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Summary 
 
Determination of total solution for the depth dependence of the 
field: the depth dependence Green’s function for Self Source 
Acoustic field. In Particular the acoustic field is obtained in 
terms of the wave number integration of a horizontally stratified 
ocean. The Inverse Hankel Transform is obtained for shallow 
water over a Layered inhomogeneous elastic bottom using 
‘Propagator matrix method’ with Fast Field Approximation 
Technique. Input here the part of summary. 
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1. Introduction 

Properly predicting acoustic propagation, especially in 
shallow water waveguides and/or at low frequencies is 
very essential in estimating the geoacoustic seabed 
properties. The problem of determining sea bed 
geoacoustic properties from measured ocean acoustic 
fields has received considerable attention in recent years. 
Traditional methods for measuring seafloor properties are 
costly and time-consuming. Therefore, in the last few 
years there has been a growing interest in providing 
solutions to the inverse problem consisting of determining 
seafloor properties from the measurement of the acoustic 
field in the water column. This approach provide an 
advantage of there is no need for deploying any equipment 
in the bottom for measurement, and we can cover a much 
larger area in a single inversion methods as compare to 
traditional local methods[1].  
 
 
Geoacoustic inversion represents a strongly nonlinear 
inverse problem with no direct solution. Matched field 
inversion (MFI) makes use of the pressure field received 
on an array of sensors. The measured acoustic field 
contains the  

 
 
 
 
information about the ocean environment, which can be 
extracted using MFI. 

 
The ocean is an acoustic waveguide limited above by the 
sea surface and below by the sea floor. The speed of sound 
in the waveguide is normally related to static pressure, 
salinity,  
 
 
 
is an increasing function of pressure, salinity and 
temperature, the latter being a function of depth.  

In general, all of oceanographic structures have an effect 
on sound propagation, both as a source of attenuation and 
of acoustic fluctuations. Considering the upper and lower 
boundaries of the ocean waveguide, the sea surface is a 
simple horizontal boundary and nearly a perfect reflector. 
The sea floor on the other hand, is a lossy boundary with 
strongly varying topography across ocean basins. Both 
boundaries have small-scale roughness associated with 
them which causes scattering and attenuation of sound. 
The structure of the ocean bottom depends on the local 
geology, but in general it consists of a thin stratification of 
sediments overlying the oceanic crust in the deep ocean 
and   relatively thick stratification over continental crust. 
The nature of stratification is dependent on many factors, 
including geological age and local geological activity. 
The importance of treating the ocean bottom accurately in 
the numerical models depends on the factors such as 
source receiver separation, source frequency and ocean 
depth. 
  A point source in the ocean is considered which depends 
on range ‘r’, depth ‘z’ and azimuth angle ‘Ф’. The 
acoustic signal produced by the source is realized in the 
form of pressure signal. Receivers are a group of sensors 
which receives the pressure signal from the source Ex. 
Hydrophone array. There is some attenuation when the 
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signal is passed from source to receiver. The received 
signal is then passed through ADC which converts analog 
signal to digital samples.  The sample thus obtained 
contains measurement noise, which is called real data.   
 Generating an acoustic field (Pressure field) using this 
real data is an important aspect in the measurement of 
stratified sea bottom properties. The best method to 
achieve this is wavenumber integration technique.  

Basically the wavenumber integration technique is a 
numerical implementation of the integral transform for 
horizontally stratified media. The field solution is in the 
form of a spectral (wavenumber) integral of solutions to 
the depth-separated wave equation. The wavenumber 
integration approach evaluates the integrals directly by 
numerical quadrature. In underwater acoustics, 
wavenumber integration approach uses FFTs for 
evaluation of the spectral integrals, hence this method is 
also called as FFPs (fast field programs).  

 
In the wavenumber integration technique the series of 

integral transforms are applied to the Helmholtz equation 
which reduces the original four dimensional partial 
differential equations (3 space dimensions and 1 time 
dimension) in to a series of ordinary differential equations 
in the depth co-ordinate. These equations were then solved 
analytically within each layer in terms of unknown 
amplitudes which were determined by matching boundary 
conditions at the interfaces.   
 
   For more efficient analysis, the Fast Field Program were 
developed which applies an elegant recursive technique to 
determine the depth-dependent solution for many 
horizontal wavenumbers simultaneously and is therefore 
extremely efficient.  

2. Wavenumber Integration 

This technique is a numerical implementation of the 
integral transform for horizontally stratified media. The 
field solution is in the form of a spectral (wavenumber) 
integral of solutions to the depth-separated wave equation. 
The wavenumber integration approach evaluates the 
integrals directly by numerical quadrature. In underwater 
acoustics, wavenumber integration approach uses FFTs for 
evaluation of the spectral integrals, hence this method is 
also called as FFPs (fast field programs).  

2.1 Integral Transform Solution 

For a source distribution along a vertical axis in 
horizontally stratified environment, cylindrical co-ordinate 
system (r, φ, z) is introduced with z axis passing through 
the sources making the field independent of angle φ. 

The acoustic field with time dependence exp(-iωt) in layer 
m containing the source can be expressed in terms of 
scalar displacement potentials Ψm (r, z) which satisfy the 
Helmholtz equation[2],  
 
[▼2 + k2

m(z)] Ψm (r, z) = fs(z, w) δ﴾ r﴿  /2πr                  ----
(1) 
 
Equation (1) represents the Helmholtz equation for 
Displacement Potentials 
Where   is the medium wavenumber 

 

                         ------------------------- 
(2)  

 
2.2 Helmholtz equation: 
 
The Helmholtz equation represents the time-independent 
form of the original equation, results from applying the 
technique of separation of variables to reduce the 
complexity of the analysis. 
The wave equation is: 

    ------------- 

(3) 

 where 

• c is the velocity of propagation, 

• is a prescribed source 

• and       

    Helmholtz equation 

                 --------- 
(4) 

With      

   For layers without sources the field must satisfy the 
homogeneous Helmholtz equation with  = 0.  
 
2.3 Hankel transform 
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           ----- 
(5) 
 Applying the forward Hankel transform to equation (1) 
the depth separated wave equation i.e an ordinary 
differential equation in depth is obtained.[7] 
 
      ------- 
(6) 
 
Equation (6) represents the depth separated wave equation. 
 
The total solution for the depth dependence of the field i.e 
depth dependent Green’s function[1] is 
 

   -------
(7) 
 
Where  and    are arbitrary 
coefficients to be determined from the boundary 
conditions at the interfaces between the layers. The 
particular solution to the equation (2) is chosen to be the 
field produced by the sources in the absence of boundaries. 
When the unknown coefficients are found, the total field 
at the angular frequency ω is found at the range r by 
evaluating the inverse Hankel transform. 
 
The field at each interface now has two distinct integral 
representations, one from the layer above and one from the 
layer below. Depending on the type of interface, a certain 
set of boundary conditions must be satisfied. [2] 
 

• At a fluid-fluid interface, both the vertical 
displacement  and the normal stress must 
be continuous. If one of the media is a vacuum 
the normal stress vanishes. 

• At a fluid-solid interface, both displacement and 
normal stress must be continuous while the 
tangential stress  vanishes. If the fluid layer 
is replaced by a vacuum, both the stress must 
vanish. 

• At a ‘welded’ interface between two solid media, 
all the four parameters must be continuous. 

 
Since the boundary conditions have to be satisfied at all 
ranges ‘r’, it is clear that they must be satisfied by the 
kernels in the integral representations as well. By 
imposing the appropriate interface conditions together 
with the radiation conditions for   , we obtain a 
linear system of equations in the unknown coefficients 

 . In principle this system has to be 
solved for all values of the horizontal wavenumber , 

and the total field can then be determined by evaluating 
the inverse transforms. Both the solution of the linear 
system of equations and the evaluation of the inverse 
transforms must done numerically, requiring truncation 
and discretization of the horizontal wavenumber axis.  
   The difference between the various numerical 
implementations concerns the method used for solving the 
linear system of equations in the unknown amplitudes and 
the numerical evaluation of the inverse Hankel transform. 
 
The numerical solution of the full wavefield problem 
divides naturally into two parts. First, the depth-dependent 
Green’s function is found at a discrete number of 
horizontal wavenumbers for the selected receiver depths. 
Secondly, the wavenumber integral is evaluated, yielding 
the transfer function at the selected depths and ranges. To 
yield the total response in time the above two steps are 
repeated and at selected frequencies, ‘frequency 
integration’ has to be performed. The overall efficiency of 
the wavenumber integration approach is closely related to 
the efficiency with which the depth equation is solved. 
 
2.4 Propagator matrix approach: 
 
Since the trapped waveguide field generally dominates the 
ocean acoustic field, the invariant embedding approach is 
inconvenient. The global matrix approach is 
unconditionally stable. Hence propagator matrix approach 
is chosen for simplicity. The numerical solutions of the 
depth separated wave equation attempt to reduce both 
computational and memory requirements by developing 
the propagator matrix scheme for the solution.  
The vector of field parameters at interface m, bounding 
layer m below, is given by the matrix relation, 
 

               ---- 
(12) 
 
Where the vector  contains the 
displacements and stresses at interface m, and  is 
a vector containing the wavefield amplitudes in layer m. 
similarly at the top interface, m-1, of layer m, 
 

 ------- 
(13) 
 
On solving we get, 
 

   ------- - 
(14) 
 
With  being the propagator matrix for layer m, 
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----- 

(15) 
The inverse can be obtained in closed form, leading to 
closed form expressions also for the coefficients of the 
propagator matrix. Using the continuity of the field 
parameters at the interfaces, Eq. (14) can be used 
recursively to establish a matrix relation between the field 
parameters at some interface m and the parameters at a 
lower interface n,  
    ---------
(16) 
With  
                 ---------- 
(17) 
For a source in fluid medium the normal stress or pressure 
is continuous and the vertical displacement is 
discontinuous. Now we can use Eq.(16) to ‘propagate’ the 
solution from the lowermost interface to an artificial 
interface number s introduced at the source depth ( ), 
adding the discontinuity in the field parameters and 
continue to propagate the solution upto the uppermost 
interface yielding, 
 

   --- 
(18) 
 
The boundary conditions at the uppermost and lowermost 
interfaces, the radiation conditions in the limiting 
halfspaces, provide the necessary additional equations to 
determine the unknowns.  
The propagator matrix approach reduces the number of 
equations to be solved from   2(N-1) in the DGM approach 
to just 2 in the purely fluid case and from 4(N-1) to 4 in 
the elastic case. In addition the coefficient matrices in Eq. 
(18) are determined by successive multiplication of small 
matrices. Consequently, the propagator matrix approach 
has insignificant memory requirements and is easily 
implemented.  
In the propagator matrix approach the received field is 
determined by introducing a dummy interface at the 
receiver depth and then using the recurrence, Eq. (16) to 
determine the kernel at the receiver depth, once the field 
parameters are found at the lowermost interface from the 
solution of Eq. (18).  
Since the standard propagator matrix approach 
couples the field at the lowermost and uppermost 
interfaces in the stratification, it is not surprising that 
this approach encounters numerical instability 
problems.  
Let layer m be an isovelocity fluid of thickness .  
Inserting the equation  

 
 ,  

 
(where  is a depth independent matrix and 

 is a diagonal matrix containing the 
exponentials) 
 
into the Eq. (15) yields the following propagator 
matrix, 

-- 
(19) 
 
Where the product of the two diagonal matrices 
including the exponentials are shown to be 

 = 
                            ------------ 

(20) 
 
For wavenumbers, the field in layer m one of the 
exponentials in the above equation becomes large and 
the other small. Truncation errors may therefore 
magnify significantly across the layer, in turn 
yielding unstable solutions to Eq. (18). 
 

To determine the acoustic field parameters at a 
particular receiver range r and depth z, we must 
numerically evaluate the inverse Hankel transform of 
the solution to the depth separated wave equation at 
depth z [1], 

 
 ------ 

(21) 
 
Where, 

 represents the field parameter of interest, e.g., 
acoustic pressure, or a particular displacement or 
stress component. 

 is the associated wavenumber kernel. 
The order of Bessel function is m=0 except for 
horizontal displacement and shear stress. The 
evaluation of this numerical integral is complicated 
by the following features, 

• Infinite upper integration limit 
• The oscillatory nature of the Bessel function 

(especially for long ranges) 
• Waveguide problems i.e. poles on or close to 

the real wavenumber axis. 
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2.5 Fast Field Approximation: 
 
Accurate evaluation of the inverse Hankel Transform, can 
be obtained by the Fast Field Program (FFP) integration 
technique, in this technique first the Bessel function is 
expressed in terms of Hankel functions.  
 

 ----

(22) 
Where 

 with the present choice of the time frequency 

transform corresponds to outgoing waves and  

to incoming waves.  is important only for 
representing the standing wavefield at very short 
ranges and is therefore neglected. Now replacing 

 by its asymptotic form, 
 

=   --- 

(23) 
 
To arrive at the following expression for the inverse 
Hankel transform. 
 

 -----

(24) 
 
The approximation of Eq. (21) by Eq. (24) does not 
remove any of the complications concerning the 
integration interval or the oscillatory nature of the 
integrand. However the exponential function is more 
suitable for numerical integration than the Bessel 
function, particularly in terms of computation time.  
 
To numerically evaluate the FFP integral, Eq. (24), 
we must either use a quadrature scheme for semi-
infinite integration intervals or truncate the 
integration interval at a wavenumber beyond which 
the contribution to the integral is insignificant. 
 
 
3. Simulated Result  

 
The following wave forms shows the acoustic field created 
for various ranges.  
 

 

Fig.1 Acoustic field for frequency of 225Hz, source depth 
Zs = 7 km, receiver depth Zr = 45 km and Range varying 
between 0 and 150 km. 
 

 

Fig.2 Acoustic field for Frequency = 225Hz , source depth 
 = 7km, receiver depth  = 45km and Range varying 

between 0 and 1500km 
 

 

Fig.3  Acoustic field for Frequency = 200 Hz, source depth  
= 7km, receiver depth  = 45km And Range varying 
between 0 and 800km. 
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4. Conclusion 
 

This approach presents a fast calculation method for two 
dimensional wavenumber integration, which can be used 
to model the acoustic field in ocean generated by ship 
generated source in shallow water, the propagator Matrix 
approach is relatively easier to implement. Only few lines 
of code are needed to complete the computation of the 
propagator matrices.  
Propagation matrix approach requires the addition of a 
dummy interface at every receiver depth. Consequently, 
the computation time is proportional to the sum of the 
number of layers and the number of receivers.  Hence 
multiple sources are not treated efficiently by the 
propagator matrix approach 
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