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Summary 
Aerospace, one of the emerging fields is affecting greatly 
because of some unpreventable vibrations. Crude vibrations get 
generated at the time of craft operations. The beams which are 
used in the craft vessels in more numbers are the frequent victims 
of these vibrations. These vibrations tend to make the beam 
deformation – very risky for lives if they are left as simple. 
Although a lot of suggestions came for handling the problem, 
their approach in modeling for beam deformation remains 
somewhat inefficient either as per the computational or as per 
implementation concerns. The paper proposed here provides a 
mathematical model for the deformation of cantilever beam using 
Finite Element Method that makes the approach so efficient. The 
mathematical model formulated here will lay a strong foundation 
to wipe out the menacing effects of such beam deformation due 
to the vibrations without any computational as well as 
implementation complexities. In addition, a theoretical analysis is 
also done to find out the dominating frequencies of vibration that 
plays a major rule in beam deformation. 
Keywords: 
 Aerospace, Smart structure, cantilever beam, Finite Element 
Analysis, vibration. 

1. Introduction 

Light-weight structures operating at high speeds may 
suffer significant vibration problems, thus degrading 
positioning accuracy and requiring larger settling times [1]. 
Using large, complex and light weight space structures to 
attain augmented functionality at a condensed launch cost 
is the recent trend of spacecraft design. In these space 
structures, the mixture of a large and light weight design 
results are being exceptionally flexible and having low 
fundamental vibration modes. Hence, such structures (host 
structures) become the most frequent sufferers of 
vibrations. Therefore, the structures will lose their life time. 
This results in damage of such structures. Preventing such 
deformation of the materials from this crude vibration is 
very essential. But the prediction of the vibrations and its 
effects are complex. Some kinds of vibration slam the 
target in different modes. So, the complexity again 
increases. As they claim life threatening effects, the 
vibrations can not left as a simple task.  

In the field of aerospace, vibration control is a typical job 
that should be performed carefully with the consideration 
of a lot of physical constraints such as stiffness, elasticity 
and so on. It is impossible to mitigate the cause of 
vibration but it is possible to countervail against the 
undesired effects caused by vibration.  

1.1. Cantilever Beam  

Beam is one of the primary elements of an engineering 
structure, which is employed in wide-ranging structural 
applications. In addition a beam-like slender member can 
be employed in the modeling of structures similar to the 
helicopter rotor blades, spacecraft antennae, flexible 
satellites, airplane wings, gun barrels, robot arms, high-rise 
buildings, long-span bridges, and subsystems of more 
complex structures. 

Despite the existence of different kinds of beams, the 
versatile applications of the cantilever type devices have 
engrossed huge attention. The cantilever type devices can 
be employed in the form of transducers for the conversion 
of the quantities for instance mass, temperature, inertia and 
magnetic fields into mechanical deformation. Numerous 
industries employ them in applications such as: 
accelerometers in the automobile industry; filters, 
inductors, resonators for telecommunications; and as 
atomic force microscopes in the field of science. These 
devices are possibly subjected to relatively large impact 
forces which can be outside their designed specifications 
when incorporated into vehicles and portable products. 
Due to the generation of relatively large forces at points of 
contact for relatively short periods of time, the impact is 
characterized under   shock and vibration [3].  

1.2. Review of Beam Vibration 

The elastic properties precisely the stiffness and mass 
distribution of a vibrating body was established by 
Barcilon employing the measurement data [13]. For 
illustration a discretised beam was analyzed, in which one 
end was free and the other was either free or supported or 
clamped or constrained in an unusual way (this end is 
termed as “constrained” end).An impulse force was 
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applied to the free end of the stationary beam, and the 
resultant deformation and slope of the constrained end is 
calculated. In order to deduce the elastic properties of the 
beam it is essential to identify the three sets of natural 
frequencies which are equivalent to the measured 
deformations and slopes. These trios of spectra are referred 
by   Barcilon as the “sympathetic” spectra. The solution of 
the inverse problem, if it exists is unique, when these three 
sympathetic spectra are identified. Later on when Barcilon 
examined an apparent paradox between this uniqueness 
result and a paper by Boley and Golub , a multiplicity of 
solutions was identified when constructing a symmetric 
pentadiagonal matrix from its spectra. 

According to Barcilon the pentadiagonal systems is the 
outcome of the beam vibration problems recast as finite 
difference problems, and therefore the apparent paradox. 
The illustration of Barcilon that Boley and Golub selected 
their three spectra without regard for “sympathy” between 
the spectra lead to the solution of the apparent paradox.  

A beam was modeled by Gladwell employing rigid rods 
joined together by rotational springs, with lumped masses 
at the joints, in which one end was clamped and the other 
was either free or pinned or clamped or sliding. Essential 
and adequate conditions for the existence of a discrete 
model having a given spectrum were established and a 
procedure to identify the model was setup. Later on 
Gladwell evaluated the literature for solutions to inverse 
vibration problems. Basically this analysis considers the 
problem of determining the system’s properties (such as, 
mass and stiffness) from vibration measurements. The 
problem of system identification was examined by Berman 
employing the data obtained from dynamic tests of the 
structure. The linear mass, damping and stiffness matrix 
was employed to model the structure. In conclusion 
Berman states that the usage of the test data to minimally 
modify a realistic analytic model (depending on a set of 
physical constraints) is the most promising approach to 
modeling. 

The external and internal forces were reconstructed based 
on the measured structural responses presuming a priori 
knowledge of the mass distribution and dynamic behavior 
of the system, and a linear elastic system with proportional 
viscous damping by Ory, Glaser, and Holzdeppe. The 
number of dynamic response measuring locations must be 
higher than the number of significant modes. A discretised 
cantilever beam that had several measurement locations 
along the beam was provided as an instance by them. One 
of the above authors extended the work later on.  

A few of the simulations were done with the intention of 
controlling the residual vibrations of the cantilever beams 
[5]. Certain works emphasized on the analysis of free 
flexural vibrations on specially manufactured beams such 

as anisotropic laminated composite beam [6].  A study was 
also done on the stabilization of the vibrations of 
cantilever type in nanometer scale [7]. 

The well-posed ness of a Timoshenko beam1 with axially 
varying physical properties and sliding ends was 
established by Arosio, Panizzi, and Paoli. According to 
them, an iteration of the Fourier series cannot be employed 
to investigate the equation and thereby a variational 
approach developed by Washizu was employed as the 
alternate method.  

Gopalakrishnan, Martin, and Doyle recast the dynamics of 
the Timoshenko beam in order that the description only 
necessitates information at the end points. The resulting 
dynamic stiffness relations were assembled (similar to 
finite elements) permitting exact frequency dependent 
response for the Timoshenko beam irrespective of element 
length. 

Tanaka and Bercin constructed the solution for the free 
vibration of a Timoshenko beam employing the boundary 
integral equation.  A general Timonshenko beam of open 
cross-section with non-coincident shear centre and 
centroid was modeled. They illustrated that the simpler 
Bernoulli-Euler beam theory model generates 
unacceptably large errors (particularly in case of higher 
order modes).  

An approximate solution for the transverse vibration of a 
non-uniform Bernoulli-Euler beam with time-dependent 
elastic boundary conditions was developed by Lee and Lin. 
Furthermore, a numerical solution is also determined for 
the frequency equation of the transverse vibration of a 
simple beam [4]. 

1.3. Aerospace - Smart Structure 

A structure that can sense an external riot [14] and react 
with active control in real time in upholding the mission 
necessities is known as a Smart Structure. A host structure, 
integrated with sensors and actuators synchronized by a 
controller, has been classically consisted in a Smart 
Structure. The sensors are in sundry types, yet, the 
piezoelectric sensors grab most of its applications due to 
its thriving features. Some studies were also done on the 
piezo-electric transducers and their advancements in 
control of vibrations [9]. As it has the ability to carry out 
self diagnosis and acclimatize to environmental change, 
this integrated structured system is called Smart Structure.  

Spillman, Sirkis, and Gardiner defined a smart structure 
with the aid of excerpts from diverse sources which is read 
as follows: 
     “a smart structure is a non-biological structure having 
the following attributes: 
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1) a definitive purpose, 2) means and imperative to 
achieve that purpose, and 3) a biological pattern of 
functioning”[10][12]. 

In aerospace, the usage of such smart structures in 
cantilever beams, for example helicopter blades, will avoid 
the beam deformation due to vibrations. However, it needs 
an efficient model to identify the vibration, which mostly 
disturbs the host structure. 

1.4. Finite Element Method 

For discovering inexact solutions of partial differential 
equations (PDE) and of integral equations, the finite 
element method (FEM) (at times referred to as finite 
element analysis) is a numerical technique. The solution 
approach is based either on eradicating the differential 
equation entirely (steady state problems), or rendering the 
PDE into an approximating system of ordinary differential 
equations, which are subsequently solved by means of 
standard techniques for instance Euler's method, Runge-
Kutta, etc.[2].  

For the analysis of piezoelectric structural elements, 
numerous finite element models have been proposed since 
the early 70s. Till the early 90s, they were chiefly 
dedicated to the design of ultrasonic transducers. Interests 
have been directed towards applications in smart materials 
and structures by the late 80s. Quite a few review papers 
and bibliographies have emerged in the open literature on 
the finite element technology and modeling of structural 
elements throughout the most recent two decades.  

A profound survey was held on finite element modeling 
and the advancements in its formulations and applications 
for the finite element modeling of adaptive structural 
elements namely, solids, shells, plates and beams [28]. 
Moreover, the model was also applied for the optimal 
design of piezoelectric actuators [11]  

2. Proposed Methodology 

In the proposed Methodology, a new mathematical model 
for the beam deformation and the frequency of its 
corresponding vibration is presented. Among a sundry of 
beams deployed in Air Craft materials, cantilever beams 
are going to be used for the model. Most of the equipments 
such as wings, blades used in aircraft coincide the shape of 
the cantilever beam. So, it is effective in showing the 
interest on considering cantilever beams for modeling. 

An arrangement of the mathematical formulations used in 
the modeling of beam deformation is given sequentially as 
follows 

 

Determination of Elasticity Matrix  

The Elasticity Matrix D can be calculated for the beam 
both for plane Stress and Plane Strain. In the case of Plane 
Stress, the Elasticity matrix is given by, 
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Similarly for Plane Strain, the Elasticity matrix is  
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where, 
E – Young’s Modulus 
ν  - Poisson’s ratio 

Strain Matrix 

The general format derived for the formation of strain 
matrix is as follows, 
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Applying it in the general matrix format, the resulting 
matrix is as follows 
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Determination of Finite Element operators 

Stiffness matrix and the force vector are the finite element 
operators used in the linear static modeling of the beam. 
For any element, stiffness matrix is formed using the 
relation, 

∫=
eA

T dABDBtk   ]][[][                                   (5) 

where t is the thickness of the beam. This equation can be 
further simplified for the convenience of application by 
using the area – volume relation. Hence the equation is 

∫=
eV

T dVBDBk   ]][[][                                        (6) 

By applying the elasticity matrix and strain matrix in (6) 
the stiffness matrix can be calculated. 

The external force vector applied in the beam element is 
given by  

∫=
A
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 The use of quadrature rule reduces the complexity in 
using the integrals in determining the equation. The rule is 
given as follows 
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where  

qW = quadrature weights 

Thus the using the quadrature rule makes the way to 
solution more convenient. 

Displacement vector  

The finite dimensional function is given by the following 
equation 
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where 
L  - number of nodes 

)(xN j  - finite Element shape functions  

id  - nodal unknowns for the node j  

In case of the scalar fields the location of the nodal 
unknowns in d is most apparently given as: 

][ jdd j =                        (10) 

However there is some uncertainty in the case of vector 
fields, in identifying the location of the nodal unknown dji, 
where I refers to the node number and i refers to the 
component of the vector nodal unknown dj .There is a 
necessity to define a mapping from the node number and 
vector component to the index of the nodal unknown 
vector d. This mapping can be represented as 

n  ),(: →ijf          (11) 

Where j  is the node number, f  is the mapping, i  is the 
component and n is the index  

Thus the location of unknown jiu  in d is defined as 
follows 

),( ijdu fji =          (12) 

The i component of the displacement at node j is located 
as follows in u 

)(nuu ji =                (13) 

By the arrangement of alternation between each spatial 
component, the displacement vector will take the form as 
follows, 
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By this mapping the displacement at node j is located in u 
by using the following equation in (13) 

ijDn +−= )1(                                               (15) 
where D represents the number of dimensions of the beam 

By another option of grouping all the like components, the 
displacement vector will be formed as  
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For this form, the displacement at node j is located at in u 
with the application of the following in (13) 
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Linear Algebraic System 

Potential energy of element 
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Total potential energy is the sum of potential energies of 
the elements and it is given by  

∑Π=Π
elt

elt          (19) 

The major parameters play a key role in beam deformation 
such as displacement, stress and strain needs 
approximation. 

Ndu =             (20) 
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DBd=σ            (22) 

By applying all the approximated values (20), (21) and 
(22) in the equation (18) 
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Using the principle of minimum potential energy 
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Thus, 
fKd =          (25) 

Eventually, the equation (25) will possess an equivalent as 
follows 

fKu =          (26) 

The element operator should be scattered into the global 
operator after it is calculated. 

 These tasks of scattering the element stiffness matrix into 
global stiffness matrix could be done through the Matlab 
and so that time taken for performing such operation is 
reduced. 

Taking the length of the Beam as l, the second polar 
moment of inertia I, half the distance of the outer fiber of 
the beam c and peak magnitude Mp  the solutions behind 
the beam bending problem are as follows 
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The solution is taking the x and y coordinates as well. The 
final section of solving linear algebraic system is applying 
the boundary conditions which finally give the net solution 
for all the problems. The most important factor to be 
considered while in applying the boundary condition is to 
maintain the symmetric behavior of the stiffness matrix 
which is the most important property of the linear 
algebraic system. In addition a weighting factor is also 
used to maintain the conditioning of the stiffness matrix. 

Frequency of different modes 

The frequency at can be determined by using the 
mathematical formula as given as follows 
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n -no. of modes 
)(nk -model coefficient 

ρ -density in kg/m3
 

cA -Cross-sectional area 

Not all the modes of frequency affect the beam, only the 
lower order modes dominates in the beam deformation. 
Since the higher order modes have very less magnitude, it 
is reasonable in concentrating in the lower especially in 
first three to six. 
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3. Implementation and Results 

The mathematical model suggested here is experimentally 
verified by simulating a cantilever beam in MATLAB that 
undergoes deformation. 

The beam, initially, will be simulated as a mesh of nodes 
or as a mesh of finite element, because the finite element 
analysis is taking the problem. The initial mesh of beam is 
shown in figure 1. 

 

Fig1. Cantilever beam in mesh like structure 

The implementation of the mathematical model results in 
the simulation that plots the deformation of displacement 
in the beam and also the deformation of stress in the beam 
in figure 2 and figure 3 respectively. 

 

Fig2. Displacement deformation in cantilever beam 

 

Fig3. Stress deformation in cantilever beam 

More over, a calculation of the frequency of vibration is 
also coded that displays clearly the dominating modes of 
frequency of vibration. So, the simulation verifies the 
mathematical formulation implicated in the proposed 
model. 

4. Conclusion 

In this methodology the cruel effects of vibrations are 
concerned and so the mathematical model using the Finite 
Element method is formulated for cantilever beams in 
order to estimate the beam deformation. Using the 
mathematical model, the beam deformation is plotted 
using MATLAB which shows reduction in computational 
complexity. Along with them, the most dominating modes 
of frequencies of vibrations are also calculated 
hypothetically as well. By deep use of the formulation 
suggested in this model it is very easy to root out the beam 
deformation and so the counteracting steps to avoid that 
become somewhat effective.    
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