAP data cubes to produce cubes that are simplified, 
but still best preserve the original underlying data 
distribution and relationships among variables. 

1.1 Problem Statement 
This paper explores an integration of both supervised and 
unsupervised discretization methods available in data 
mining applications into construction of an OLAP data cube 
with continuous valued dimension.  The integrated model 
must be proven to solve the following problem statements: 
 
1. How to identify an optimal number of intervals to 

discretize the data?  Can the ‘intelligent’ discretization 
methods from data mining techniques automate this 
decision? 

2. How do the ‘intelligent’ discretization methods 
enhance the discretization result as compared to naïve 
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methods used in existing OLAP data cube 
construction? 

3. Do supervised discretization methods outperform 
unsupervised ones?  Is class information used in 
supervised discretization methods mandatory? 

 
In order to answer those questions, our goal of analysis is 
three fold: simplicity, consistency, and accuracy: 
 
• Simplicity – discretized intervals simplify the data 

views in the cube 
• Consistency – discretized intervals preserve original 

data distribution 
• Accuracy – discretized intervals retain relationships 

among the variables 
 
The rest of this paper is organized as follows.  In the next 
section, we discuss the discretization process and a few of 
the widely used discretization techniques in data mining.  
Section 3 explains the SEER breast cancer data set used in 
our experiment, follows by detailed experiment framework 
design in section 4.  Section 5 presents findings by 
performing an empirical evaluation on the experiment 
results.  Finally the conclusions are given in section 6, with 
suggestions of future works related to this paper. 

2.  Discretization 
Data discretization is a general purpose pre-processing 
method that reduces the number of distinct values for a 
given continuous variable by dividing its range into a finite 
set of disjoint intervals, and then relates these intervals with 
meaningful labels.  Subsequently, data are analyzed or 
reported at this higher level of knowledge representation 
rather than the subtle individual values, and thus leads to a 
simplified data representation in data exploration and data 
mining process.  [12] has formally defined a discretization 
process flow in four steps as depicted in Fig. 1: (1) sorting 
the continuous values of the attribute to be discretized, (2) 
evaluating a cut-point for splitting or adjacent intervals for 
merging, (3) according to some criterion, splitting or 
merging intervals of continuous values, and (4) finally 
stopping at some point based on a stopping criteria. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1: Discretization process (Liu H. et al., 2002) 
 
To achieve simplified data representation using the different 
discretization techniques, we must not sacrifice information.  
Careful selection of a discretization technique that 
minimizes the loss of information is needed before hand.  
[11,12,19,20] have tried to make comparison of 
discretization methods using improved techniques to prove 
this requirement.  [23] pointed out that effective 
discretization methods chosen can even produce new and 
more accurate knowledge.  In following sections, we 
discuss in detail a few of the commonly used discretization 
techniques. 

2.1 Equal Width & Equal Frequency Binning 

The equal width binning is the simplest unsupervised 
method.  The algorithm first sort the continuous valued 
attribute, then find the minimum xmin and the maximum xmax 
of that attribute.  Interval width, w, is then computed by 
 
 
 
 
where k is a user-specified parameter stating the number of 
intervals to discretize.  The interval boundaries are specified 
as xmin + wi, where i = 1,2, …, k-1. 
 
Equal frequency binning divides the sorted continuous 
values into k intervals such that each interval contains 
approximately n/k data instances with adjacent values.  Note 
that data instances with identical value must be placed in the 
same interval, thus it is not always possible to generate 
exactly k equal frequency intervals. 
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2.2 Interval Merging and Splitting using χ2 
Analysis 

χ2 is a statistic used to perform statistical independence test 
on relationship between two variables in a contingency table.  
In a database with data instances labeled with p classes, the 
formula to compute χ2 statistic at a split point for two 
adjacent intervals against the p class values is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The test statistic has a χ2 distribution or approximate to a χ2 
distribution if sample size is large enough and it measures 
the departure from H0 (null) hypothesis which states that the 
two variables are statistically independent.  The aim of χ2 

discretization is to merge adjacent intervals based on χ2 

statistic to obtain the most similar distribution with 
discretized intervals to the distribution of original data 
against the class values.  Since the class frequencies are 
used in the computation of statistic, it is thus classified as a 
supervised discretization technique. 
 
The popular CHAID (chi-squared automatic interaction 
detection) proposed by Kass (1980) is a top-down 
discretization algorithm that uses χ2 statistic.  It starts with 
one interval for the whole range, based on the p-values from 
χ2 distribution; it determines the best next split at each step 
to further split the intervals.  CHAID algorithm is being 
used as a splitting criterion in decision tree induction of 
many data mining software. 

2.3 Entropy-based Discretization 

In information theory, the entropy function for a given set S, 
or the expected information needed to classify a data 
instance in S, Info(S) is calculated as 
 
Info(S)= - Σ pi log2 (pi) 

 
where pi is the probability of class i and is estimated as Ci/S, 
Ci being the total number of data instances that are of class i. 
A log function to the base 2 is used because the information 
is encoded in bits. The entropy value is bounded from 
below by 0, when the model has no uncertainty at all, i.e. all 

data instances in S belong to one of the class pi =1, and 
other classes contain 0 instances pj =0, i≠j. And it is 
bounded from the top by log2 m, where m is the number of 
classes in S, i.e. data instances are uniformly distributed 
across k classes such that pi=1/m for all. 
 
Based on this entropy measure, J. Ross Quinlan (1986) 
developed an algorithm called Iterative Dichotomiser 3 
(ID3) to induce best split point in decision trees. ID3 
employs a greedy search to find potential split-points within 
the existing range of continuous values using the following 
formula: 
 
 

 
 
In the equation, pj,left and pj,right are probabilities that an 
instances, belong to class j, is on the left or right side of a 
potential split-point T. The split-point with the lowest 
entropy is chosen to split the range into two intervals, and 
the binary split is continued with each part until a stopping 
criterion is satisfied. [20] propose a stopping criterion for 
this generalization using the minimum description length 
principle (MDLP) that stops the splitting when 
 
InfoGain(S,T) = Info(S) – Info(S,T) < δ  
 
where T is a potential interval boundary that splits S into S1 
(left) and S2 (right) parts, and 
 
δ =[ log2(n-1)+log2(3k -2) – [m Info(S) – m1 Info(S1) –  
        m2 Info (S2)]] / n 
 
where mi is the number of classes in each set Si and n is the 
total number of data instances in S. 
 
2.4 Discretization using Clustering Analysis 
 
The most popular algorithm in clustering analysis, k-means 
by MacQueen (1967) is also suitable to be used to discretize 
continuous valued variables because it calculates continuous 
distance-based similarity measure to cluster data points. In 
fact, since unsupervised discretization involves only one 
variable, it is equivalent to a “1-dimensional” k-means 
clustering analysis. 
   
k-means is a non-hierarchical partitioning clustering 
algorithm that, initially, a set of points called cluster seeds is 
selected as a first guess as the means of the clusters, then 
remaining data points are assigned to their respective 
nearest cluster seed to form temporary clusters, after that 
seeds are replaced by the means of the temporary clusters, 
and this process is repeated until an optimum least-squares 
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criterion is found or convergence is achieved i.e. no further 
changes occur in the clusters. Theoretically, clusters formed 
in this way should minimize the sum of squared distance 
between data points within each cluster over the sum of 
squared distance between data points from different clusters. 
The most common distance measure used in k-means 
algorithm is the Euclidean distance, a special case (p=2) of 
the Minkowski metric: 
 
 
 
 
 
 
Other clustering algorithms were also tried as discretization 
methods such as the Proportional k-interval discretization 
(PKID) by [13].  [19] from Microsoft Research group has 
improved a mixture model clustering algorithm called 
Expectation Maximization that assigns each data point to 
each cluster according to a weight representing its 
probability of membership and has integrated it into 
Microsoft SQL Server™ Analysis Services (SSAS) 
applications as a discretization method to automatically 
discretize continuous dimension into buckets during OLAP 
data cube construction and data mining modeling. 

3. SEER Breast Cancer Data Set 
In medical decision support, many data perspectives from 
disease attributes and health measures are of numeric type 
and continuously valued. For example, the diagnostic 
characteristics and pathology measures of breast cancer 
patients such as tumor size, clump thickness, hormone 
receptors percentage, lymphatic invasion means and so on 
are mostly continuously-valued. Cut-points estimation to 
transform these continuous measures into groups of values 
that reflect the biological threshold effect is not as trivial as 
data from other industries. The choice of cut-points 
generally derived from either biological knowledge about 
the particular prognostic risk factor or physician’s 
experience or the results already published in other studies. 
For some newly identified or previously unexplored 
prognostic factors, statistical methods mostly derived from 
classical regression theories such as log rank or Mantel-Cox 
test, likelihood ratio test and Wald statistics are used to 
estimate optimal cut-points on these continuous variables. 
Newer discretization techniques invented in data mining 
studies are rarely tried in medical analysis as methods to 
categorize continuous variables. Therefore we are of the 
opinion that a medical data set will serve as a good 
candidate to be used in our study to test and verify these 
newer discretization methods. 
 

The Surveillance, Epidemiology, and End Results (SEER) 
Program that is managed by National Cancer Institute (NCI) 
is an authoritative source of information on cancer 
incidence and survival in the United States. It collects and 
publishes cancer incidence and survival data from 
population-based cancer registries covering approximately 
26 percent of the US population. The SEER Program 
registries routinely collect data on patient demographics, 
primary tumor site, tumor morphology and stage at 
diagnosis, extent of disease (EOD), first course of treatment, 
and follow-up for vital status. The SEER cancer data set 
facilitates all kind of analysis dealing with cancer 
prevention, mortality, extent of disease at diagnosis, therapy 
and patient survival. 
   
Among the cancer data provided (Note: A signed Limited-
Use Data Agreement is required to access SEER data at 
URL http://seer.cancer.gov/data/access.html), the breast 
cancer data set from “SEER 1973-2005 Limited-Use Data” 
has been chosen. In absence of a medical domain expert 
involvement, it is not an easy task to meaningfully pick and 
extract the relevant attributes from the raw cancer data file. 
Since the emphasis of our study is from the angle of how 
different discretization techniques can help to simplify data 
representation in OLAP data cubes exploration with 
minimal loss of information, we have decided to make 
reference to work done by [22] for this purpose.  

4. Experiment Framework 
SEER breast cancer data is obtained in raw ASCII text file.  
Essentially, steps needed to process the raw SEER breast 
cancer data file into the final SEER breast cancer 
survivability OLAP data cube are designed as in the process 
flow diagram shown in Fig. 2. 
 
 
 
 
 

 
 
 

Fig. 2: Process Flow to Construct SEER Breast Cancer Survivability Cube 
 

These steps can be further explained as follows: 
• Extraction – to extract and covert all data items of all 

breast cancer incidences and store them in a structured 
SAS data set for pre-processing. 

• Pre-process – to filter incomplete data records, to 
subset only selected data items relevant to survival 
analysis, and to transform and derive additional data 
items based on existing data items then label the 
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survival status for each patience incidence. A 
preliminary analysis on the resulting SEER breast 
cancer survivability data set is to be performed to 
confirm the sample created is valid and meaningful. 

• Discretization – based on subject of analysis, identify 
measures and their calculation, and the dimensions 
from corresponding attributes for cube construction. 
Usually, dimension attributes are of categorical type, 
some numeric attributes may also be used as 
dimensions. As for a dimension attribute that is 
continuously valued, discretize and transform them to a 
reduced countable number of disjoint intervals to 
simplify the data representation. This part of work 
serves as the core of our analysis. A continuous 
dimension will be derived and discretized with a series 
of selected discretization techniques to produce a set of 
discretized intervals, subsequently empirically analyzed 
to determine optimum number of discretized intervals 
and method used.  

• Cube construction – to design and build the SEER 
breast cancer survivability cube with the discretized 
intervals resulting from the previous steps. 

• Cube exploration – to explore the cube with discretized 
intervals using SAS Enterprise Guide for survivability 
analysis. Observe how discretized intervals improve 
and simplify user’s exploration experience. 

• Empirical evaluation – an empirical evaluation of 
discretized intervals will then be conducted to measure 
their performance against the research objectives stated 
in the problem statements. 

4.1 Extracting SEER Breast Cancer Text File 
The SEER breast cancer text file contains 553,483 breast 
cancer cases diagnosed in the years of 1973-2005. These 
cases are extracted and stored into a structured data set 
containing 553,483 observations and 115 variables. This 
data set is then sorted in ascending order of “patient_id” so 
that records for the same patient are clustered together and 
is ready for pre-processing. 

4.2 Pre-Processing SEER Breast Cancer Data Set 
With reference to [22], the extracted SEER breast cancer 
data set is pre-processed by performing four major tasks: (1) 
to exclude incomplete cases especially those with unknown 
information, (2) standardization of “Site specific surgery 
code”, (3) derive class labels, and (4) format coded values 
in raw extraction to descriptive values based on a series of 
lookup mappings.  The final data set contains 114,142 
observations and the 16 variables as selected by [22] shown 
in Fig. 3, plus an additional variable “survive” to store the 
class label. 
 

Nominal variable name Number of
distinct values

Race 27
Marital status 5
Primary site code 9
Histologic type 20
Behavior code 2
Grade 5
Extension of tumor 29
Lymph node involvement 9
Site specific surgery code 10
Radiation 9
Stage of cancer 4

Numeric variable name Mean Std Dev Range
Age 57.4908798 12.9058361 11-106
Tumor size 20.5131678 19.1865843 0-919
No of positive nodes 1.4558708 3.7545406 0-75
Number of nodes 14.477125 7.0825773 1-90
Number of primaries 1.1810289 0.4441687 1-8

Fig. 3: Characterization of SEER Breast Cancer Survivability Data Set 
Attributes 

 
For the class distribution, about 86.7% or 98,997 out of 
114,142 cases have been identified as “survived” and the 
remaining 13.3% or 15,145 out of 114,142 cases are 
classified as “not survived” as shown in Fig. 4. 
 
Class No of instances Percentage
0: not survived 15,145                         13.3
1: survived 98,997                         86.7
Total 114,142                       100.0

Fig. 4: SEER Breast Cancer Survivability Class Distribution 

4.3 Identification of Continuous Dimension 

Existing clinical researchers relate “stage of cancer” to be 
the most relevant attribute in breast cancer survival analysis 
and the most common system used to describe the stages of 
breast cancer is the AJCC/TNM system defined by the 
American Joint Committee on Cancer. AJCC/TNM system 
takes into account the tumor size and spread (T), whether 
the cancer has spread to lymph nodes (N), and whether it 
has spread to distant organs (M, for metastasis). In our pre-
processed SEER breast cancer data set, relative value of two 
variables, which is “no of positive nodes”/ “number of 
nodes”, seems to express the factor N: spread to lymph 
nodes defined in the AJCC/TNM system better than if they 
are being used separately. 
 
This is a continuous dimension. Even if it is rounded to a 
numeric value of two decimal places, there are still 100 
possible distinct values. Higher precision will cause the 
number of categories to multiply, making the generated 
cube having very sparse (in which most of the cells are 
zero) cuboids on this dimension. Therefore, this continuous 
dimension, which is named “percent_of_positive_nodes” 
will be discretized into k intervals with a series of 
discretization methods such that the most suitable 
discretization method and an optimum number of intervals 
can be identified to simplify its data representation, but still 
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able to preserve the original data distribution as well as 
retaining the variables relationships as much as possible. 

4.4 Discretization of Continuous Dimension 

In finding the optimal discretization method, four 
discretization techniques are tested on the continuous 
dimension “percent_of_positive_nodes”: equal width, 
entropy-based (ID3), χ2-based (CHAID) and k-means 
clustering.  

Discretized intervals by each technique are outlined 
graphically using stacked bars as illustrated in Fig. 5. It is 
easily perceived that 2-interval and 3-interval are not the 
desirable number of intervals, as the split-points differ 
substantially from one method to the others. Entropy-based 
(ID3) and χ2–based (CHAID) techniques quickly resemble 
each other starting at 4-interval splitting and producing very 
similar split-points for 5-, 6- and 7-interval splittings. This 
corresponds exactly to the findings by [23] stating that 
“there is a somewhat unexpected connection between 
discretization methods based on information theoretical 
complexity, on one hand, and the methods which are based 
on statistical measures of the data dependency of the 
contingency table, such as Pearson’s χ2 or G2 statistics on 
the other hand.” 

  

 

  

 

  

 

Fig. 5: 2-interval to 7-interval discretization by each of four discretization 
methods tested 

Surprisingly, the split-points generated by k-means 
clustering have shown tendency to liken those of supervised 
methods when number of intervals increases. This 
phenomenon definitely poses a challenge to the common 
sayings found in discretization literature stating that 
supervised methods will always outperform or more 
superior to those methods that are not supervised with a 
class label [11]. The k-means algorithm is a minimum 
square error partitioning method that generates an arbitrary 
number k of partitions reflecting the original distribution of 
the partition attribute (Duda and Hart, 1972). This 
characteristic agrees well with another emphasis (i.e. 
preserving the original data distribution) in supervised 
algorithms apart from focusing on class probabilities and 
may help to explain the above observed coincidence. 
 
Lastly, with so many disparities exist in discretized intervals 
by equal width method comparing to those by ‘intelligent’ 
methods, it is evident that naïve methods such as equal 
width which does not make statistical inference from the 
underlying data should be fallen into disuse. 
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5. Empirical Evaluation 
Criteria of testing will focus on the three parameters that we 
intended to achieve in our research objectives: 
 
• Simplicity – discretized intervals simplify the data 

views in the cube 
• Consistency – discretized intervals preserve original 

data distribution 
• Accuracy – discretized intervals retain relationships 

among the variables 

5.1 Simplicity 
A straightforward approach to determine simplicity is the 
reduction in cell counts with discretized intervals. 
Undiscretized “percent_of_positive_nodes” in SEER breast 
cancer data set has 534 distinct values (stored in IBM 
double-wide 8-byte floating point format with full precision 
by the SAS software), a 2-interval discretization will reduce 
the cell counts by 532 for each crossing with this dimension 
in a cube view and able to shrink it with a factor of 
532/534=99.63%, 3-interval discretization will reduce it 
with a factor of 99.44% and so on as calculated in Table 1. 
 
 
 
 
 
 
 
 
 
 
 

Table 1: % of reduction in cell counts with discretized intervals 
The 7-inteval discretization has been tested optimal in our 
experiment hence we can conclude that the SEER breast 
cancer survivability cube constructed obtains simplicity of 
98.69% for each crossing with this discretized dimension in 
cube views. 

5.2 Consistency 
To evaluate how discretized intervals preserve the original 
data distribution, Fig. 6 charted the distribution plots for 
“survive” and “not survive” class label with different 
number of intervals by each of four methods overlaid with 
the original data distribution to illustrate the degree of 
resemblance or difference for each discretization technique 
experimented. 
 

  

 

  

 

No of Intervals % of reduction in cell counts
2 99.63%
3 99.44%
4 99.25%
5 99.06%
6 98.88%
7 98.69%
8 98.50%
9 98.31%

10 98.13%
11 97.94%
12 97.75%
13 97.57%
14 97.38%
15 97.19%
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Fig. 6: Distribution of “survive” and “not survive” versus discretized 
intervals by each technique 

A quick run through of the distribution plots reveals the 
intervals discretized with naïve equal width methods deviate 
from the original data distribution the most, the entropy-
based (ID3) and χ2-based (CHAID) discretizations produce 
similar intervals and they start exhibiting resemblance to the 
original data distribution at 4-interval splitting. k-means 
clustered intervals converge as good as the supervised 
counter-parts, the entropy-based (ID3) and χ2–based 
(CHAID) discretization methods, except that they converge 
slower. Somehow this observation answers the 3rd question 
in our problem statement, suggesting that unsupervised 
methods like k-means clustering can perform equally to that 

of supervised methods simply due to its characteristic of 
being an algorithm that uses minimum square error 
partitioning to generate an arbitrary number k of partitions 
reflecting the original distribution of the partition attribute 
(Duda and Hart, 1972). 

5.3 Accuracy 
We shall adopt the idea of measuring the accuracy criterion 
on how discretized intervals retain relationships among the 
variables using statistical tests for contingency tables. Two 
widely used tests on statistical significance of the variable 
relationships in contingency tables are test of association 
and test of independence. 
 
Test of Association 
The degree of association between two variables can be 
assessed by a number of coefficients, the simplest are the 
phi and contingency coefficients. Both phi and contingency 
coefficients are calculated for contingency tables of 
discretized variables versus class label “survive” for the 
four discretization techniques experimented: equal width, 
entropy-based (ID3), χ2-based (CHAID) and k-means 
clustering, Fig. 7 plots their line charts of both coefficients 
calculated for 2-interval to 15-interval discretization. 
 

  

 

Fig. 7: Test of association for discretized variable vs class label 
 

The undiscretized variable is associated with the class label 
“survive” with strength of phi value 0.4520 and contingency 
value 0.4119. From the line plots, we see this convergence 
starts at 4-interval discretization for all three ‘intelligent’ 
methods and approaching the desirable optimum from 7-
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interval onwards. Slow convergence by the naïve method 
equal width shown in contingency plot again reassures our 
previous observations that naïve methods should not be 
used to discretize continuous valued dimension. 
 
Test of Independence 
Another way to treat discretization is to merge intervals so 
that the rows (intervals) and columns (classes) of the 
contingency table become more statistically dependent [23]. 
The Pearson’s χ2 and the likelihood-ratio statistic G2 are 
used similarly to test the independence of the null 
hypothesis H0. 
 

  

 

Fig. 8: Test of independence for discretized variable vs class label 
 
Fig. 8 shows plots of Pearson’s χ2 and G2 statistics 
computed.  The convergence approaching toward the 
statistics values of undescretized data Pearson’s 
χ2=23322.5238 and G2=17365.9454 is readily seen. These 
high values clearly indicate strong departure from null 
hypothesis H0, and thus failed the assumption that the 
discretized variable is independent of “survive” class label. 
As usual, naïve method still performs the worst.   
 
Both test of association and test of independence conducted 
obviously signify that discretized intervals are able to 
preserve original variable relationships, as long as an 
optimal number of intervals can be identified.   

 

 

6. Conclusion and Future Work 
We summarize this research by answering the stated 
problem statements by making reference to observations 
and test results gathered in the experiment as follows:  

1. How to identify an optimal number of intervals to 
discretize the data?  Can the ‘intelligent’ discretization 
methods from data mining techniques automate this 
decision? 

In our experiment, various tests and observations have 
confirmed that the optimal number of intervals is 7. 
This number was first identified by the automatic 
pruning criterion of statistical significance test using p-
value when we discretized the 
“percent_of_positive_nodes” using χ2–based (CHAID) 
algorithm. This suggests that a statistical significance 
test using p-value can be deployed in our integrated 
model to automate the decision for number of intervals 
in discretization problems. 

2. How do the ‘intelligent’ discretization methods 
enhance the discretization result as compared to naïve 
methods used in existing OLAP data cube construction? 

Many test results gathered in empirical evaluation, 
especially in the sections which measure the 
consistency and accuracy of discretized results indicate 
that the ‘intelligent’ discretization methods clearly out 
weigh the selection of naïve methods which do not 
make statistical inference from the database. By not 
doing so, naïve methods fail to preserve original data 
distribution and existence of variable relationships, 
rendering the data cube exploration ineffective.     

3. Do supervised discretization methods outperform 
unsupervised ones?  Is class information used in 
supervised discretization methods mandatory? 

This finding is interesting. As we have observed in 
Section 4.4 and 5, k-means clustering generates split-
points likened to those of supervised methods when 
number of intervals increase. This phenomenon 
definitely poses a challenge to the common saying 
found in most discretization literature that supervised 
methods will always outperform or superior to those 
methods that are not supervised with a class label [11]. 
Somehow this observation also suggests that 
unsupervised methods like k-means clustering can 
perform equally well to that of supervised methods 
simply due to its characteristic of being an algorithm 
that uses minimum square error partitioning to 
generate an arbitrary number k of partitions reflecting 
the original distribution of the partition attribute (Duda 
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and Hart, 1972), and thus class information is not 
mandatory in discretization problems. 

 
The integrated model combining data mining functionalities 
into OLAP applications can be enormous, but our focus is 
in simplifying data representation of continuous dimensions 
frequently found in OLAP data cubes using discretization 
techniques available from data mining literature with the 
aim of minimizing information loss in cube exploration. 
Other techniques in data mining studies that are appropriate 
to the purpose of this problem include the following: 
 
1. Multivariate discretization – Many discretization 

algorithms developed in data mining field focus on 
univariate, which discretize each continuous attribute 
independently, without considering interactions with 
other attributes, at most taking the interdependent 
relationship between class attribute into account likes 
what we saw in supervised discretization techniques. 
Due to the nature of multi-dimensional space of OLAP 
construction, discretizing continuous dimension by 
taking care of a single class label is not sufficient. 
Relationships with other non-class dimensions are 
equivalently important. Works done in this area include 
multivariate discretization methods for set mining 
proposed by Bay (2001), multivariate interdependent 
discretization using Bayesian network structure by S. 
Monti et al. (1998), and others. 

2. Multilevel discretization – Discretization can also be 
performed recursively on an attribute to provide a 
hierarchical or multiresolution partitioning of the 
attributes values, known as concept hierarchy that are 
useful for mining at multiple levels of abstraction. This 
capability is definitely well suited for OLAP data cube 
as concept hierarchy is common in cube dimensions.   
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