
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

199

Manuscript received November 5, 2008

Manuscript revised November 20, 2008

Text Analyzer for Efficient Information Retrieval
Sellappan Palaniappan, Looi Siang Shing

Department of Information Technology,
Malaysia University of Science and Technology, Block C, Kelana Square, Kelana Jaya,

47301 Petaling Jaya, Malaysia

Abstract: When we retrieve information from a website or web-based system we receive both relevant and unwanted
material. Reading unwanted material wastes time and reduces productivity. A well-designed text analyzer can help
minimize this problem. This research presents a text analyzer that reduces the amount of unwanted material retrieved. It
filters unwanted material by using the knowledge that it had gained previously or acquired by grouping data elements.
Results show that the accuracy of information retrieved is proportional to the efficiency of work done and decisions made.
Its performance is compared and bench-marked with other text analyzers. Initial investigations based on several sample
runs show that this text analyzer is more efficient than many others.

Keywords: Text analysis, text analyzer, information retrieval, web-based systems, short documents, text mining.

1. INTRODUCTION

Because human reading is very slow, much of work done
by humans is now transferred to the computer. For
example, database management replaces traditional file
systems. This conserves time and energy [1]. Although
software tools are useful and necessary, we still humans
to retrieve and interpret text information.

Text reading tools can convert text to spoken words.
Humans can hear and interpret the contents of the text by
listening. There are also tools that can read long texts, e.g.,
research papers or novels [2]. Contents of a text are
normally accessed using the highest frequency occurrence
of words [3, 4]. However, this doesn’t always apply to
short texts of a few pages such as job resumes. The
lengths of these texts may be short, but they can still take
up considerable time if the number of documents is large.
A well-designed text analyzer can help minimize this
problem, which is the purpose of this research.

2. METHODOLOGY

This study analyzes only short texts consisting of a few
pages. It focuses on tools that discover relationships
between categories. Specifically, it focuses on the
processes that are needed to extract contents, analyze

concepts, discover patterns, conduct visualization, and
perform interactive analysis [5].

There are two main challenges in developing a text
analyzer. The first is to ensure that the text-mining
process is not adversely affected by the amount of
knowledge stored inside the text analyzer. The
knowledge or information repository will grow with the
passage of time as new elements would be added. Text
mining involves categorizing the text using the
knowledge in the repository. So the algorithm used must
provide efficient indexing. The second challenge is to
ensure that the algorithm matches exact words. It must
distinguish between the beginning and the end of a word,
e.g., a job resume that contains the skill JavaScript and
the knowledge that the text analyzer is looking for is
Java. In this case, the text analyzer must be intelligent
to filter out the word JavaScript and accept only the
word Java [6].

This study develops a text analyzer that can assist
organizations process their textual information
efficiently. The text analyzer is embedded in a
previously developed web-based system called
Volunteer Management System (VMS).

Figure 1 shows the architecture of the text analyzer. It
consists of three development phases: Input, Text
Analysis and Decision Support.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

200

Figure 1 System Architecture of Text Analyzer

2.1 Input

The input to the text analyzer is a text, which can take the
form of a text field in a database or a text file. For
database text fields, the text analyzer must be given the
necessary access rights. Currently, the text analyzer
supports only two types of input files - Microsoft Word
(.doc) and text (.txt). The files’ paths must be initialized
during the text analyzer is setup.

The text analyzer will read new inputs automatically.
When new data arrives into the database or files, the text
analyzer will immediately analyze the input and update
the knowledge/information repository.

2.2 Text Analysis

Text analysis constitutes the core of the text analyzer.
When the text analyzer detects a new input, it reads the
whole text and retrieves related information using the
knowledge in the repository. The results are categorized
and entered into the repository. The repository is indexed
to speed up the search during the decision making phase.

2.3 Decision Support

In the decision support phase, the system will query the
repository for the information (built from the text analysis
phase) it needs. Decision making must be based on user’s
needs. For example, in a volunteer management system,
some activities would require that volunteers possess

certain attributes or qualifications such as C
programming knowledge. The results of the query are
used to determine if the results are accurate.

3. TEXT ANALYZER ALGORITHM

The input to the system are Microsoft Word Documents
with the extension .doc. It also uses Microsoft Office
Interop dll to read the Word documents.

The text analyzer algorithm used in this study is an
improved version of that suggested by Alfred V. Aho
and Margaret J. Corasick [7]. The algorithm has two
two main parts of the Text Analyzer Algorithm: Built
Knowledge Tree and Text Analysis Process.

Query out related
information

Input

Text Field in
Database

Text Files
– .doc

Text Analysis

Text Scan
Algorithm

Knowledge
Repository

Index
Repository

Decision Support

Make Decision

End

Users

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

201

Figure 2 Knowledge Tree Automata

3.1 Build Knowledge Tree

Based on a set of keywords yet to be searched, a
knowledge tree is built. Keywords can be a word or a
phrase. Figure 2 shows the state diagram of the
knowledge tree.

The knowledge tree is formed by a set of finite
automatons. For example, there are five knowledge
keywords in the tree: Java, JavaScript, C, C++ and C#.
Every leaf node in the tree is a success state. When a
success state is reached, the word or phrase of the input
will be accepted and vice versa.

Node
Each character is represented by a node. There is node
sharing between knowledge keywords. For example, the
“C” node is shared by “C”, “C++” and “C#”. A word like
“JavaScript” is formed by ten nodes.

Word Separator
When a text passes through the knowledge tree, the
system will accept words or sub words, which matches
the character(s) located in the knowledge tree. From the
above knowledge tree, we can see that the input string
“Communication” passes into the tree. When the
character “C” is matched with the “C” node, the system
will accept it.

We can solve this problem by adding a word separator at
the root and leaf of the tree. A word separator is formed

by a group of characters [8]. It consists of the next
character that occurs before and after a word. The root
and success state are formed by a different set of word
separators. A word separator enables the knowledge tree
to accept the start of a word. Meanwhile, the success
state accepts only the word or phrase that matches the
keywords located in the knowledge tree.

At each success state, there are additional word
separators to indicate the end of a word. The set of word
separators located at each success state are: white space
(“ ”), comma (“,”), period (“.”), dash (“-”), question
mark (“?”), exclamation mark (“!”), new line (“\n”),
tab(“\t”) and carriage return (“\r”).

Word separators located at the base of the knowledge
tree consist of new lines and looping of word separators
at success state. However, the occurrence of word
separators at the beginning of the first word of a file is
optional.

Table 1 shows a list of word separators used for
recognizing the end of a word.

J

C

a

+ +

r c

S

v

a

p i t

Start

Success State

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

202

Word
Separator

ASCII
(Dec)

Description

 32 White space
, 44 Comma
. 46 Period
- 45 Dash
? 63 Question mark
! 33 Exclamation point
\n 10 New line
\r 13 Carriage return
\t 9 Tab

Table 1 Word separator

Analysis of the knowledge tree shows that the time
needed for the construction tree follows a negative
exponential function as shown in Figure 3.

Figure 3 Performance of build tree algorithm

3.2 Text Analyzer

Figure 4 shows the steps performed by the Text Analyzer.

Figure 4 Process of Documents

Prior entering text into the knowledge tree the stop words
are eliminated.

Stop Word Elimination
Wikipedia defines stop words as words which are so
common that they are useless to index or use in search
engines. Usually articles and adverbials are stop words.
[9]

The first step in text processing is to eliminate stop
words from the documents. Stop word elimination
enhances the text by saving space and improving
searching speeds [10]. In this system, stop word
elimination is done by using a multitasking technique
which helps to speed up the text processing [11].

Key Matching in Tree Node
The node and the input of character are compared based
on their ASCII index number. If both have equal ASCII
value the flow will proceed to the next node and the
next input character. The searching process is
terminated or relinquished for another new word when
an unmatched character is found.

Character comparison is based on its ASCII values. The
search is case sensitive so as to get the exact word
contained in the knowledge tree.

3.3 Input Structure and Word Detection

The input to the system in this study is short text,
specifically, job resumes. A resume is a short text, so
the main content cannot be determined by the frequency
of occurrence of particular keywords [12].

The main challenge in reading text is how to recognize a
word that is matched with the keyword that we are
looking for. In the tree structure design, the root plays
the main role in detecting the beginning of a word. For
the first word of a file, there might not be any stop
words, so occurrence of stop words is optional. For the
rest of the words in the text, there is looping at success
states until a new start word is found. This study
assumes that the connection between words in the text is
linked by one or more stop words.

Time/ Keyword (sec)

Number of Keywords

File Input (*.doc)

Stop Word Elimination

Text Analysis

Store results into database

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

203

Detection of beginning of a word
In order to determine if there is a beginning for a word,
two steps are performed. First, since the first character of
a word occurs after a stop word, i.e., in a sentence, words
begins after a white space, may occur after few tabs, new
line, or new page. If s(i) is the first character of a word,
then s(i-1) is root stop word.

Second, the beginning of a word is the character before
the first character of the word, which is a non- alphabet. If
s(i) is the first character of a word, then s(i-1) is non-
alphabet.

A word may start after another character such as “*”, “@”,
“^”and “&”. These characters are not in the word
separator list. The second step is used to double check the
result set. The checking of non-alphabet is executed after
the text reading is completed. At this stage, if the first
alphabet of a word is s(i), then the s(i-1) will be checked.
If s(i-1) is an alphabet, it will be removed from the result
list.

Detection of end of a word
When a word had reached the success state, the input text
is considered as consisting of the knowledge keyword.
Similar to the detection of the beginning of a word as
explained above, there are two steps to be performed. In
the first step, when the success state is reached, the word
or phrase is accepted. If s(i) is the last character of a word,
then s(i+1) is leaf stop word.

The second step is similar to the first step, where its main
function is to double check after the whole input text is
executed. If s(i) is the last character of a word, then
s(i+1) is non-alphabet.

At this stage, if the last alphabet of a word is s(i), then the
s(i+1) will be checked. For the last character in an input
text, there is no checking on the s(i+1) character.

3.4 Tree Traversal Algorithm

Figure 5 shows the tree traversal algorithm which is
specially designed for the searching of word or phrase.
The searching will start from the first character of the
input. It will travel into the tree beginning from the root (n
= root). If an unmatched c and n is found, the algorithm
will skip the remaining characters of the word. The
searching will restart from next start point (nStart) [13].

Figure 5 Tree Traversal Algorithm

If character s(i) travels until the leaf of the tree, it means
the success state (sState) is reached. The keyword that
had been found will be added to the result list. There
will be backtracking of i in the next traversal. The
purpose of back tracking is to enable the search to be
continued right to the next new word

The performance of text analysis is given in Figure 6.
As the length of the input text is increases, the execution
time of text analysis decreases.

Figure 6 Performance of Text Analyzer

4. ACCURACY OF TEXT ANALYZER

In ascertaining the accuracy of the Text Analyzer a
collection of 10 short input texts is amassed-in order to
reduce repetition. These short texts are retrieved from
job description that were posted in JobStreet.com [14].

Number of Keywords

Time/ Keyword (sec)

Input: Input string (s)
Tree Node : Node (n), successState
(sState)
Nodes start from root until successState
(keyword)
Next Start (nStart)
Return: List of result
i=0
n=root

While (i<s.Length)
 If s(i) = n then
 NextNode(n)
 i++
 if s(i) = newline or s(i) =
 WhiteSpace
 nStart = i
 EndIf
 If c = sState then
 result.Add(keyword)
 If sState = WhiteSpace
 nStart = i-1
 i = nStart
 EndIf
 EndIf
 ElseIf c <> n then
 i = nStart
 EndIf
EndWhile

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

204

For the purpose of this experiment, the result generated
from the Text Analyzer is compared with the result
obtained by human reading. It is assumed that human
reading is 100% accurate.

The formula for accuracy is:

%100
][.

][..
×

−
BeingHumanfoundkeywordNo

AnalyzerTextunmatchedNofoundkeywordNo

Keyword Found

Text Analyzer No. of
Sample

Match Unmatched
Human
Being

Classification
Accuracy (%)

1 12 0 12 100

2 9 0 10 90

3 9 0 9 100

4 9 0 9 100

5 6 0 6 100

6 14 1 14 92.86

7 5 0 5 100

8 15 0 15 100

9 9 0 9 100

10 7 0 7 100

Table 2 Text Analysis Result

From Table 2, it is found that the overall standard of
accuracy is good although the results seem to give some
false alarms. In sample 2, there is one keyword not found
and the reason for this is because there is a “&” symbol
occurring at the prefix of the keyword, &[Keyword]. The
Text Analyzer which detects the beginning of a word does
not encounter the “&” symbol because it does not
ordinarily belong to the beginning of a word character. In
sample 6, there is an unmatched result found. The Text
Analyzer matched the word correctly. However, the
original meaning of the input text might differ from what
the Text Analyzer had matched. So, sample 6’s result is
considered as an unmatched keyword.

The overall accuracy of the text analyzer is 98.2%. This
value is considered good as most of the time it is able to
produce correct outputs.

5. COMPARISIONS

5.1 Performance Comparisons

This section compares the text analyzer’s result with the
regular expression provided in .Net, namely,
Regex.IsMatch. This function can replace the build tree
and text analysis algorithm [15].

Table 3 shows the results of the text analysis by the text
analyzer. It shows the execution times of the text
analysis. The build knowledge tree is performed before
analyzing the input text.

Knowledge Keywords Size

Input Text
(pages)

20 50 100 200

2 0.0200 0.0160 0.1824 0.0400

5 0.0140 0.0400 0.0840 0.1100

10 0.0360 0.0600 0.1264 0.2042

20 0.0920 0.0882 0.2324 0.2502

40 0.1662 0.1400 0.4528 0.4764

Table 3 Execution time of text analysis

Table 4 shows the execution times of text analysis by
using the Regular Expression. Since there is no
grouping of the list of keywords, the keywords are
checked by using the Regex.match function.

Knowledge Keywords Size Input
Text (pages) 20 50 100 200

2 0.0774 0.1876 0.4346 0.8130

5 0.1748 0.4788 1.0880 1.9092

10 0.3538 0.8964 2.1664 3.7208

20 0.6474 1.8112 3.7026 7.2202

40 1.6210 3.7158 7.3696 14.0760

Table 4 Execution time of Regular Expression

From the results we can be say that the execution times
of the regular expression is higher compared to the
execution time of the text analyzer. As the keywords
size is increase, the differences become higher.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

205

Additionally, regular expressions suffer when applied to
dynamic keywords. For example, some keywords like
“C#” or “C++” consist of special characters, “#” and “+”.
These characters are also part of the syntax of regular
expressions. To enable text analysis with special
characters, the character “\” needs to be added in front of
each special character. This means that regular expression
is not so suitable for dynamic keywords. Before
performing text analysis using regular expressions, there
must be process to manage special characters in the
keyword list. In this experiment, the execution time of this
process is excluded.

To summarize: the text analyzer result is better than the
regular expression result. Besides, regular expression is
only applicable to low number of keywords and non
dynamic keywords.

5.2 Accuracy Comparisons

The accuracy of the Text Analyzer was determined by
comparing the results from three job search websites,
namely, JobStreet (http://my.jobstreet.com) [14], JenJobs
(http://www.jenjobs.com) [16] and Guardianjobs
(http://jobs.guardian.co.uk) [17] and the VolunteerNet
website. The same filtering criteria were used for all.

An account was created for each of three websites as well
as for the VolunteerNet website. Required details were
entered and the same job resume in Word document was
uploaded to all these websites.

In this experiment, the results or output is a list of jobs
suitable for applicant. The uploaded resume and the
website registration forms are needed in the job matching
process. As the domain for Text Analyzer is on IT job
searching, the filtering process focused only on IT-related
jobs. The output from this experiment is a set of reports
related to IT skills of applicants. The results are derived
from the list of jobs matched by the website. Table 7.4
summarizes the results generated by the four websites.

The value in No. of Suitable jobs field is determined by
users. Each job description is read and related job is
selected. The No. of Suitable Jobs is considered to have
an accuracy of 100%. Each job supplied to each website is
categorized into No. of Correct Jobs Received and No. of
Incorrect Jobs Received.

Attributes Job

Street
Jen
Jobs

Guardian
jobs

Volunteer
Net

No. of
Suitable

Jobs
7 5 9 10

No. of Jobs 6 7 7 10

Received
No. of

Correct Jobs
Received

4 4 7 10

No. of
Incorrect

Jobs
Received

2 3 0 0

Table 5 Job Filtering Result

As Table 5 reveals, not all job alerts given by the 3
websites are relevant to the applicant. The alerts by
JobStreet focus only on newly posted jobs. Alerts such
as Management Training and Service Engineer are also
sent to the applicant. It is found that JobStreet also
sends out partially relevant jobs to the applicant. For
example, the list includes unrelated job titles such as
Management Training and Service Engineer. This is
because the applicant selected the location field. Besides,
the Service Engineer job is sent to the applicant as he
had also selected the manufacturing field.

The JobMatcher of JenJobs found 7 jobs suitable for the
applicant. Similar to JobStreet, it also sends jobs based
on industry. Here, unrelated positions such as Sales
Account Manager are sent to the applicant.

GuardianJobs gives better job alerts than JobStreet and
JenJobs. This is because GuardianJobs provides more
job-related alerts and requires applicants to fill in more
information, including checking a check box list
consisting IT skills. Thus, most of the jobs sent to the
applicants are related jobs. However, the Prolog job has
been missed out from the job alert list. This is because
the IT skill list is not complete.

The VolunteerNet website which implemented the Text
Analyzer for processing applicants’ resumes performed
well in the job filtering process. It is able to reduce the
number of unrelated alerts. The Text Analyzer is
flexible as it allows new knowledge (IT skill) to be
added from time to time.

From the study of the 3 job websites, applicants to
upload resume is an extra feature for company to view
applicant’s details. They do not perform any analysis
work on short text resumes. The solution provided here
improves the job filtering process as well as avoids
spamming.

8. CONCLUSION

Reading a large number of short texts manually can be
quite time-consuming [18]. This research has presented
a text analyzer for reading and analyzing short input

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

206

texts more efficiently than other text analyzers. It retrieves
information using a set of predefined keywords. It has
three parts: (1) Processing input texts in the form of
Microsoft Word documents; this involves converting
Word files to text files and eliminating stop words, (2)
Building a knowledge tree by grouping keywords, and (3)
Processing the knowledge tree.

Several test runs show that this text analyzer is more
efficient than many others. The statistics generated by the
text analyzer include mean, variance and rate of change. It
can be installed on servers to analyze input texts.

9. FUTURE WORK

While the results presented are encouraging, there is still
room for improvement.

1. The text analyzer in this research performs exact

word searching. However, there is no text stemming.
Stemming, for example, ensures that the words
"traveling" and "traveled" refer to the same word [18,
20].

2. The exact text matching in this research is case

sensitive. That means, the word “JAVA” is different
from the word “Java”. Work can be done to
determine if case sensitivith is important in text
analysis [19].

3. Synonyms such as "sick" and "ill" or words that are

used in particular phrases where they denote unique
meaning can be combined for indexing. For example,
"Microsoft Windows" might be such a phrase, which
is a specific reference to the computer operating
system, but has nothing to do with the common use
of the term "Windows" as descriptions in home
improvement projects [20].

REFERENCES

[1] New Approach to Text Analysis (2006). Retrieved

by November, 2006 from
http://www.analyst.ru/index.php?lang=eng&dir=co
ntent/tech/&id=approach&left=content/tech/menu.t
xt

[2] TextAnalyst(2006). Retrieved by November, 2006

from
http://www.megaputer.com/products/ta/index.php3

[3] Text Mining. (2004). Retrieved November 12,
2005, from
http://www.statsoft.com/textbook/sttextmin.html#i
ncorporating

[4] Go Beyond Counting Keywords (2006).

Retrieved by November, 2006 from
http://www.megaputer.com/textanalyst.php

[5] Sergei Ananyan, Michael Kiselev

(2006).Automated Analysis of Unstructured
Texts (2006) TextAnalyst white paper. Retrieved
November, 2006, from
http://www.megaputer.com/file/textanalyst_white
paper.pdf

[6] Fabrizio Sebastiani. (March 2002). Machine

Learning in Automated Text Categorization.
Journal of ACM Computing Surveys, Vol. 34, No.
1, March 2002, pp. 1–47. Retrieved November 12,
2005, from ACM Digital Library Database.

[7] Aho-Corasick Algorithm. Retrieved by

November, 2006 from
http://en.wikipedia.org/wiki/Aho-
Corasick_algorithm

[8] Word Seperator Definition. Retrieved by

February, 2007 from
http://www.pcmag.com/encyclopedia_term/0,254
2,t=word+separator&i=54837,00.asp

 [9] Stop Words (2006). Retrieved November 17,

2006 from
http://en.wikipedia.org/wiki/Stop_words

[10] PCMag Encyclopedia, Definition of Stop Word

(2006). Retrieved November, 2006 from
http://www.pcmag.com/encyclopedia_term/0,254
2,t=word+separator&i=54837,00.asp

 [11] Danny Sullivan, What Are Stop Word

(01/01/2003). Retrieved November 1, 2006 from
http://searchenginewatch.com/showPage.html?pa
ge=2156061

[12] Osmar R.Zaiane, Maria-Luiza Antonie. (2001)

Classifying Text Documents by Associating
Terms with Text Catogories, 215-222. Retrieved
November 12, 2005, from ACM Digital Library
Database.

14] Tree Traversal. Retrieved by February,2007 from

http://en.wikipedia.org/wiki/Tree_traversal

[14] JobStreet. Retrieved by November, 2007 from

http://www.jobstreet.com/

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

207

[15] How To: Use Regular Expressions to Constrain
Input in ASP.NET. Retrieved by February,2007
from http://msdn2.microsoft.com/en-
us/library/ms998267.aspx

[16] JenJobs. Retrieved by November, 2007 from

http://www.jenjobs.com/

[17] Guardian Jobs. Retrieved by November, 2007 from

http://www.guardianjobs.com/

[18] J V Bryar. (2001). Taxonomies The Value of

Organized Business Knowledge. New Edge
Corperation.

[19] M. K. Kowar. (2006, Jan). Automatic Generation

of Back-of The Book Index: An Integrated
Approach Through Text Mining Operations.
Proceedings of the International Conference on
Recent Trendy in Information System (IRIS’06),
National Engineering College,Kovilpatti, Tamil,
India , 416-422.

 [20] StatSoft (2004). Retrieved by January, 2007 from

http://www.statsoft.com/textbook/sttextmin.html

Looi Siang Shing received her MSc in
Information Technology from Malaysia
University of Science and Technology and a
BSc (Hons) from Multimedia University,
Malaysia. Her research interests include
data/text mining, healthcare decision
support systems and web applications and
technologies.

Sellappan Palaniappan obtained his PhD
in Interdisciplinary Information Science
from University of Pittsburgh and a MSc
in Computer Science from University of
London. He is an Associate Professor at
the Department of Information
Technology, Malaysia University of
Science and Technology. His research
interests include information integration,
clinical decision support systems, OLAP
and data mining, web services and
collaborative CASE tools.

