
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

226

Manuscript received November 5, 2008

Manuscript revised November 20, 2008

Reusable Verification Environment for verification of Ethernet packet
in Ethernet IP core, a verification strategy- an analysis

 1L.Swarna Jyothi 2 Harish R 3Dr.A.S.Manjunath

1 Professor 2 Verification engineer 3 CEO and MD,
 JSS Academy of Technical Education Manvish eTech Pvt Ltd
 Bangalore, Research Scholar Bangalore
 Dr.MGR University, Chennai,

Summary
 Design reuse and verification reuse are important to satisfy time-
to-market requirements. Designer must be able to reuse
Intellectual Property in the design as golden model. Reuse of
verification environment across different designs of the domain
saves time to market further and improves total design
verification quality. The Physical Layer is a fundamental layer
upon which all higher level functions in a network are based.
However, due to the plethora of available hardware technologies
with widely varying characteristics, this is perhaps the most
complex layer in the OSI architecture. The implementation of this
layer is often termed Physical layer device (PHY). The Physical
Layer defines the means of transmitting raw bits rather than
logical data packets over a physical link connecting network
nodes. A PHY chip is commonly found on Ethernet devices. Its
purpose is digital access of the modulated link and interface to
Ethernet Media Access Control (MAC) using media independent
interface (MII) interface. This paper discusses Verification
process, issues involved in verification process and Test
Methodologies. A broad outline of the comparison of traditional
verilog and specman verification methodologies has been
presented here. It also explains verification strategy and reuse of
design environment with reference to verifying the Ethernet
packet in Ethernet Intellectual Property (IP) Core. Design Reuse
is achieved through verilog tasks which were used in specman
environment. Ethernet Phy e Verification component (eVC) is an
in house development. Ethernet eVC is built with phy as a
separate eVC and host being a task driven verilog Bus functional
model (BFM). This allowed us to create a virtual host
environment using a combination of verilog BFM and eVC.
Verification environment reuse for different application with
different interface is done by developing a wrapper around the
Design Under Test (DUT) interface and then interfacing it to the
environment. A detailed test plan is made for the complete and
exhaustive test for Ethernet MAC Receiver. Coverage goals,
coverage obtained and coverage analysis indicate efficiency of
the verification methodology.

Key Words:

Ethernet eVC, BFM, DUT, MAC, Verification, Reuse, Test
methods, MDIO, Coverage

1. Introduction

 Verification is a methodology used to demonstrate the
functional correctness of a design. With automation
human errors in a process are minimized. Automation
takes human intervention completely out of the process [1,
2, 3]. However, automation is not always possible,
especially in processes that are not well defined and
continue to require human ingenuity and creativity, such as
hardware design.

 Another possibility is error due to human intervention by
reducing it to simple and foolproof steps. Human
intervention is needed only to decide on the particular
sequence or steps required to obtain the desired results. It
is usually the last step toward complete automation of a
process. However, just like automation, it requires a well-
defined process with standard transformation steps. The
verification process remains an art that, to this day, does
not yield itself to well-defined steps.

 Choosing the common origin and reconvergence points
determines what is being verified. These origin and
reconvergence points are often determined by the tools
used to perform the verification. It is important to
understand where these points lie to know which
transformation is being verified.

 The main purpose of functional verification [9] is to
ensure that a design implements intended functionality.
without functional verification, one must not trust that the
transformation of a specification document into design and
Register Transfer Logic (RTL) code was performed
correctly, without misinterpretation of the specifications.

** This research is funded by All India Council for
Technical Education under Research Promotion
Scheme

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

227

Figure 1 shows an overview of the steps involved in
verification of a design under test.

Verification activity consists of driving vector stream into
device and checking the vector stream coming out of the
device. Higher level languages [12] are needed, as High-
level language eases the creation of an expected value
generator. Data check verifies the data correctness while
temporal check verifies timing and protocol. Here the
shared objects are used for input stimulus. It supports
cycle-based behavior, events, and synchronizes with HDL
simulator.

 Figure 1. Generalized Verification Flow

 Verification planning is an important and integral part of
verification, irrespective of the size of the system. About
70% of the design cycle time is spent on verification; with
proper verification planning some of the issues faced
during the later phases of design can be addressed earlier.
For SOC’s it is observed that most of the peripherals are
reused [7] from the previous design step with some
modifications done on the feature set. Use of a pre-
configured and pre-verified suite of code and IP means that
adaptation and subsequent re-verification of the code for
specific applications is greatly eased [4, 5, 8]. The reuse of
verification code and methodology is a major factor
providing significant reduction of the overall verification
costs [6] One of the fundamental basics of design and
verification reuse is the standardization of interfaces [10].
This has resulted in a number of interface and bus
protocols that are used to connect different entities
together. The logical conclusion for verification is to
organize testbench components around those interfaces.

Those components can then be used to verify multiple
entities which have a particular interface. eVCs are
verification components written in the e verification
language [11]. The e language is designed specifically for
verification. Reuse and extensibility are fundamental e
language design principles.

 The document is organized as follows: It discuss
Verification process in Section 2, issues in verification in
Section 3, issues in verification methodologies in section 4,
Test methodologies in section 5, Specman based
Verification in section 6 and Traditional verification based
methodology in section 7. Section 8 presents a detailed
case study with reference to a reusable Verification
Environment for verifying Ethernet packet in Ethernet IP
core. It discusses aspects such as, Management Data Input
Output (MDIO), Verification strategy, Macro language,
Test cases, Test Plan for Ethernet MAC receiver, Coverage
Goals and the Bug file. Finally, Section 9 presents the
conclusions drawn from the entire work.

 2 Verification process

Figure 2. Generalized verification process

Figure 2 show clearly the components used in test
environment like test plan, coverage to be achieved,
generation of test vectors and its driving to the DUT

3. Issues in verification

 Issues to be addressed during any verification activity are
• Capturing of all features of design (functional aspects).
• Compliance to all protocols.
• Coverage for all possible corner cases.
• Checking for locking states in the Finite State Machines

(FSMs).
• Working of design in any random state.
• Elimination of redundant tests to save unnecessary

simulation cycles and cost.
• Equivalence check with reference design.

Testbase

DUT
Spec

Checking

Test 1 Test 2 Test n-1 Test nTest
Plan

Output
 DUT Generating Input

Driving

Collecting
Output

Coverage

Cover
Plan

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

228

• Methodology availability, for verification of each design
modification.

• Generation of data patterns for directed or random test.
• Ease of generating flexible and modular test

environment
• Reusability and readability of test environment.
• Handling of simulation time in automated test

environment.

4. Issues in Verification Methodologies

 Lack of effective automation during functional
verification due to size and complexity of design, makes
development of test environment, scheme for test
generation and deterministic tests an intensive manual
effort. Checking and debugging test results is also
predominantly a manual process.

 Design Complexity and size makes version control and
tracking of design and verification process difficult, both at
specification level and functional, which can often lead to
architectural-level bugs that require enormous effort to
debug. Debugging is always a problem, especially when
they occur in unpredictable places. Even the most
comprehensive functional test plan can completely miss
bugs generated by obscure functional combinations or
ambiguous spec interpretations. This is why so many bugs
are found in emulation, or after first silicon is produced.
Without the ability to make the specification itself
executable, there is really no way to ensure comprehensive
functional coverage for the entire design intent.

 The relative inefficiency with which today's verification
environments accommodate midstream specification
changes also poses a serious problem. Since most
verification environments are an ad hoc collection of HDL
code, C code, a variety of legacy software, and newly
acquired point tools, a single change in the design can
force a ripple of required changes throughout the
environment, eating up time and adding substantial risk.

 Perhaps the most important problem faced by design and
verification engineers is the lack of effective metrics to
measure the progress of verification. Indirect metrics, such
as toggle testing or code coverage, indicate if all the flip-
flops are toggled or all lines of code were executed, but
they do not give any indication of what functionality was
verified. For example, they do not indicate if a processor
executed all possible combinations of consecutive
instructions. There is simply no correspondence between
any of these metrics and coverage of the functional test
plan. As a result, the verification engineer is never really
sure whether a sufficient amount of verification has been
performed.

5. Test Methodologies

Four prominent Test Methodologies are:

5.1 Deterministic

 The oldest and most common test methodology used
today is deterministic testing. These tests are developed
manually and normally correspond directly to the
functional test plan. Engineers often use deterministic tests
to exercise corner cases, specific sequences that cause the
device to enter extreme operational modes. These tests are
normally checked manually. However, with some
additional programming the designer can create self-
checking deterministic tests.

 Although deterministic testing offers the verification
engineer precise control, providing accessibility to hard-to-
reach corner cases, it has several drawbacks. Generating
deterministic tests is a time-consuming, manual
programming effort. Although simple tests can be written
in minutes, the more complex ones can take days to write
and debug. For example, to test a corner case requiring that
two asynchronous data streams reach a specific point at
exactly the same time, the verification engineer might have
to resort to trial-and-error methods, running the test, seeing
how far off it is, correcting it, and trying again. Moreover,
midstream changes to the design is temporal behavior can
cause the engineer to go through this process repeatedly.
When this test is completed, the corner case is tested
through only one possible path.

 An average project normally develops many hundreds of
deterministic tests, which is easily spread over several
man-months to create. Checking deterministic tests also
consumes considerable time and resources, whether it is
performed manually or written into the test.

5.2 Pre-run generation

 Pre-run generation is a newer methodology for generating
tests that addresses some of the productivity problems
associated with deterministic testing by automating the test
generation process. C or C++ programs (and sometimes
even VHDL and Verilog, despite the lack of good software
constructs) are usually used to create the tests prior to
simulation. The programs read in a parameter/directives
file that controls the generation of the test. Often these files
contain simple weighting systems to direct the random
selection of inputs.

 The generator normally outputs the test into a file, which
is then read by the simulator and stored in memory. The
simulator reads the next entry whenever it is prepared to

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

229

inject the next set of inputs. Although pre-run generation
provides much higher throughput than deterministic testing,
it is difficult to control. The parameters are static and do
not provide much flexibility. Also, most generators of this
type do not allow interdependencies between data streams
if each data stream is generated independently. This can
cause the generator to generate unlikely or even illegal
tests.

 Reaching corner cases using pre-run generation is nearly
impossible. The engineer has very little control over the
sequences generated. This makes it difficult to force the
occurrence of specific combinations. As such, pre-run
generation makes a suitable complement to deterministic
testing, but cannot replace it.

 Another problem with pre-run generation is that it is hard
to maintain. As the verification process progresses, new
parameters are often needed. This normally requires
modifying the program, sometimes affecting delicate
interdependencies between different parts of the generator.

 Maintenance problems can also occur when updating the
program after a bug is found in the RTL design. To
temporarily avoid generating the same bug test sequence
again, the engineer must modify the code until the bug is
fixed in the RTL design. When the bug is fixed, the code
must be again remodified. Several such modifications
often coexist in the code. The modifying and remodiying
process sometimes introduces bugs into the generator,
which may not be noticed until several hours or days of
simulation have transpired. The cost of developing and
maintaining such a generator requires a minimum of
several man-months per project, and increases significantly
as the generation becomes more complex.

 A side-effect of this methodology is that the full test is
usually very large, since it is generated in advance. It is
commonly loaded into a simulation memory at the
beginning of the test and run from there. This significantly
increases the memory requirements for simulation, often
causing the simulator to swap memory. This can slow
down the simulation by orders of magnitude.

5.3 Checking Strategies

 The two most popular ways to determine test results are
to compare them to a reference model or to create rule-
based checks. Both of these checking methods must
include both the temporal behavior and protocols of the
device as well as the verification of data.

 Reference models are most common for processor-like
designs where the correct result can be predicted with
relative ease. Designers usually develop the reference

model in C or C++. Stimuli are injected into the reference
model as well as the device, and their outputs are
compared. In gray and white-box methodologies, the
comparisons also include the state of internal registers and
nodes.

 Rule-based approaches are more common in
communication devices for networking applications, where
there can be several legal outputs for the same input, it is
not easy to predict the correct result. In this case, the
engineer often uses specialized techniques to check data
integrity and protocols, such as scoreboarding, which
tracks information about cells or packets without worrying
about the order in which they appear on the output ports.

 Engineers perform these checks either on-the-fly or post-
run. Simple checks and protocol checks can be performed
on-the-fly by the stubs and monitors using an HDL. Post-
run checks are often performed using a C/C++ or PERL
program. The outputs of the test are either saved in a
simulator memory and then dumped into a file, or written
into the file directly. The program reads the inputs ,
outputs and checks the correctness of the results. Often,
these methodologies still require some amount of manual
checking, usually achieved by viewing actual waveforms
or data dumps.

 The problem with these checking strategies stems from
the way they are most commonly implemented today.
Post-run checking wastes cycles. If a test runs for 500,000
cycles, but a bug occurred after cycle 2,000, then 498,000
cycles were wasted. In addition, since the post-run
checking cannot detect a problem in real-time, the designer
does not have access to the values of the registers and
memories of the device at the time the problem occured. In
general, debugging these problems requires rerunning the
simulation to the appropriate point.

 On-the-fly checking is more powerful. However, on-the-
fly checks are most often implemented in Verilog or
VHDL. These languages do not have a powerful temporal
language to simplify protocol checks. They are low level
and lack features like dynamic memory, which simplifies
the process of writing the stubs/monitors and increases
performance.

 In addition, reference model checking is often hard to
implement on-the-fly, since intermediate results are not
always available. On-the-fly reference models also require
a direct interface to the simulator (through PLI or FLI)
which is not easy to write and maintain.

5.4 Coverage Metrics

 Measuring progress is one of the most important tasks in

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

230

verification, and is the critical element that enables the
designer to decide when to end the verification effort.
Several methods are commonly used:

• Toggle testing verifies that over a series of tests, all
nodes toggled at least once from 1 to 0 and back;

• Code coverage demonstrates that, over a series of tests,
all the source lines were exercised. In many cases there
is also an indication as to whether branches in
conditional code were executed. Sometimes an
indication of state-machine transitions is also available;

• Possibly the most common metric used to measure
progress is to track how many bugs are found each week.
After a period of a few weeks with very low or zero
bugs found, the designer assumes that the verification
process has reached a point of diminishing returns.

 Unfortunately, none of the metrics described above has
any direct relation to the functionality of the device, nor is
there any correlation to common user applications. Neither
toggle testing nor code coverage can indicate if all the
types of cells in a communication chip with and without
Cyclic Redundancy Check (CRC) errors have entered on
all ports. These metrics cannot determine if all possible
sequences of the instructions in a row were tested in a
processor.

 As a result, coverage is still measured mainly by the gut
feeling of the verification manager, and eventually the
decision to tape out is made by management without the
support of concrete qualitative data. Not knowing the real
state of the verification progress causes verification
engineers to perform many more simulations than
necessary, trading off CPU cycles for "confidence". This
usually results in redundant tests that provide no additional
coverage or assurance that verification is complete. The
real risk is that the design will be sent to production with
bugs in it, resulting in another round of silicon. The cost of
re-spinning silicon includes non-recoverable engineering
(NRE) costs to do the additional production process, the
cost of extending the teams work on the project, and the
major cost of reaching the market a few weeks late.

6. Specman based verification

 Specman based verification is a methodology for
functional verification that solves many of the problems of
design and verification engineers encountered with today's
methodologies. This is done by capturing the rules
embodied in the specifications (design/ interface/
functional test plan) in an executable form. An effective
application of this methodology provides four essential
capabilities to help to break through the verification
bottleneck.

• Automates the verification process, reducing the work

needed to develop the verification environment and tests
considerably.

• Increases product quality by focusing on verification
effort to areas of new functional coverage and by
enabling the discovery of bugs not anticipated in the
functional test plan.

Figure 3. Generalized Verification environment

• Provides functional coverage analysis capabilities to
help measure the progress and completeness of the
verification effort.

Raises the level of abstraction used to describe the
environment and tests from the RTL level to the
specification level, capturing the rules defined in the specs
in a declarative form and automatically ensuring
conformance to these rules.

 Figure 3 gives a generalized verification environment
which can be used as guideline environment for
developing verification environment for most of the
designs. The environment consists of the components,
Input BFM driver, Collector, Coverage, Test case
generator, Error injector, constraints, Scoreboard and
Monitor.

7. Traditional Verification Methodology

Some important points are:

7.1 Productivity & Quality Issues

 Verification is more than 50% of an overall project cycle.
It May require tens of thousands of lines of verification
code. Design spec changes cause major verification delays.
Implementing all identified tests in test plan within the
project schedule is the Productivity issue.

Test case
generator

Score Board

Constraints

Error injector

DUT

Monitor

Driver
/ input
BFM

Collecto
r

Driver
/ input
BFM

Collecto
r

Coverage

Test case
generator

Constraints

Error injector

Test case
generator

Score Board

Constraints

Error injector

DUT

Monitor

Driver
/ input
BFM

Collecto
r

Driver
/ input
BFM

Collecto
r

Coverage

Error injector

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

231

7.2 Requirement for Productivity Improvement

 The verification environment must be created and/or
maintained efficiently. Human should spend more time at
higher level details providing simulation goals, analyzing
errors reported by checkers and providing more direction
when goals are not being met.

7.3 Quality Issues

Verification complexity makes it a challenge to think of all
possible failure scenarios. It does not provide a way to try
scenarios beyond the expected failure scenarios.

7.4 Requirement for Quality Improvement

 Confidence about the ratio of identified bugs must
increase. An automatic way to know what has been tested
must be available.

7.5 Task-based Strategy

 To improve test-writing productivity higher level of
abstraction is used for specifying the vector stream, and
higher-level tasks are created in HDL or C. Task-based
strategy limitations are, high test writing effort, many
parameters values must be selected manually and high -
level intent is not readily apparent.
There is no need to buy new tools or licenses and it
provides homogeneous environment.

8. Case study:

 A Verification Environment for verifying
 Ethernet packet in Ethernet IP core

 When verifying the Ethernet IP core it is necessary to
take several critical components into consideration. The
interfaces to the host as well as the PHY, which posed
extremely serious verification challenges. An automated
test bench, creating a verification environment takes time.
The time could be reduced by reusing common elements
between designs and different applications developments.

 In addition, as with many verification projects today, our
goals were to develop a high-quality device in an
extremely tight time schedule. This section describes our
approach to the verification of this complex device and
how we addressed the conflicting needs of quality versus
complexity versus time.

 The functional architecture consists of a host interface
and a standard MII interface. The IP core consists of

MDIO, Direct Memory Access (DMA) support,
Configuration registers, Control logic, Transmitter FSM
and Receiver FSM.

8.1 MDIO

 The MDIO is a simple serial interface between the host
and an external PHY device. It is used for configuration
and status read of the physical device. A host processor
responsible for system configuration and monitoring
typically uses the MDIO to perform individual accesses to
the various PHY devices.

It implements the IEEE 802.3 Clause 22 standard MDIO
interface used in Ethernet systems up to 1Gbit/s. MDIO
Master core allows access to registers within multiple
connected Slaves. The features such as simple register
based user application interface for the MDIO, MDIO
frame generation with serial port tristate control, busy
indication to user application during ongoing transaction
are provided. PHY interrupt goes active when status
change is indicated to application.

 Host initiates an operation by writing into the
configuration registers of the MAC. MDIO reads these
registers and performs the tasks. It then reports it to the
host by writing into the configuration registers which is
polled by the Host continuously.

Figure 4. MDIO overview

 A mux is used for selecting 8 bit field of MDIO frame at
a time and loading it to parallel in serial out register. The
PHY data is shifted out at the rising edge of PHY clock.
The most significant bit of the data is shifted first. During
a read cycle the data from PHY is shifted into the serial in
parallel out register and a demux drives it to the required
data bus.

MII/GMII

MDIO

HOST

MDIO

Configur
ation

PHY

MAC

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

232

 The control block consists of counters which generates
enable signal for the functioning of mux, demux, SIPO and
PISO. It also generates the status signals to be written into
the configuration registers. It also generates the PHY
enable signal to drive PHY data as the data line is a shared
tri-stateable bus, which is driven by the MAC for write
transactions or by the PHY devices during read.

 The clock generator module generates Management Data
Clock by dividing host clock. The division factor is set in
the configuration register field.

8.2 Verification strategy

 Verification strategy for the Ethernet core was fairly
sophisticated. The design was very complex and the
verification team was tasked with ensuring as high a
quality device as possible. Also, the verification team had
the requirement that the environment lend itself easily to
reuse for future generations, and that engineers who didn't
create the environment be able to be productive within it as

quickly as possible. The verification environment designed
is shown figure 5.

 Same components of the existing environment can be
used for different application with different interface by
developing a wrapper around the DUT interface and then
interfacing it to the environment. Verification environment
consists of BFM, test case generator, monitor and checker.

 As with any commercial IP or SOC development with an
aggressive timescale, the minimization of risk is key to
delivery. For many commercial developers the decision to
adopt a new verification paradigm can seem too risky.

 The Specman Elite environment was built with the PHY
eVC and the host eVC with few verilog tasks. This
allowed us to create a virtual host environment using e
masters, slaves and bus arbitrators.

P
C

I B
U

ST e s t C a s e
G / T

T r a n s c a t i o n
G e n e r a t o r

D a t a
G e n e r a t o r

M a s t e r
B F M I P C o r e

D U T

P I B

T A S K L I B R A R Y (G E N E R A L P U R P O S E)

M o n i t o r

D a t a C h e c k e r
(S c o r e B o a r d)

C o v e r a g e

Figure 5. Verification environment

Specman Elite automated key aspects of the verification
environment. Specifically, it works by generating stimuli
into the device, inputs which can be fully random or fully
directed. In this way, we can reach specific corner cases in
the design without having to force a specific state. We can
generate the inputs pre-run, on the fly, or a combination of
the two.

. An eVC is a reusable piece of verification code written in
e verification language with ERM (e reusable
methodology) methodology. Specifically, the PHY eVC is
a reusable verification environment developed in house.

Just like an IP design core, this allowed time to be spent on
verifying the unique aspects of the design rather than the
standard components.

 8.3. Macro language

 One of the major objectives for the verification
environment was the ability for the non-Specman "savvy"
engineers to be able to easily use the environment to
develop tests. We achieved this through “verilog tasks"
that were built in a layered way using Specman Elite

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

233

macros. In fact, a huge number of the Ethernet verification
tests are sequences of code similar to the above.

 Through a constraint mechanism it was a simple matter to
direct the traffic to be of say one burst length. Different
frames and different configurations of the core were tested.

 The complete verification suite in the Specman Elite
environment comprised more than 56 test cases and
randomization of the packet. This is an extremely small
amount of tests given the complexity of the design, and it
enabled us to get unparalleled coverage with a minimum
number of tests and lines of code.

8.4 Test Cases

The test cases to check the functionality of the Ethernet
Mac Receiver according to specification are:

1. Check the Reset condition of Receiver by making the

RESET Bit 0 or 1 in RCB Block.
2. Check the Receiver Enable and Disable condition

(RECEN=1)
3. Check the clock reception in case of Gigabit Media

Access Interface (GMII)/MII.
4. Check the transfer of MII to GMII mode and vice

versa.
5. Check for the GMII Mode.

• Full Duplex Mode:
• Half Duplex Mode

6. Check for MII Mode:
• 10/100 Mbps (Full Duplex Mode)
• Half Duplex Mode:

5 Check behavior of Receiver for Promiscuous Mode
for the Different Frame reception.

6 Check the Successful Data reception.
7 Check for end of Reception (Receive status)

8.5. Test Plan for the Ethernet MAC Receiver

Various Environment components used in the verification
of Receiver (Figure 6) are, Receiver DUT, BFM to drive
different types of frames and various Inputs to the DUT,
Monitor to monitor the various inputs and outputs of the
Receiver DUT, Collector to collect the data from output of
the DUT and Scoreboard to compare the data driven by the
BFM and the output of the DUT. Figures 7, 8, 10 to 12
display the details of configuration for test plan. Figure 9

displays a detailed plan for verification of MAC receiver
stages.

Receiver DUT BFM

Monitor

Collector

Scoreboard

PHY

 Phy Protocols

 Figure 6. Receiver environment

Receiver Mode

Promiscuous
State

Non-
Promiscuous

state

Figure 7. Modes of Receiver

IN RCB Bit50

Half Duplex Full Duplex

Datawidth=4 bits from Phy Datawidth=8Bit from Phy

Ethernet MAC Mode
Configuration
Register(Bit79:78)
00=10Mbps
01=100Mbps
10=1000Mbps

 if '1' if '0'

 Figure 8.Receiver for modes MII/GMII at different
speeds

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

234

Physical layer side

Wait for Phy_Mac_Carrier_ sense

receives the preamble and SFD
and receiver valid becomes'1'

Check the DA and SA Field

Data Frame Control Frame Too long frame

Discard Frame Check Length/Type Field

Individual
Address

Field

Multicast
addressed field

Broadcast
addressed field

Check with Mac Address Field

Length ErrorIn Full Duplex Mode
Only

Match the Data octets
with the Length Field

Check FCS Length Error

FCS Correct FCS error

Check the
Allignment of

Octets

yes

Allignment
Error

Status

 No

Received Ok

if too short frame

strip the Pad bits

if too short
frame

 to mac client

to mac client

DA,SA

Length

Data

to mac client

stores in RXRAM

if full
 to transmiiter no yes

RCB bit 49=1(length/type disable)

RCB bit 49=0(length/type enable)

receiver enable(bit52=1)
yes

dont receive
frames

VLAN

Figure 12. Verification of different stages of the receiver

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

235

If RXRAM Full

Half Duplex Full duplex

Half Duplex Full duplex

frame discard
and
indication to
Mac client
missing
frame

Discard frame and RX-
TX
1-Pause frame timer
value
2-Dest.Address
3-request to send the
frame

Data from Phy

Figure 9. RXRAM Full condition at the time of reception
of Frame for Half/Full Duplex mode

if Rx_err asserted

discard frame
status:???

False carrier
Indication

with receiver valid without receiver valid

 Figure 10. Collision Condition

If from Phy layer

Collision detected

Late collision and
discard frame discard frame

before slot time

 Figure 11. Rx Error from Phy Side

8.6 Coverage Goals and Details

Coverage goals
The line coverage to be achieved is 100%.
The condition coverage to be achieved is 85%.
The FSM coverage to be achieved is 100%.
The toggle coverage to be achieved is 90%.
The average coverage to be achieved is 90%.

Coverage tools/methodology followed
VCS Coverage Metrics (vcm) is used for coverage.

Coverage obtained
 The line obtained is achieved is 100%.
 The condition obtained is achieved is 90%.
 The FSM obtained is achieved is 95%.
 The toggle obtained is achieved is 90%.

Coverage Analysis
 The average coverage achieved is 80%. Since Random
testing is not done, the coverage achieved is not close to
100%. The offset is most in Condition Coverage and
Toggle coverage. This is expected as not all combinations
in a truth table will happen.

Team statistics : Team members – 2, No of man days – 82,
Coverage > 90%

8.7 Bug File

===
=======================================Bu
gNo:0 Block:RX Reported By:XXX Assigned
To:YYY Status:CLOSED
==
======================================Filed
on:10:09 8 Mar 2008 Closed on:06:49 9 Mar 2008
Resolved on: Title : Data frames greater than or equal
to 494 are not being recieved properlyDescription : For
data frames greater than or equal to 494 are not being
recieved. The testcase is hanging. rx_ok is not coming
for either of the frames.Logfile : Dumpfile :
/export/home/sd27347/GBETHERNET/testbench/stand_al
one/rx/simulation/run/rx_failing.shmFiles Modified :no
files Comments :error in testbench and not in dut
==
======================================Bug
No:1 Block:RX Reported By:XXX Assigned
To:YYY Status:CLOSED
==
======================================Filed
on:02:38 9 Mar 2008 Closed on:09:00 9 Mar 2008

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

236

Resolved on: Title : data length greater than 1496 is
reported as frame long error .same as for tagged
frameDescription : Frame long error is
coming for data frame length greater than 1496, it should
only come for 1500 for untagged and for tagged it is
1504.Logfile : Dumpfile : Files Modified :fdb.v
Comments :total cnt was checked for 1504 for untagged
frames and 1508 for tagged frames and earlier we were
checking for 1500 for both the cases
==
======================================Bug
No:2 Block:rx Reported By:XXX Assigned To:YYY
Status:CLOSED
==
======================================Filed
on:03:42 17 Mar 2008 Closed on:05:09 20 Mar 2008
Resolved on: Title : receiver is having the delay to give
rx_ok in case of short frameDescription :In case of Short
frame reception, there is delay to get rx_ok, and this delay
is depending upon the number of padding bytes in the
frame. <enter detailed description of the bug
here>Logfile : Dumpfile : Files Modified :fdb.v
Comments :added a condition in fcs state "padded bytes
are not counted with total cnt so min frame size 50 is
taken"
==
======================================

9. CONCLUSION

 Using a new verification methodology can appear
daunting as it represents such a critical high-impact part of
any IP development. The Ethernet project demonstrates
that when facing a tough verification challenge, teams that
take the challenge often find that the risks are in fact
manageable and the benefits are significant. By using this
approach , we were able to meet all our stringent
requirements for the verification of this complex system.
The extensibility of the e language, the macro facility and
the power of Specman Elite's built-in generator were key
elements that enabled this approach to be successful in
short duration and smaller team effort compared to doing
the same using complete verilog environment.

Acknowledgements

We thank Dr.S.Ravi, Professor and Head of ECE
department, Dr.MGR Research and Educational Institute
for the paper review. We also thank All India Council for
Technical education for research funding and JSS
Academy of Technical Education, Bangalore for providing
the facilities. We Thank Ms. Chaya Asst. Professor,
JSSATE for editing the script.

References

[1] Janick Bergeon ,Writing test benches – functional
 verification of HDL models
[2] Faisal I Haque. Et.al., The art of verification with
 VERA
[3] Samir Palnitkar, Design verification with e
[4] Brendan Mullane and Ciaran MacNamee, Circuits and
 System Research Centre (CSRC), University of
 Limerick, Limerick, Ireland, Developing a Reusable IP
 Platform within a System-on-Chip Design Framework
 targeted towards an Academic R&D Environment
 www.design-reuse.com/.
[5] Ben Chen, , Cisco Systems, Shankar Hemmady,
 Rebecca Lipon of Synopsys, Verification IP reuse for
 complex networking ASICs- eetindia.com
[6] 0. Petlin, A. Genusov, ASIC Alliance Corporation,
 L.Wakeman, Lucent Technologies, Methodology and
 Code Reuse in the verification of telecommunication
 SOCs, Proceedings of 13th Annual IEEE International
 ASIC/SOC Conference, 2000 (Cat. No.00TH8541)
 Verification Planning for Core based Designs
[7] Anjali Vishwanath, Ranga Kadambi, Infineon
 Technologies Asia Pacific Pte Ltd Singapore
 [8] Kambiz Khalilian, Stephen Brain, Richard Tuck,

Glenn
 Farrall, Infineon Technologies Reusable Verification
 Infrastructure for A Processor Platform to deliver fast
 SOC development, www.design-reuse.com/.
[9] Managing Functional Verification Projects
 Meeting the challenges of high-level verification in
 today’s SoCs- Synopsys white paper-Oct 2007
[10] Hannes Froehlich, Verisity Design, Increased
 Verification Productivity through extensive Reuse,
 Design and Reuse, Industry articles.
[11] Verification Reuse Methodology, Essential Elements
 for Verification Productivity Gains- Verisity white
 papers-2002
[12] Accllera verilog LRM:

http://www.accellera.org/home

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

237

Ms.L.Swarna jyothi is working currently as a Professor
of Information Science and Engg Department at JSS
Academy of Technical Education, Bangalore Visvesvaraya
Technological University, INDIA. She has a total of
25years of academic experience. Her research interests are
assertion-based verification, design for verification,
verification reuse and VLSI Education. She has six reputed
conference Publications in the related field. Her research
has been funded by All India Council for Technical
Education under Research Promotion scheme. She has
already coordinated three projects sanctioned by AICTE
and project grants are about 30 lakhs. She has received her
Bachelors Degree in Engineering in Electronics and
Communication Engg from Bangalore University and
Masters Degree in Engineering in Comp Sc and Engg
from Anna University, Chennai, INDIA. She is pursuing
her PhD in Dr.MGR Research and Educational Institute,
Chennai

Mr. Harish has 13 years of experience in reputed
industries, out of which 8 years in
ASIC/VLSI/Verification/Testing/Design Involving
ASICs, Models, and SoCs. He has experience in test plan
development, environment development, test cases
implementation, models development, random testing and
coverage. His Verification Experience include Hyper
Transport Tunnel/Cave, Controller Area Network (CAN),
PCIe, GB Ethernet, Flexray. He has expertism in Verilog,
Specman e, ESEPro. VCS, Ncsim, Verilog-XL and
Specview..His education includes Bachelor of engineering
in Telecommunications and Master of Business
Management from Bangalore University, Bangalore.
Hereceived his MS (Software Systems) Degree from BITS,
Pilani, India

Dr.A.S. Manjunath is the Managing Director and CEO of
Manvish eTech Pvt, Ltd, Bangalore, INDIA. He has been a
successful entrepreneur for over 12 years. He has done his
PhD and UG degrees are from Bangalore University. His
Masters Degree is form Mysore University India. He has
worked as Professor and as an academician for over 13
years, in Bagalore University, India. He is guiding three
PhD scholars and has 22 conference/journal papers to his
credit.

