
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

177

Manuscript received November 5, 2008

Manuscript revised November 20, 2008

Legacy Model Reconfiguration Using Graph-Theoretic

Azween Bin Abdullah†

University Technology Petronas, Bandar Seri Iskandar, 31750, Tronoh, Perak, Malaysia

Summary
We present a theory of software model preservation and
isomorphism (enhancement) and proving correctness of model of
reengineering using graph and set theory (GS). A lot of software
applications will be in the legacy state every five years as a result
of changes in technology and business processes. Modeling has
become a de facto standard in software engineering. Developing,
deriving from existing models, composing and proving
correctness of models are part and parcel of the software
development process. We describe a specification technique that
combines the methods of adaptive modeling and model
composition.
Key words:
Model morphism, operational and failure consistencies, model
composition, graphnet.

1. Introduction

Formal methods for the specification and verification of
hardware and software systems are becoming more and
more important as systems increase in size and complexity.
Modeling on the other hand consists of the specification,
model checking techniques for verification, analysis of
properties, code generation and execution of models. In
model analysis, fundamental concepts such as composition,
abstraction and reusability of models, model verification
and verification of properties are inherent model derivation
activities. Model management is an important, but often
neglected activity in requirements analysis and design.
Generally defining a model encompasses multiple views or
ways of doing things and keeping track of their
relationships between and among different views and
managing consistency as they evolve are major challenges
(Barr, 1999).

Always all model analysis investigates the invariants and
persistent properties that we wish to be inherent. No one
talks about failure properties of models. This technique is
one part of a general computational theory of conceptual
design called model-based analogy.
Structure-behavior-function (SBF) models of software
systems, for example, specify the structure, the functions,
and the internal causal behaviors that explain how the
program structure results in its function (Goel, 1991).

The basis for the identification of failure consistency
problems is obtained by relating sub-models to failure
aspects and thereby discovering which sub-models model

the same aspects of the system. After identifying failure
consistency or inconsistency, we compare the cost factor.
If failure is inconsistent then check for semantic
consistency and accept the model that has the least overall
cost factor and minimum failure consistency and
maximum operational consistency match.

2. Basic Notions and Elements of The
Graphnet Model

This section introduces the formal notions associated with
the analysis model. We begin by identifying elements of
the model which correspond to parts of the real system to
be modeled.

2.1 Definition 1.1

A compnode is a 4-tuple ∂ = {β, δ, α, γ} made of four
finite sets, β and δ, α, γ. The elements of β and δ are
respectively called failures and operations.

α : Set of active agents. These are external and internal
agents that will generate error conditions.

β : Set of failure properties for each node. These are
conditions that will generate errors for each node. Each
node might correspond to a coherent and comprehensive
system (component or subsystem).

γ : Set of lethal events. These are error conditions that will
affect the availability of the system.

δ : Set of operational properties. These are properties that
we want to be present in the system or user requirements.

2.2 Definition 1.2

A non-deterministic graphnet is a 4-tuple ψ = {φ , q, F, ω}
where

φ : a finite set of compnode.

q: start compnode, a member of φ , q ∈φ .

F: a subset of φ , is a set of final compnodes.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

178

ω: A transition function f: ∂ (γ) → ∂ (γ), is a function
that takes a compnode in φ and a parametric input
from γ as argument and returns a subset of φ .

Beside this set-theoretic definition, graphnet are usually
encountered as graphical objects. A decorated graph
(Figure 1) is associated to a given graphnet ∂ = {β, δ,
α, γ} as follows.

1. Its objects are compnodes and interactive transitions
(undirected path). Components are pictured as
circles, while interactive transitions are represented
by an undirected line. For an interactive transition,
there must be a minimum of two nodes.

2. An interactive transition ω is an undirected path
between two nodes if there are parametric value
exchange or service calls. It is an interactive
transition because the transition is a two way
process.

3. If x and y are compnodes and ω an interactive
transition, there is a line from x to y. Such arrows
are decorated with the cost-factor (CF).

CFi : The bi-directional associated cost of failure between
two nodes(path) if a failure event is triggered. The cost is
the same both ways.

ω �: �
γ

∂ ∂
γ

Active
Agent

Active
Agent

Fig. 1 A graphical representation of a graphnet with interactive
transition.

2.3 Definition 1.3

Let ψ = {φ , q, F, ω} be a non-deterministic graphnet. A
critical path in the graphnet is a closed-path in the
graphnet that has the highest total cost factor (TCF) value.

Example 1.4 The non-deterministic graphnet in Figure 1
can be specified formally as

 ψ = {{N1 …N6}, N1, {N2 ...N6}, ω}

N N N

N N N

CF1 CF2

CF5 CF6

CF6 CF3

Fig. 2 A graphnet with 6 compnode with interactive transitions and its
associated cost-factors.

Path 1: N1 – N2 = CF1
Path 2: N1 – N2 – N3 = CF1 + CF2
Path 3: N1 – N2 – N3 – N6 = CF1 + CF2 + CF3
Path 4: N1 – N2 – N3 – N6 – N5 = CF1 + CF2 + CF3 + CF6
Path 5: N1 – N2 – N3 – N6 – N5 – N4 = CF1 + CF2 + CF3 +
CF6 + CF5
Path 6: N1 – N2 – N3 – N6 – N5 – N2 = CF1 + CF2 + CF3 +
CF6 + CF4
Path 7: N1 – N2– N5 = CF1 + CF4
Path 8: N1-N2-N5-N4 = CF1 + CF4 +CF5

The critical path is Max {Path1 …Pathn} and the mean cost
of failure for the model

Μ =
n

Path
n

i
i∑

=1

2.4 Definition 1.4

Let ψ = {φ , q, F, ω} be a graphnet. Its associated
transformed graph morphism is the graphnet ψ’ that have
the following properties.

1. δ’ = δ U {n} where the cardinality of set {n} ≧ 1.
The new model in Figure 3(b) should perform
something more by a factor of at least one
compared to the old model in Figure 3(a).

2. Μ’ = Μ ie the mean cost of failure for the new
model must be less than the mean cost of the old
model.

3. U
n

i
i

1
'

=

βδ < U
m

k
k

1=

βδ ie the sum total of all failure

properties in Figure 3(b) must be less than the sum
total of the failure properties in Figure 3(a).
The total failure properties of the old model in

Figure 3(a) is Ω = U
m

k
k

1=

βδ where m= cardinality

ofφ .

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

179

A B

D C

ψ

E

A B

F C

Ψ’

H G

3(a) 3(b)

Fig. 3(a) The model before model transformation and Fig. 3(b) after
the model transformation.

2.5 Checking Consistency of Models

Model rebuilding generally involves the addition, deletion
of content modification of compnodes (without affecting
the number of compnodes in the original model). When we
have decided on the structure of the new model after
performing graph morphism by adding or deleting
compnodes, we have to ensure that the plugged-in and
deleted compnodes will maintain the consistency
requirements for the new models. The new model should
have at least the same properties as the old model. Having
a model with the same properties as before only gives us
an isomorphic structure which may or may not be
cost-effective and adds up its complexity. Compnode
addition may involve the addition of new compnodes or
replacement of a compnode with more than one
compnodes. In consistency checking we will only look at
the operational properties.

There are 4 cases to assess with regards to model
consistency checking.

Case 1: Replacement or addition of one or more
compnodes, excluding the start compnode.

(a). The replacement of a single compnode.

S K P

S T P

{ s1 … sn } { k1 … km } { p1 … ps }

{ s1 … sn } { p1 … ps } { t1 … tg,tg+1 … tw}

Fig. 4 .

In the figure 4 above compnode K is replaced with a new
compnode T. Compnode T has completely new properties
that have to be consistent with compnode S and compnode
P.

ω:{s1 ...sn} {t1 …tg} and ω:{ tg+1 …tw} { p1 …ps}.

(b). The replacement on a compnode with more than one
compnodes.

Let us assume that we have three compnodes, S, K and P
each having the sets of operational properties {s1 ...sn}, {k1
…km} and {p1 …ps} respectively. Figure 5 shows the links
among the compnodes.

S B P

S K P

{ s1 … sn } { k1 … km } { p1 … ps }

{ S1 … Sn } { p1 … ps }{ v1 … vf,vf+1 … vx }

5(a)

5(b)

V

{ b1 … br,br+1 … bk}

Fig. 5(a) The original model, 5(b) the compnode K is replaced with
compnodes B and V.

B U V = {k1 … km}
If |{k1 …km}| <= |{BU V}| then there are some properties
in the new compnode that were not present in the previous
node. We call these excess properties as residual
properties. We assume that when we plug-in the
compnodes B and V, there is no need for consistency
checking. We need to check for consistency in the S---B
and B---P link.

ω:{s1 ...sn}→{b1 …br}
ω:{s1 ...sn}→{b1 …br}U {k1 …km}. This is consistent if
there is a bijection.
{b1 …br}/ {k1 …km} = {residual properties}. These
properties are necessary for consistency link with V and
are not present in the compnode K.
Similarly, ω:{k1 …km}→{p1 …ps}
ω:{vf+1…vx}→{p1 …ps}

Case 2: Deletion of one or more compnodes, excluding the
start compnode.

S P K

S K

{ s1 … sn } { p1 … ps } { k1 … km }

{ s1 … sn } { k1 … km �} { p1 … ps }

Fig. 6 Compnode deletion and re-attachment.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

180

In Figure 6 the operation properties set of compnode P is
partitioned into two sets, {p1 …pj} and {pj+1 …ps}. The set
{p1 …pj} correspond to linking properties with operations
properties of compnode S and {pj+1 …ps} corresponds to
linking properties of compnode K. {p1 …pj} must be
present in compnode K to enable it to be linked with
compnode S and {pj+1 …ps} must be present in compnode
S to be linked with compnode K. We then have to perform
an bijective mapping from S to K to check for
consistency.

ω:S{s1 ...sn}4{pj+1 …ps}→K{{k1 …km}4{p1 …pj}}

Case 3: Replacement and deletion of the start compnodes.
We can neither delete nor replace the start compnode but
only enhance or degrade its operation properties.
Enhancement of properties, means additions of operational
properties and degrade means the deletion of operational
properties. In both cases, we will then have to perform an
injective mapping with the attached link as shown in
Figure 7.

Enhancement :{s1 ...sn} U {sp} where |{ sp}|>=1
Degrade : {s1 ...sn}\ {sp} where |{ sp}|>=1 and sp ∈
{s1 ...sn}

S K

q = { s1 … sn } { b1 … kr }

Fig. 7 The enhance and degradation of a compnode.

Case 4: Replacement and deletion of the final compnodes.

We cannot delete a final compnode as it would leave a
dangling graphnet. We can enhance or degrade its
operation properties, just like the case of start nodes or
replace it with a different compnode. In the first instance,
we use the procedure of case 3 and for the latter we use the
procedure of case 1(a).

3. Case Studies

Two case studies have been selected to show our approach.
The first case study will show the case where the model is
refactored by adding new elements while the second case
study shows the deletion of model elements to improve
certain aspect of the system. The first case study is also an
example of reengineering legacy system. The case studies
presented here are from two real projects.

3.1 Organization Appraisal System

Organization Appraisal System (OAS) is an information
system that helps organization in managing their

performance. OAS is based on Balanced Scorecard
technique, where the organization’s performance is
measured using Key Performance Indicator (KPI). The
organization’s performance is measured annually and
quarterly (achievement of every three months). Part of the
KPI is calculating the difference between plan
(achievement targeted by organization) and actual (actual
achievement of organization after certain period of time)
value. There are several formula used in calculating the
difference:

• Negative value with positive meaning
• Negative value with negative meaning
• Current performance = total of quarterly

achievement
• Current performance = average of quarterly

achievement
• Current performance = the latest quarterly

achievement
The calculation will depend on the nature of the KPI.

In the previous version of OAS, there are two classes that
represent the KPI, KPI and QuarterKPI. Method to
calculate the difference exists in both classes and in this
method IF statements are used to control which formula to
be use in calculating the difference. Figure 8 show the KPI
and QuarterKPI classes in the previous version of OAS.

Fig. 8 KPI and QuarterKPI classes.

IF statements to control the formula used in calculating the
difference is not the best solution because changing the
formulas of certain KPI will affect other KPI that used
different formula. To overcome this problem, Strategy
design pattern can be used. Strategy design pattern will
create individual classes for the formula. Having
individual classes to represent the formulas allow the
effects of changes is confined to only the KPI that uses the
formula, thus reducing the errors as result of the changes.
Another benefit of Strategy design pattern is in introducing
new formula. New formula can be added to the system by
creating a class to represent the new formula. Figure 9
shows the changes in OAS.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

181

Fig. 9 KPI and QuarterKPI classes.

OAS is an example of addition of multiple compnodes.
Each class in Figure 8 and Figure 9 are compnodes.
MeasuredElement, and the hierarchy of Calculation classes
are residual properties, compnodes that did not exist in
Figure 8. Model in Figure 9 is also consistent with the
model in Figure 8 because KPI and QuarterKPI class did
not lose any of its properties (attributes, and operation).

3.2 Publication Monitoring System

Libraries and universities usually keep record of different
types of publication. Publication Monitoring System
(PMS) is one such system that keeps an inventory of
publications. Different types of publication that can be
stored by PMS are books, journals, and conference papers.

The current design of PMS is shown in Figure 10. From
the design we can see that for every type of publication
there will be two classes involve, one class is for the user
interface and another to represent each publication. The
justification for such design is different publication have
different set of data. For example books have ISBN, while
conference papers have conference name and keywords.

Fig. 10 Design of PMS.

XMLTemplate framework (Ab. Rahim et al, 2007) is a
new framework created for systems such as PMS. One

notable feature that makes PMS suitable for
XMLTemplate is PMS has functionalities that work for
different type of the same element. In the PMS case it is
publications and the functionalities are add, delete and edit.
Figure 11 show the design for PMS when using
XMLTemplate framework.

Fig. 11 PMS design using XMLTemplate framework.

How XMLTemplate framework work is each type of
publication will have XML document that store user
interface information. XMLTransformer class will read the
template and create the user interface. When a user entered
data for a new publication the data will be stored in XML
format. This will allow Publication class to represent all
types of publication. The advantages of XMLTemplate
framework are:

1. user interface can be customize at runtime

2. new type of publication can be added at runtime
by just adding a new XML document

3. number of software elements that need to be
develop is reduced

PMS is the example where elements in the model are
deleted. Similar to the first example, all classes are
considered as compnodes. By using XMLTemplate
framework BookInterface, JournalInterface,
ConferencePaperInterface, Book, ConferencePaper and
Journal are deleted from the model (as shown in Figure
11). To keep the model in Figure 11 consistent with model
in Figure 10, two elements are added which is
XMLTransformer class and xmlDocument attribute in
Publication.

4. Model Analysis and Transformation

Our model transformation and reengineering process
entails a four-stage hierarchical analysis process. The first
stage involves the identification of the compnodes to
determine the overall structure of the model and the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

182

subsequent determination the graphnet. The second stage
involves the determination of the critical path in the
graphnet. This assessment will give us a better
understanding of the path that would have the most
cost-effect implication on our model. A refinement of the
critical path is necessary to determine whether a new
model-segment can be found with a lower cost-failure
value. The fourth stage involves the determination of a
new model (model composition) using the set-theoretic
process and model consistency.

Our main focus here is on addition and removal operations
since we believe that by combining these operations most
of the changes in a system can be modeled. Specifically,
we focus on evolution process that causes addition or
removal of components in a system. Though, using the
model we present here, it is also possible to formalize
model evolution that may cause relation between
compnodes to change.

There are four probable cases that may arise in the
analysis.

1. If failure properties and operational properties are
the same for two models then the model is
isomorphic.

2. If failure properties are consistent and operational
properties are different then reject the model.

3. If failure properties are not consistent and
operational properties are consistent then choose the
model with the minimal failure cost impact.

4. If failure properties and operational properties are
not consistent than choose the model with the
minimal failure cost.

There is a possibility that we might get a model with a
high failure cost and consistent with additional operational
properties. In this case we have to remodel and continue
the process again with the additional properties. In this
case we talk of composing a subgraph (model) to the old
graph (model).

5. Related Approaches

In this paper, we have discussed the issue of modeling of
software components with a focus on how to achieve
consistency of interaction on the model level. We first
discussed the issue of modeling in general and presented a
specification mechanism and identified that the
composition of software components and their interaction
can be studied on the model level if the abstraction from
system properties is preserved.

6. Conclusion

Model driven software engineering primarily deals with
manipulation and transformation of models. In the current
state of research on MDE, however, there is an urgent
need for more disciplined and more formal techniques to
support a wide range of model evolution activities. These
include model refactoring, model inconsistency
management, model versioning and merging, co-evolution
of models, incremental model analysis and verification and
many more. A desirable property of the enabling or
supporting mechanisms for these activities is that they
should remain, as much as possible, ‘agnostic’ of the
particular modeling language of interest. This makes them
more robust to evolution of the modeling language, and
allows them to be applicable to a wider variety of models.

In this paper we have proposed a method of graph
transformation as an underlying theory and technology for
model evolution. Due to its solid formal foundation,
combined with the fact that models are frequently
represented in a graph-based way, graph transformation
seems to be a natural choice for supporting model
evolution. We try to validate this claim by exploring how
the technique of graph transformation can be used to
support model refactoring and model inconsistency
resolution for reengineering legacy systems.

7. Future Work

The current version of the new strategy for generating and
acquiring functional models is limited in at two aspects,
but we are planning to address these limitations: (1) the
structure of the new design can have one or more
additional components relative to those in the original
model, but it cannot have fewer components and (2) the
additional components are connected serially with other
components corresponding to the components in the
original design. We also plan to formally analyze
properties of the strategy of composing newer models by
components additions and their properties.

References
[1] Alanen, M., Porres, I. 2003. Difference and union of models.

In Stevens, P., Whittle, J., Booch, G., eds.: UML 2003 –
The Unified Modeling Language. Volume 2863 of Lecture
Notes in computer Science., Spinger-Verlag: 2-17.

[2] Barr, Michael and Charles Wells. 1988. Category Theory
for Computing Science. Prentice Hall.

[3] Barr, Michael and Charles Wells. 1999. Category Theory
for Computing Science. Les Publications CRM Montreal,
Third Edition.

[4] Belady, L. Lehman, M.M. 1976. A Model of large program
development. IBM Sys. J.15(1): 225-252.

[5] Bennet, K.H., Rajlich, V. 2000. Software maintenance and
evolution: a roadmap. ICSE – Future of SE Track: 73-87.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

183

[6] Ehrig, H. 1979. Introduction to the algebraic theory of graph
grammars. In Claus, V., Ehrig, H., Rozenberg, G., eds.:
Graph Grammars and Their Application to Computer
Science and Biology. Volume 73 of Lecture Notes in
Computer Science., Spinger-Verlag: 1-69.

[7] Fiadeiro, J.L. 2005. Categories for Software Engineering.
Springer, Leicester, United Kingdom.

[8] Goel, Ashok K. 1991. A Theory of Incremental Model
Learning. In Proceedings of The Eighth International
Conference on Machine Learning, Los Altos, CA, Morgan
Kaufmann: 605-609.

[9] Jacobson, I., Booch, G., Rumbaugh, J. 1999. The Unified
Software Development Process. Addison Wesley
Professional.

[10] Kemerer, Chris F. and Sandra Slaughter. 1999. An
Empirical Approach to Studying Software Evolution. IEEE
Transactions on Software Engineering, Vol. 25: 493-509.

[11] Lehman, M.M., Perry, D.E., Ramil, J.C.F., Turski, W.M.,
Wernick, P. 1997. Metrics and laws of software evolution.
Fourth International Symposium on Software Metrics:
20-32.

[12] Medvidovic, N., Rosenblum, David S., Redmiles, David F.,
Robbins, Jason E. 2002. Modeling software architectures in
the Unified Modeling Language. ACM Transactions on
Software Engineering and Methodology (TOSEM), Vol. 11:
2-57.

[13] Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D. 2005.
Formalizing refactorings with graph transformations.
Journal on Software Maintenance and Evolution: Research
and Practice: 2-31.

[14] Van den Broek, P.M. 1991. Algebraic graph rewriting using
a single pushout. In Abramski, S., Maibaum, T., eds.:
TAPSOFT’91. Volume 493 of Lecture Notes in Computer
Science., Spinger Verlag: 90-102.

[15] Wemelinger, M., Fiadeiro, J.L. 2002. A graph
transformation approach to software architecture
reconfiguration. Sci. Comput. Program. 44(2): 133-155.

Azween Abdullah obtained
his bachelors degree in
Computer Science in 1985,
Master in Software
Engineering in 1999 and his
Ph.d in computer science in
2003. His work experiences
includes eighteen years as a
lecturer/senior lecturer in
institutions of higher learning
and as director of research

and academic affairs at two institutions of higher learning,
twelve years in commercial companies as Software
Engineer, Systems Analyst and as a computer software
developer and IT/MIS and educational consultancy and
training. He has many years of experience in the
application of IT in business, engineering and research and
has personally designed and developed a variety of
computer software systems including business accounting
systems, software for investment analysis, website traffic
analysis, determination of hydrodynamic interaction of
ships and computation of environmental loads on offshore
structures. His area of research specialization includes
system survivability, formal specifications and modeling
and software engineering.

