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Abstract: When we retrieve information from a website or web-based system we receive both relevant and unwanted 
material. Reading unwanted material wastes time and reduces productivity. A well-designed text analyzer can help 
minimize this problem. This research presents a text analyzer that reduces the amount of unwanted material retrieved.  It 
filters unwanted material by using the knowledge that it had gained previously or acquired by grouping data elements. 
Results show that the accuracy of information retrieved is proportional to the efficiency of work done and decisions made. 
Its performance is compared and bench-marked with other text analyzers. Initial investigations based on several sample 
runs show that this text analyzer is more efficient than many others.   
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1. INTRODUCTION 
 
Because human reading is very slow, much of work done 
by humans is now transferred to the computer. For 
example, database management replaces traditional file 
systems. This conserves time and energy [1]. Although 
software tools are useful and necessary, we still humans 
to retrieve and interpret text information. 
 
Text reading tools can convert text to spoken words. 
Humans can hear and interpret the contents of the text by 
listening. There are also tools that can read long texts, e.g., 
research papers or novels [2]. Contents of a text are 
normally accessed using the highest frequency occurrence 
of words [3, 4]. However, this doesn’t always apply to 
short texts of a few pages such as job resumes. The 
lengths of these texts may be short, but they can still take 
up considerable time if the number of documents is large. 
A well-designed text analyzer can help minimize this 
problem, which is the purpose of this research.  
 
2. METHODOLOGY 
 
This study analyzes only short texts consisting of a few 
pages. It focuses on tools that discover relationships 
between categories. Specifically, it focuses on the 
processes that are needed to extract contents, analyze 

concepts, discover patterns, conduct visualization, and 
perform interactive analysis [5]. 
 
There are two main challenges in developing a text 
analyzer. The first is to ensure that the text-mining 
process is not adversely affected by the amount of 
knowledge stored inside the text analyzer. The 
knowledge or information repository will grow with the 
passage of time as new elements would be added. Text 
mining involves categorizing the text using the 
knowledge in the repository. So the algorithm used must 
provide efficient indexing. The second challenge is to 
ensure that the algorithm matches exact words. It must 
distinguish between the beginning and the end of a word, 
e.g., a job resume that contains the skill JavaScript and 
the knowledge that the text analyzer is looking for is 
Java. In this case, the text analyzer must be intelligent 
to filter out the word JavaScript and accept only the 
word Java [6].  
 
This study develops a text analyzer that can assist 
organizations process their textual information 
efficiently. The text analyzer is embedded in a 
previously developed web-based system called 
Volunteer Management System (VMS).   
 
Figure 1 shows the architecture of the text analyzer. It 
consists of three development phases: Input, Text 
Analysis and Decision Support. 
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Figure 1 System Architecture of Text Analyzer 

2.1 Input 
 
The input to the text analyzer is a text, which can take the 
form of a text field in a database or a text file. For 
database text fields, the text analyzer must be given the 
necessary access rights. Currently, the text analyzer 
supports only two types of input files - Microsoft Word 
(.doc) and text (.txt). The files’ paths must be initialized 
during the text analyzer is setup. 
 
The text analyzer will read new inputs automatically.  
When new data arrives into the database or files, the text 
analyzer will immediately analyze the input and update 
the knowledge/information repository. 

2.2 Text Analysis 
 
Text analysis constitutes the core of the text analyzer. 
When the text analyzer detects a new input, it reads the 
whole text and retrieves related information using the 
knowledge in the repository. The results are categorized 
and entered into the repository. The repository is indexed 
to speed up the search during the decision making phase. 

2.3 Decision Support  
  
In the decision support phase, the system will query the 
repository for the information (built from the text analysis 
phase) it needs. Decision making must be based on user’s 
needs. For example, in a volunteer management system, 
some activities would require that volunteers possess 

certain attributes or qualifications such as C 
programming knowledge. The results of the query are 
used to determine if the results are accurate. 
  
3. TEXT ANALYZER ALGORITHM 
 
The input to the system are Microsoft Word Documents 
with the extension .doc. It also uses  Microsoft Office 
Interop dll to read the Word documents. 
 
The text analyzer algorithm used in this study is an 
improved version of that suggested by Alfred V. Aho 
and Margaret J. Corasick [7]. The algorithm has two 
two main parts of the Text Analyzer Algorithm: Built 
Knowledge Tree and Text Analysis Process. 
 

Query out related 
information 

Input 

Text Field in 
Database 

Text Files  
– .doc 

Text Analysis 

Text Scan  
Algorithm 

Knowledge 
Repository 

 

Index 
Repository 

Decision Support  

Make Decision 

 
End 

Users 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 

201

 
Figure 2 Knowledge Tree Automata 

 
3.1 Build Knowledge Tree 
 
Based on a set of keywords yet to be searched, a 
knowledge tree is built. Keywords can be a word or a 
phrase. Figure 2 shows the state diagram of the 
knowledge tree. 
 
The knowledge tree is formed by a set of finite 
automatons. For example, there are five knowledge 
keywords in the tree: Java, JavaScript, C, C++ and C#. 
Every leaf node in the tree is a success state. When a 
success state is reached, the word or phrase of the input 
will be accepted and vice versa. 

Node 
Each character is represented by a node. There is node 
sharing between knowledge keywords. For example, the 
“C” node is shared by “C”, “C++” and “C#”. A word like 
“JavaScript” is formed by ten nodes.  

Word Separator 
When a text passes through the knowledge tree, the 
system will accept words or sub words, which matches 
the character(s) located in the knowledge tree. From the 
above knowledge tree, we can see that the input string 
“Communication” passes into the tree. When the 
character “C” is matched with the “C” node, the system 
will accept it. 
 
We can solve this problem by adding a word separator at 
the root and leaf of the tree. A word separator is formed 

by a group of characters [8]. It consists of the next 
character that occurs before and after a word. The root 
and success state are formed by a different set of word 
separators. A word separator enables the knowledge tree 
to accept the start of a word. Meanwhile, the success 
state accepts only the word or phrase that matches the 
keywords located in the knowledge tree.  
 
At each success state, there are additional word 
separators to indicate the end of a word. The set of word 
separators located at each success state are: white space 
(“ ”), comma (“,”), period (“.”), dash (“-”), question 
mark (“?”), exclamation mark (“!”), new line (“\n”), 
tab(“\t”) and carriage return (“\r”). 
 
Word separators located at the base of the knowledge 
tree consist of new lines and looping of word separators 
at success state. However, the occurrence of word 
separators at the beginning of the first word of a file is 
optional. 
 
Table 1 shows a list of word separators used for 
recognizing the end of a word. 
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Word 
Separator 

ASCII 
(Dec) 

Description 

 32 White space 
, 44 Comma 
. 46 Period 
- 45 Dash 
? 63 Question mark 
! 33 Exclamation point 
\n 10 New line 
\r 13 Carriage return 
\t 9 Tab 

 
Table 1 Word separator 

 
Analysis of the knowledge tree shows that the time 
needed for the construction tree follows a negative  
exponential function as shown in Figure 3. 
 

  
Figure 3 Performance of build tree algorithm 

3.2 Text Analyzer 

Figure 4 shows the steps performed by the Text Analyzer. 
 

 
 

Figure 4 Process of Documents 
 
Prior entering text into the knowledge tree the stop words 
are eliminated. 
 

Stop Word Elimination 
Wikipedia defines stop words as words which are so 
common that they are useless to index or use in search 
engines. Usually articles and adverbials are stop words. 
[9] 
 
The first step in text processing is to eliminate stop 
words from the documents. Stop word elimination 
enhances the text by saving space and improving 
searching speeds [10]. In this system, stop word 
elimination is done by using a multitasking technique 
which helps to speed up the text processing [11]. 

Key Matching in Tree Node 
The node and the input of character are compared based 
on their ASCII index number. If both have equal ASCII 
value the flow will proceed to the next node and the 
next input character. The searching process is 
terminated or relinquished for another new word when 
an unmatched character is found.   
 
Character comparison is based on its ASCII values. The 
search is case sensitive so as to get the exact word 
contained in the knowledge tree.  
 
3.3 Input Structure and Word Detection 
 
The input to the system in this study is short text, 
specifically, job resumes. A resume is a short text, so 
the main content cannot be determined by the frequency 
of occurrence of particular keywords [12]. 
 
The main challenge in reading text is how to recognize a 
word that is matched with the keyword that we are 
looking for. In the tree structure design, the root plays 
the main role in detecting the beginning of a word. For 
the first word of a file, there might not be any stop 
words, so occurrence of stop words is optional. For the 
rest of the words in the text, there is looping at success 
states until a new start word is found. This study 
assumes that the connection between words in the text is 
linked by one or more stop words. 

Time/ Keyword (sec) 

Number of Keywords 

File Input (*.doc) 

Stop Word Elimination 

Text Analysis

Store results into database 
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Detection of beginning of a word 
In order to determine if there is a beginning for a word, 
two steps are performed. First, since the first character of 
a word occurs after a stop word, i.e., in a sentence, words 
begins after a white space, may occur after few tabs, new 
line, or new page. If s(i) is the first character of a word, 
then s(i-1) is root stop word. 
 
Second, the beginning of a word is the character before 
the first character of the word, which is a non- alphabet. If 
s(i) is the first character of a word, then s(i-1) is non-
alphabet. 
 
A word may start after another character such as “*”, “@”, 
“^”and “&”. These characters are not in the word 
separator list. The second step is used to double check the 
result set. The checking of non-alphabet is executed after 
the text reading is completed. At this stage, if the first 
alphabet of a word is s(i), then the s(i-1) will be checked. 
If s(i-1) is an alphabet, it will be removed from the result 
list. 
 
Detection of end of a word 
When a word had reached the success state, the input text 
is considered as consisting of the knowledge keyword. 
Similar to the detection of the beginning of a word as 
explained above, there are two steps to be performed. In 
the first step, when the success state is reached, the word 
or phrase is accepted. If s(i) is the last character of a word, 
then s(i+1) is leaf stop word. 
 
The second step is similar to the first step, where its main 
function is to double check after the whole input text is 
executed. If s(i) is the last character of a word, then 
s(i+1) is non-alphabet. 
 
At this stage, if the last alphabet of a word is s(i), then the 
s(i+1) will be checked. For the last character in an input 
text, there is no checking on the s(i+1) character. 
 
3.4 Tree Traversal Algorithm 
 
Figure 5 shows the tree traversal algorithm which is 
specially designed for the searching of word or phrase. 
The searching will start from the first character of the 
input. It will travel into the tree beginning from the root (n 
= root). If an unmatched c and n is found, the algorithm 
will skip the remaining characters of the word. The 
searching will restart from next start point (nStart) [13]. 
 

 
 

Figure 5 Tree Traversal Algorithm 
 
If character s(i) travels until the leaf of the tree, it means 
the success state (sState) is reached. The keyword that 
had been found will be added to the result list. There 
will be backtracking of i in the next traversal. The 
purpose of back tracking is to enable the search to be 
continued right to the next new word 
 
The performance of text analysis is given in Figure 6. 
As the length of the input text is increases, the execution 
time of text analysis decreases.  

 
Figure 6 Performance of Text Analyzer 

 
4. ACCURACY OF TEXT ANALYZER 
 
In ascertaining the accuracy of the Text Analyzer a 
collection of 10 short input texts is amassed-in order to 
reduce repetition. These short texts are retrieved from 
job description that were posted in JobStreet.com [14]. 

Number of Keywords 

Time/ Keyword (sec) 

Input: Input string (s) 
Tree Node : Node (n), successState 
(sState) 
Nodes start from root until successState 
(keyword) 
Next Start (nStart) 
Return: List of result 
i=0 
n=root 
 
While (i<s.Length) 
   If s(i) = n then  
      NextNode(n) 
      i++ 
      if s(i) = newline or s(i) = 
     WhiteSpace  
         nStart = i 
      EndIf 
      If c = sState then 
         result.Add(keyword) 
         If sState = WhiteSpace  
            nStart = i-1 
            i = nStart 
         EndIf  
      EndIf    
   ElseIf c <> n then 
      i = nStart 
   EndIf 
EndWhile



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 
204 

For the purpose of this experiment, the result generated 
from the Text Analyzer is compared with the result 
obtained by human reading. It is assumed that human 
reading is 100% accurate. 
 
The formula for accuracy is: 

%100
][.

][..
×

−
BeingHumanfoundkeywordNo

AnalyzerTextunmatchedNofoundkeywordNo  

Keyword Found  

Text Analyzer No. of  
Sample 

Match Unmatched 
Human  
Being 

Classification  
Accuracy (%) 

1 12 0 12 100 

2 9 0 10 90 

3 9 0 9 100 

4 9 0 9 100 

5 6 0 6 100 

6 14 1 14 92.86 

7 5 0 5 100 

8 15 0 15 100 

9 9 0 9 100 

10 7 0 7 100 

 
Table 2 Text Analysis Result 

 
From Table 2, it is found that the overall standard of 
accuracy is good although the results seem to give some 
false alarms. In sample 2, there is one keyword not found 
and the reason for this is because there is a “&” symbol 
occurring at the prefix of the keyword, &[Keyword]. The 
Text Analyzer which detects the beginning of a word does 
not encounter the “&” symbol because it does not 
ordinarily belong to the beginning of a word character. In 
sample 6, there is an unmatched result found. The Text 
Analyzer matched the word correctly. However, the 
original meaning of the input text might differ from what 
the Text Analyzer had matched.  So, sample 6’s result is 
considered as an unmatched keyword.  
 
The overall accuracy of the text analyzer is 98.2%. This 
value is considered good as most of the time it is able to 
produce correct outputs. 

 

5. COMPARISIONS 

5.1 Performance Comparisons 
 
This section compares the text analyzer’s result with the 
regular expression provided in .Net, namely, 
Regex.IsMatch. This function can replace the build tree 
and text analysis algorithm [15].  
 
Table 3 shows the results of the text analysis by the text 
analyzer. It shows the execution times of the text 
analysis. The build knowledge tree is performed before 
analyzing the input text.  

 
Knowledge Keywords Size 

Input Text 
(pages) 

20 50 100 200 

2 0.0200 0.0160 0.1824 0.0400 

5 0.0140 0.0400 0.0840 0.1100 

10 0.0360 0.0600 0.1264 0.2042 

20 0.0920 0.0882 0.2324 0.2502 

40 0.1662 0.1400 0.4528 0.4764 

 
Table 3 Execution time of text analysis 

 
Table 4 shows the execution times of text analysis by 
using the Regular Expression. Since there is no 
grouping of the list of keywords, the keywords are 
checked by using the Regex.match function.  

 

Knowledge Keywords Size Input 
Text (pages) 20 50 100 200 

2 0.0774 0.1876 0.4346 0.8130 

5 0.1748 0.4788 1.0880 1.9092 

10 0.3538 0.8964 2.1664 3.7208 

20 0.6474 1.8112 3.7026 7.2202 

40 1.6210 3.7158 7.3696 14.0760
 

Table 4 Execution time of Regular Expression 
 

From the results we can be say that the execution times 
of the regular expression is higher compared to the 
execution time of the text analyzer. As the keywords 
size is increase, the differences become higher. 
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Additionally, regular expressions suffer when applied to 
dynamic keywords. For example, some keywords like 
“C#” or “C++” consist of special characters, “#” and “+”. 
These characters are also part of the syntax of regular 
expressions. To enable text analysis with special 
characters, the character “\” needs to be added in front of 
each special character. This means that regular expression 
is not so suitable for dynamic keywords. Before 
performing text analysis using regular expressions, there 
must be process to manage special characters in the 
keyword list. In this experiment, the execution time of this 
process is excluded. 
 
To summarize: the text analyzer result is better than the 
regular expression result. Besides, regular expression is 
only applicable to low number of keywords and non 
dynamic keywords.  
 
5.2 Accuracy Comparisons 
 
The accuracy of the Text Analyzer was determined by 
comparing the results from three job search websites, 
namely, JobStreet (http://my.jobstreet.com) [14], JenJobs 
(http://www.jenjobs.com) [16] and Guardianjobs 
(http://jobs.guardian.co.uk) [17] and the VolunteerNet 
website. The same filtering criteria were used for all.   
 
An account was created for each of three websites as well 
as for the VolunteerNet website. Required details were 
entered and the same job resume in Word document was 
uploaded to all these websites.  
 
In this experiment, the results or output is a list of jobs 
suitable for applicant. The uploaded resume and the 
website registration forms are needed in the job matching 
process. As the domain for Text Analyzer is on IT job 
searching, the filtering process focused only on IT-related 
jobs. The output from this experiment is a set of reports 
related to IT skills of applicants. The results are derived 
from the list of jobs matched by the website.  Table 7.4 
summarizes the results generated by the four websites.  
 
The value in No. of Suitable jobs field is determined by 
users. Each job description is read and related job is 
selected. The No. of Suitable Jobs is considered to have 
an accuracy of 100%. Each job supplied to each website is 
categorized into No. of Correct Jobs Received and No. of 
Incorrect Jobs Received. 
 

  
Attributes Job 

Street 
Jen 
Jobs 

Guardian 
jobs 

Volunteer 
Net 

No. of 
Suitable 

Jobs 
7 5 9 10 

No. of Jobs 6 7 7 10 

Received 
No. of 

Correct Jobs 
Received 

4 4 7 10 

No. of 
Incorrect 

Jobs 
Received 

2 3 0 0 

 
Table 5 Job Filtering Result 

 
As Table 5 reveals, not all job alerts given by the 3 
websites are relevant to the applicant. The alerts by 
JobStreet focus only on newly posted jobs. Alerts such 
as Management Training and Service Engineer are also 
sent to the applicant. It is found that JobStreet also 
sends out partially relevant jobs to the applicant. For 
example, the list includes unrelated job titles such as 
Management Training and Service Engineer. This is 
because the applicant selected the location field. Besides, 
the Service Engineer job is sent to the applicant as he 
had also selected the manufacturing field.  
 
The JobMatcher of JenJobs found 7 jobs suitable for the 
applicant. Similar to JobStreet, it also sends jobs based 
on industry. Here, unrelated positions such as Sales 
Account Manager  are sent to the applicant. 
 
GuardianJobs gives better job alerts than JobStreet and 
JenJobs. This is because GuardianJobs provides more 
job-related alerts and  requires applicants to fill in more 
information, including checking a check box  list 
consisting IT skills. Thus, most of the jobs sent to the 
applicants are related jobs. However, the Prolog job has 
been missed out from the job alert list. This is because 
the IT skill list is not complete.   
 
The VolunteerNet website which implemented the Text 
Analyzer for processing applicants’ resumes performed 
well in the job filtering process. It is able to reduce the 
number of unrelated alerts. The Text Analyzer is 
flexible as it allows new knowledge (IT skill) to be 
added from time to time.  
 
From the study of the 3 job websites, applicants to 
upload resume is an extra feature for company to view 
applicant’s details. They do not perform any analysis 
work on short text resumes. The solution provided here 
improves the job filtering process as well as avoids 
spamming. 

 
8. CONCLUSION 
 
Reading a large number of short texts manually can be 
quite time-consuming [18]. This research has presented 
a text analyzer for reading and analyzing short input 
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texts more efficiently than other text analyzers. It retrieves 
information using a set of predefined keywords. It has 
three parts: (1) Processing input texts in the form of 
Microsoft Word documents; this involves converting 
Word files to text files and eliminating stop words, (2) 
Building a knowledge tree by grouping keywords, and (3) 
Processing the knowledge tree.  
 
Several test runs show that this text analyzer is more 
efficient than many others. The statistics generated by the 
text analyzer include mean, variance and rate of change. It 
can be installed on servers to analyze input texts. 

9. FUTURE WORK 
 
While the results presented are encouraging, there is still 
room for improvement.  
 
1. The text analyzer in this research performs exact 

word searching. However, there is no text stemming. 
Stemming, for example, ensures that the words 
"traveling" and "traveled" refer to the same word [18, 
20]. 

 
2. The exact text matching in this research is case 

sensitive. That means, the word “JAVA” is different 
from the word “Java”. Work can be done to 
determine if case sensitivith is important in text 
analysis [19]. 

 
3. Synonyms such as "sick" and "ill" or words that are 

used in particular phrases where they denote unique 
meaning can be combined for indexing. For example, 
"Microsoft Windows" might be such a phrase, which 
is a specific reference to the computer operating 
system, but has nothing to do with the common use 
of the term "Windows" as descriptions in home 
improvement projects [20]. 
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