
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

286

Manuscript received November 5, 2008

Manuscript revised November 20, 2008

Enhancing Embedded Software System Reliability using Virtualization
Technology

Thandar Thein, Sung-Do Chi and Jong Sou Park

Computer Engineering Department, Korea Aerospace University, Seoul

Summary
Embedded systems, already ubiquitous, are becoming
more and more part of everyday life. The complexity of
modern embedded software poses formidable challenges
to system reliability. The increasing use of software for
implementing the functionality, has led to increasing
demands for more sophisticated Embedded Software
Maintenance. Preventive maintenance is applied to
improve the device availability. In operational software
system, their values depend on the software system
structure as well as on the software component availability
and reliability. These values decrease as the software age
increases. With reactive maintenance becoming more and
more complex and expensive, software developers are
seeking more proactive approaches to maintenance.
Virtualization has recently become important technology
for embedded systems. In this paper, we study the
virtualization technology and proactive software
rejuvenation methodology to counteract the operational
embedded software system aging problem. We also
present the conditional based preventive maintenance
model and derive the closed-form expressions of
operational embedded software system availability
through a Markov Process. Numerical examples are
presented to illustrate the applicability of the model.
Keywords: availability, embedded software system,
modeling, software rejuvenation, virtualization.

1. Introduction

Embedded systems, already ubiquitous, are becoming
more and more part of everyday life, to the degree that it is
becoming hard to imagine living without them. They are
increasingly used in mission- and life-critical scenarios.
Correspondingly, there are high and increasing
requirements on safety, reliability and security [2].

The emergence of embedded systems in products of
virtually all domains has resulted in a dramatic increase in
products incorporating Embedded Software. The most
recent generation of embedded systems relies heavily on
embedded software.

In the past, embedded systems were characterized by
simple functionality, a single purpose, no or very simple

user interface, and no or very simple communication
channels. They also were closed in the sense that all the
software on them was loaded pre-scale by the
manufacturer, and normally remained unchanged for the
lifetime of the device. The amount of software was small.
Modern embedded systems are increasingly taking on
characteristics of general-purpose systems.

Many embedded systems have to operate for long time
nonstop and providing high availability. These kinds of
embedded system suffered from software aging. The
performance characteristics of a software system are
degraded over time through continuous running. The
effects become manifest in reduced service performance
and/or failures (system crashes or hangs). Other problems
such as data inconsistency, memory leakage, unreleased
file-locks, data corruption, storage space fragmentation
and an accumulation of round-off errors may also occur.
This constitutes a phenomenon called software aging [1],
[9]. A good medicine against software aging is software
rejuvenation [6].

The emergence of this wide spectrum of embedded
system, and the increasing use of software for
implementing the functionality, has led to increasing
demands for more sophisticated Embedded Software
Maintenance. Maintenance of embedded software is much
more expensive than maintenance of non-embedded
software. Preventive maintenance (such as software
rejuvenation) is applied to improve the device availability.

In operational software system, their values depend on
the software system structure as well as on the software
component availability and reliability. These values
decrease as the software age increases. With reactive
maintenance becoming more and more complex and
expensive, software developers are seeking more proactive
approaches to maintenance. Preventive maintenance,
however, incurs an overhead which should be balanced
against the cost incurred due to unexpected outage caused
by a failure.

Virtualization has recently become important
technology for embedded systems. High-performance
microkernels [4], OKL4, are a technology that provides a
good match for the requirements of next-generation
embedded systems.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

287

The goal of this paper is to describe the state-of-the-
art of embedded software maintenance system using
virtualization technology and proactive software
rejuvenation methodology.

We analyze the condition-based preventive
maintenance models with and without virtualization
technology and derive the closed-form expressions. The
closed-form solutions are compared with SHARPE
(Symbolic Hierarchical Automated Reliability and
Performance Evaluator) tool [8] evaluation to verify the
correctness of our result.

The rest of this paper is organized as follows. Section
2 gives an overview of software aging, software
rejuvenation and virtualization technology in embedded
systems. The system, the model description, solution
methodology and some numerical results are described in
Section 3, and Section 4 concludes the paper.

2. Embedded Systems

An embedded system is a part of a product with which an
end user does not directly interact or control [3]. Our
society has come to expect uninterrupted service from
many of the systems that it employs, such as phones,
automated teller machines, and credit card verification
networks. Many of these are implemented as embedded
systems.

2.1 Software Aging in Embedded Systems

Modern embedded systems feature a wealth of
functionality and, as a result, are highly complex. This is
particularly true for their software, which frequently
measures in the millions of lines of code and is growing
strongly. The complexity of modern embedded software
poses formidable challenges to system reliability. Systems
of that complexity are, for the foreseeable future,
impossible to get correct – in fact, they can be expected to
contain tens of thousands of bugs. This complexity
presents a formidable challenge to the reliability of the
devices.

Young programs are slight, sprightly things, but are
lively and attractive. Bugs and misunderstood
requirements disappoint the users, but only a few expected
improvements or change for the better. With passing of
time and with relentless endeavors, the young program
becomes full fledged and productive in business process
or product. By middle age, patches, improvements and
creeping featuritus bloat the girth and hobble performance.
The graying code slows and swells, though still satisfies
the users. Continuing bug fixes and ever more features
drive the software into old age.

2.2 Software Rejuvenation in Embedded Systems

Software rejuvenation is a technique for software fault
tolerance which involves occasionally stopping the
executing software, cleaning the internal state and
restarting. This cleanup is done at desirable times during
execution on a preventive basis so that unplanned failures,
which result in higher costs compared to planned stopping,
are avoided. The necessity to use this technique not only
in general purpose computers but also in safety-critical
and high availability systems clearly indicates the need of
analysis in order to determine the optimal times to
rejuvenate. A new software rejuvenation variation called
Opportunistic Micro Rejuvenation (OMR) [7] is proposed
where a task that “misbehaves” is identified and
rejuvenated at an opportune instant, like when it is in a
waiting state. OMR is natural fit with embedded software
system aging.

2.3 Virtualization Technology in Embedded Systems

Virtualization, which originated on mainframes and finds
increasing use on personal computers, has recently
become popular in the embedded-systems space.
Virtualization [5] refers to providing a software
environment on which programs, including operating
systems, can run as if on bare hardware (Figure 1). Such a
software environment is called a virtual machine (VM).
Such a VM is an efficient, isolated duplicate of the real
machine. The hypervisor (or virtual-machine monitor)
presents an interface that looks like hardware to the guest
operating system. The software layer that provides the VM
environment is called the virtual-machine monitor (VMM),
or hypervisor.

Fig. 1 Virtualization enabling the concurrent execution of
an application OS and a real-time OS (RTOS)

Virtualization can provide some attractive benefits to
embedded systems. One is support for heterogeneous
operating-system environments. Virtualization supports
architectural abstraction as the same software architecture
can be migrated essentially unchanged between a
multicore and a (virtualized) single core. Another

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

288

motivation for virtualization is security and the wide
support for virtualization enables a new model for
distribution of application software. Virtualization can
provide some attractive benefits to embedded systems,
however there are significant limitations on the use of
virtualization such as efficient sharing, scheduling, energy
management, and software complexity [2].

3. System Model

Models are often an abstract representation of reality. In
this section, we are interested in determining how
virtualization technology can enhance the preventive
maintenance action in embedded software system. We
have considered the systems’ availability in different
stages with different actions in face of disruptions. The
following scenarios are studied in this paper.
• Condition-based preventive maintenance model

without virtualization
• Condition-based preventive maintenance model with

virtualization
We construct the state transition models to describe the

behavior of these systems as shown in figure 2 and 5.
Software aging in the target systems can be detected by

monitoring the system state. We can restore system to
initial or clean state using software rejuvenation. In our
implementation, two kinds of preventive maintenance
(software rejuvenation) will be performed on the system
based on the deterioration stage: a minimal maintenance (a
partial system clean up) and a major maintenance (clean
restart). Assuming that, the time to repair is exponentially
distributed with rate µ.

Further assuming that, an inspection is triggered after a
mean duration 1/ λin, and takes an average time of 1/µin.
After an inspection is completed, no action is taken if the
system is found to be in healthy stage. On the other hand,
if the system is found to be in the first deterioration stage,
minimal maintenance action will be performed.

If the system is found to be in the second deterioration
stage, major maintenance is carried out. By mapping
through actions to these transition models with stochastic
process, we get mathematical steady-state solution of the
chain.

Consider an embedded software system that starts in a
robust state and as time progresses, it can transit to
deterioration state and eventually suffers a major failure.
To verify the validity of our derivation formulae, we
compare the results obtained from the closed-form
solution and the result obtained from the numerical
solution by SHARPE. For this purpose, the parameters are
chosen as follows:

λ1 = λ2 = λ3 = λ4 = λ5 = 0.1, µin = 0.6

µ=1 µM = 2, µm = 3

3.1 Preventive Maintenance Model without
Virtualization (PM model)

In this section, we are interested in determining how
condition-based preventive maintenance approach without
virtualization technology can improve availability of
embedded software system. Assume that time to system
failure is hypoexponential with rates λ1, λ2, and λ3 as shown
in Figure 2.

Fig. 2 State transition diagram of PM model
The state description of PM model is described in table

1.
Table 1 State Description for PM model.

State Description

(N,O) system is in normal operational state
(N,I) system is under inspection state
(D1,O) system is operational but in the

deterioration state
(D1,I) system is in deterioration and is under

inspection state
(D1,m) system is in deterioration and is under

minimal maintenance
(D2,O) system is operational but in major

deterioration state
(D2,M) system is in deterioration and is under

major maintenance state
(F) system is in deterioration failure state

Writing down and solving the steady-state balance

equations, we get the probabilities as follows.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+
+++

+
++

=

)1(11

1

3

3

2

2

1
),(

μ
λ

μ
μ

λμ
λ

μ
λ

μ
λ

λλ
λ

μ
λ

M

in

inm

in

in

in

inin

in
ONP

(1)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

289

),(),(ON
in

in
IN PP

μ
λ

=
(2)

),(
2

1
),(1 ON

in
OD PP

λλ
λ
+

=
(3)

),(
2

1
),(1 ON

inin

in
ID PP

λλ
λ

μ
λ

+
=

(4)

),(
2

1
),(1 ON

inm

in
mD PP

λλ
λ

μ
λ

+
=

(5)

),(
2

1

3

2
),(2 ON

inin
OD PP

λλ
λ

λμ
λ

++
=

(6)

),(
2

1
),(2 ON

inM

in
MD PP

λλ
λ

μ
μ

+
=

(7)

),(
2

1

3

23
)(ON

inin
F PP

λλ
λ

λμ
λ

μ
λ

++
=

(8)

Availability models capture failure and repair behavior
of systems and their components. States of the underlying
Markov chain will be classified as up states or down states.
The system is not available in the rejuvenation process in
minimal maintenance state (D1,m), major maintenance
state (D2,M) and the failure state (F). Since up states are
(N,O), (N,I), (D1,O), (D1,I), and (D2,O), we obtain an
expression for the steady-state availability:

),(),(),(),(),()(211 ODIDODINONPM PPPPPtyAvailabili ++++=

 (9)
We define the steady-state probabilities of the

system are as follows:

)0,(NP The probability of the system is in normal

operational state

),(INP The probability of the system is under inspection
state

)0,(1DP The probability of the system is operational but
in the deterioration state

),(1 IDP The probability of the system is in deterioration
and is under inspection state

),(1 mDP The probability of the system is in deterioration
and is under minimal maintenance

)0,(2DP The probability of the system is operational but
in major deterioration state

)0,(2DP The probability of the system is in deterioration
and is under major maintenance state

)(FP The probability of the system is in deterioration
failure state

In Figure 3, we plot the steady-state availability as a
function of the mean time between inspections
MTBI=1/λin. We use several different values of the time to
carry out the inspection. Note that the steady-state
availability reaches a maximum at MTBI=10 for µin=0.5.

0.9730
0.9735
0.9740
0.9745
0.9750
0.9755
0.9760
0.9765
0.9770
0.9775

0 10 20 30 40 50 60 70 80 90 100

MTBI

A
va

ila
bi

lit
y

µin=0.4 µin=0.5 µin=0.6

Fig. 3 Steady-state availability of PM model with different µin.

3.2 Preventive Maintenance Model with
Virtualization (PMV model)

In this section, we discuss our condition-based preventive
maintenance with virtualization approach. On top of the
Hypervisor, we create 2 VMs as shown in Figure 4. The
main application will be run on active VM. Another VM
will work as standby VM. The embedded agent resides on
embedded system as an application layer and it monitors
system state, rejuvenating the applications or the operating
system to recover from failures. Monitoring events in
embedded system occur periodically with predefined
interval. When major deterioration happens in active VM,
first standby VM will be started and it will take active VM
role. After that major deterioration VM will perform major
maintenance. By using this approach the system can
provide continued services even if VM needs to perform
major maintenance.

Fig 4. Virtualized system

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

290

Fig. 5 State transition diagram of PMV model

Now we consider the state transition diagram of PMV
model as shown in Figure 5. Assume that time to system
failure is hypoexponential with rates λ1, λ2, λ3, λ4 and λ5.
The state description of PMV model is described in table 2

Table 2 State Description for PMV model.

State Description

(N,Oi) ith VM is in normal operational state

(N,Ii) ith VM is under inspection state

(D1,Oi) ith VM is operational but in the
deterioration state

(D1, Ii) ith VM is in deterioration and is under
inspection state

(D1, mi) ith VM is in deterioration and is under
minimal maintenance

(D2, Oi) ith VM is in operation but major
deterioration state

(D2, Mi) ith VM is in deterioration and is under
major maintenance state

(F) System is in deterioration failure state

i = (1, 2) (number of virtual machines)

Writing down and solving the steady-state balance
equations, we get the probabilities of as follows.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

++
+

+

++
+

+++

+++
+

++

=

))1(

1(1

)1(1

5

5

4

4

3

2

1

),(1

μ
λ

μ
μ

μλ
λ

μ
λ

μ
λ

λλ
λ

μ
λ

μ
μ

μ
λ

μ
λ

λλ
λ

μ
λ

M

in

inm

in

in

in

inin

in

M

in

m

in

in

in

inin

in

ON

Z
P

(10)

),(),(11 ON
in

in
IN PP

μ
λ

=
(11)

),(
2

1
),(111 ON

in
OD PP

λλ
λ
+

=
(12)

),(
2

1
),(111 ON

inin

in
ID PP

λλ
λ

μ
λ

+
=

(13)

),(
2

1
),(111 ON

inm

in
mD PP

λλ
λ

μ
λ

+
=

(14)

),(),(122 ONON ZPP = (15)

),(),(112 ON
M

in
MD ZPP

μ
μ

=
(16)

),(),(12 ON
in

in
IN ZPP

μ
λ

=
(17)

),(
4

3
),(121 ON

in
OD ZPP

λλ
λ
+

=
(18)

),(
4

3
),(121 ON

inin

in
ID ZPP

λλ
λ

μ
λ

+
=

(19)

),(
4

3
),(121 ON

inm

in
mD ZPP

λλ
λ

μ
λ

+
=

(20)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

291

),(
5

4

4

3
),(122 ON

inin
OD ZPP

μλ
λ

λλ
λ

++
=

(21)

),(
5

4

4

3
),(122 ON

M

in

inin
MD ZPP

μ
μ

μλ
λ

λλ
λ

++
=

(22)

),(
5

5

4

4

3
)(1ON

inin
F ZPP

μ
λ

μλ
λ

λλ
λ

++
=

(23)

Here,
)(

5

4

4

3
3

2

21

in

in
in

in
in

inZ

μλ
λμλ

λλ
λλμ

λλ
λλ

+
+

+
−+

+
=

(24)

Since up states are ((N,O1), (N,I1), (D1,O1), (D1,I1),(D2,

M1), (N,O2), (N,I2), (D1,O2), (D1, I2) and (D2, O2), we obtain an
expression for the steady-state availability:

),(),(),(),(),(),(

),(),(),(),()(

2221212212

111111

ODIDODINONMD

IDODINONPMV

PPPPpP

PPPPtyAvailabili

+++++

++++=

 (25)

We define the steady-state probabilities of the PMV
model are as follows:

),(iONP The probability of ith VM is in normal

operational state
),(iINP The probability of ith VM is under

inspection state
),(1 iODP The probability of ith VM is operational

but in the deterioration state
),(1 iIDP The probability of ith VM is in

deterioration and is under inspection
state

),(1 imDP The probability of ith VM is in
deterioration and is under minimal
maintenance

),(2 iODP The probability of ith VM is in operation
but major deterioration state

),(2 iMDP The probability of ith VM is in
deterioration and is under major
maintenance state

)(FP The probability of System is in
deterioration failure state

i = (1, 2) (number of virtual machines)

0.970
0.972
0.974
0.976
0.978
0.980
0.982
0.984
0.986
0.988
0.990

0 10 20 30 40 50 60 70 80 90 100

MTBI

A
va

ila
bi

lit
y

µin=0.4 µin=0.5 µin=0.6

Fig. 6 Steady-state availability of PMV model with different µin.

 The variation of the steady-state availability with various
MTBI is shown in Figure 6. Note that the steady-state
availability reaches a maximum at MTBI= 10 for µin=5.

3.3 Validation of Closed-form Results

In this section, we compare the steady-state availability of
virtualized system and non virtualized system as shown in
Figure 7.

0.970

0.975

0.980

0.985

0.990

0.995

0 10 20 30 40 50 60 70 80 90 100

MTBI

A
va

ila
bi

lit
y

P M(Deriva tio n) P MV(Deriva tio n)
P M(SHARP E) P MV(SHARP E)

Fig. 7 Steady-state availability with different µin .

To verify the validity of our formula derivations, we

compare the results obtained from the closed-form
solution and the results obtained from the numerical
solution by SHARPE. We found that our closed-form
result and SHARPE tool result are same.

 4. Conclusions

In this paper, we modeled and analyzed condition-based
preventive maintenance in operational embedded software
systems with and without virtualization approach, in
which two levels of maintenance are performed. We
carried out the close-form solutions and also validated the
numerical result with SHARPE tool result. We have
shown that combining software rejuvenation and

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

292

virtualization technology can be a partial contribution for
enhancing the reliability of operational embedded software
systems. Virtualization can provide some attractive
benefits to embedded systems however there are some
limitations. Future work will include experiments with an
implementation under real world conditions to verify the
practical efficacy of our approach.

Acknowledgments

This research was supported by Korea Aerospace University
under contract No. 2008-01-009, “A Study for Behavior
Control of Multiple Robot Systems Using the Indoor GPS”.
References

[1] V. Castelli, R. E. Harper, P. Heidelberger, S. W.

Hunter, K.S. Trivedi, K. Vaidyanathan, and
W.P.Zeggert. Proactive management of software aging.
IBM Journal of Research and Development, vol. 45,
no. 2, pp. 311–332, 2001.

[2] G. Heiser, The role of virtualization in embedded
systems, In Proc. of the 1st workshop on Isolation and
Integration in embedded systems, 2008, ISBN:978-1-
60558-126-2, pp: 11-16.

[3] http://www.embedded.com/
[4] http://www.ok-labs.com/
[5] S. Nanda and T. Chiueh. A survey on virtualization

technologies, Stony Brook University, Tech. Rep. TR-
179, Feb 2005.

[6] Software Rejuvenation. Department of Electrical and
Computer Engineering, Duke University Online
Available: http:// www.software-rejuvenation.com/.

[7] V. Sundaram, S. HomChaudhuri, S.Garg, C. Kintala,
and S. Bagchi. Improving dependability using shared
supplementary memory and opportunistic micro
rejuvenation in multi-tasking embedded systems. In
Proc.13th Pacific Rim international Symp., on
Dependable Computing (PRDC 2007), Washington,
DC, December 17-19, 2007. IEEE Computer Society
Press, Vol:, pp:240-247.

[8] K. S. Trivedi, SHARPE 2002: Symbolic Hierarchical
Automated Reliability and Performance Evaluator.
DSN 2002: 544.

[9] K. Vaidyanathan, D. Selvamuthu, K. S. Trivedi.
Analysis of inspection-based preventive maintenance
in operational software systems. In Proc. 21st IEEE
Symp., on Reliable Distributed System (SRDS’02),
Suita, 13-16 October 2002. ISBN:0-7695-1659-9, pp-
286-295.

Thandar Thein received M.Sc. (Computer
Science) and Ph.D degrees in 1996 and 2004,
respectively from University of Computer
Studies, Yangon, Myanmar. Currently she is
doing Post Doctorate Research in Korea
Aerospace University. Her research interests
include Ubiquitous Sensor Network Security,
Security Engineering, and Network Security

and Survivability.

Sung-Do Chi received BS and MS degrees in
1982 and 1984, respectively, in electrical
engineering from Yonsei University, Seoul,
Korea, and a PhD degree in electrical and
computer engineering in 1991 from the
University of Arizona, Tucson. From 1984 to
1986, he was a part-time instructor at the
Yonsei University. He also worked as

software engineer at the Digital Equipment Corporation, Seoul
Branch. His research interests include traffic modeling, model-
based reasoning, intelligent system design methodology,
discrete-event system modeling and simulation; simulation
based artificial life, computer security and Biotechnology.

Jong Sou Park received the M.S. degree in
Electrical and Computer Engineering from
North Carolina State University in 1986. And
he received his Ph.D in Computer
Engineering from The Pennsylvania State
University in 1994. From 1994 - 1996, he
worked as an assistant Professor at The
Pennsylvania State University in Computer

Engineering Department and he was president of the KSEA
Central PA, Chapter. He is currently a full professor in
Computer Engineering Department, Korea Aerospace
University. His main research interests are information
security, embedded system and hardware design. He is a
member of IEEE and IEICE, and he is an executive board
member of the Korea Institute of Information Security and
Cryptology, and Korea Information Assurance Society.

