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Summary 
Embedded systems, already ubiquitous, are becoming 
more and more part of everyday life. The complexity of 
modern embedded software poses formidable challenges 
to system reliability. The increasing use of software for 
implementing the functionality, has led to increasing 
demands for more sophisticated Embedded Software 
Maintenance. Preventive maintenance is applied to 
improve the device availability. In operational software 
system, their values depend on the software system 
structure as well as on the software component availability 
and reliability. These values decrease as the software age 
increases. With reactive maintenance becoming more and 
more complex and expensive, software developers are 
seeking more proactive approaches to maintenance. 
Virtualization has recently become important technology 
for embedded systems. In this paper, we study the 
virtualization technology and proactive software 
rejuvenation methodology to counteract the operational 
embedded software system aging problem. We also 
present the conditional based preventive maintenance 
model and derive the closed-form expressions of 
operational embedded software system availability 
through a Markov Process. Numerical examples are 
presented to illustrate the applicability of the model. 
Keywords: availability, embedded software system, 
modeling, software rejuvenation, virtualization. 

1. Introduction 

Embedded systems, already ubiquitous, are becoming 
more and more part of everyday life, to the degree that it is 
becoming hard to imagine living without them. They are 
increasingly used in mission- and life-critical scenarios. 
Correspondingly, there are high and increasing 
requirements on safety, reliability and security [2].  

The emergence of embedded systems in products of 
virtually all domains has resulted in a dramatic increase in 
products incorporating Embedded Software. The most 
recent generation of embedded systems relies heavily on 
embedded software.  

In the past, embedded systems were characterized by 
simple functionality, a single purpose, no or very simple 

user interface, and no or very simple communication 
channels. They also were closed in the sense that all the 
software on them was loaded pre-scale by the 
manufacturer, and normally remained unchanged for the 
lifetime of the device. The amount of software was small. 
Modern embedded systems are increasingly taking on 
characteristics of general-purpose systems.  

Many embedded systems have to operate for long time 
nonstop and providing high availability. These kinds of 
embedded system suffered from software aging. The 
performance characteristics of a software system are 
degraded over time through continuous running. The 
effects become manifest in reduced service performance 
and/or failures (system crashes or hangs). Other problems 
such as data inconsistency, memory leakage, unreleased 
file-locks, data corruption, storage space fragmentation 
and an accumulation of round-off errors may also occur. 
This constitutes a phenomenon called software aging [1], 
[9]. A good medicine against software aging is software 
rejuvenation [6].  

The emergence of this wide spectrum of embedded 
system, and the increasing use of software for 
implementing the functionality, has led to increasing 
demands for more sophisticated Embedded Software 
Maintenance. Maintenance of embedded software is much 
more expensive than maintenance of non-embedded 
software. Preventive maintenance (such as software 
rejuvenation) is applied to improve the device availability.  

In operational software system, their values depend on 
the software system structure as well as on the software 
component availability and reliability. These values 
decrease as the software age increases. With reactive 
maintenance becoming more and more complex and 
expensive, software developers are seeking more proactive 
approaches to maintenance. Preventive maintenance, 
however, incurs an overhead which should be balanced 
against the cost incurred due to unexpected outage caused 
by a failure. 

Virtualization has recently become important 
technology for embedded systems. High-performance 
microkernels [4], OKL4, are a technology that provides a 
good match for the requirements of next-generation 
embedded systems.  
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The goal of this paper is to describe the state-of-the-
art of embedded software maintenance system using 
virtualization technology and proactive software 
rejuvenation methodology.   

We analyze the condition-based preventive 
maintenance models with and without virtualization 
technology and derive the closed-form expressions. The 
closed-form solutions are compared with SHARPE 
(Symbolic Hierarchical Automated Reliability and 
Performance Evaluator) tool [8] evaluation to verify the 
correctness of our result. 

The rest of this paper is organized as follows. Section 
2 gives an overview of software aging, software 
rejuvenation and virtualization technology in embedded 
systems. The system, the model description, solution 
methodology and some numerical results are described in 
Section 3, and Section 4 concludes the paper. 

2. Embedded Systems 

An embedded system is a part of a product with which an 
end user does not directly interact or control [3]. Our 
society has come to expect uninterrupted service from 
many of the systems that it employs, such as phones, 
automated teller machines, and credit card verification 
networks. Many of these are implemented as embedded 
systems. 

 
2.1 Software Aging in Embedded Systems 
 
Modern embedded systems feature a wealth of 
functionality and, as a result, are highly complex. This is 
particularly true for their software, which frequently 
measures in the millions of lines of code and is growing 
strongly. The complexity of modern embedded software 
poses formidable challenges to system reliability. Systems 
of that complexity are, for the foreseeable future, 
impossible to get correct – in fact, they can be expected to 
contain tens of thousands of bugs. This complexity 
presents a formidable challenge to the reliability of the 
devices.  

Young programs are slight, sprightly things, but are 
lively and attractive. Bugs and misunderstood 
requirements disappoint the users, but only a few expected 
improvements or change for the better. With passing of 
time and with relentless endeavors, the young program 
becomes full fledged and productive in business process 
or product. By middle age, patches, improvements and 
creeping featuritus bloat the girth and hobble performance. 
The graying code slows and swells, though still satisfies 
the users. Continuing bug fixes and ever more features 
drive the software into old age.  

 

2.2 Software Rejuvenation in Embedded Systems 
 
Software rejuvenation is a technique for software fault 
tolerance which involves occasionally stopping the 
executing software, cleaning the internal state and 
restarting. This cleanup is done at desirable times during 
execution on a preventive basis so that unplanned failures, 
which result in higher costs compared to planned stopping, 
are avoided. The necessity to use this technique not only 
in general purpose computers but also in safety-critical 
and high availability systems clearly indicates the need of 
analysis in order to determine the optimal times to 
rejuvenate. A new software rejuvenation variation called 
Opportunistic Micro Rejuvenation (OMR) [7] is proposed 
where a task that “misbehaves” is identified and 
rejuvenated at an opportune instant, like when it is in a 
waiting state. OMR is natural fit with embedded software 
system aging. 
 
2.3 Virtualization Technology in Embedded Systems 
 
Virtualization, which originated on mainframes and finds 
increasing use on personal computers, has recently 
become popular in the embedded-systems space. 
Virtualization [5] refers to providing a software 
environment on which programs, including operating 
systems, can run as if on bare hardware (Figure 1). Such a 
software environment is called a virtual machine (VM). 
Such a VM is an efficient, isolated duplicate of the real 
machine. The hypervisor (or virtual-machine monitor) 
presents an interface that looks like hardware to the guest 
operating system. The software layer that provides the VM 
environment is called the virtual-machine monitor (VMM), 
or hypervisor.  
 

 
Fig. 1 Virtualization enabling the concurrent execution of 
an application OS and a real-time OS (RTOS) 
 

Virtualization can provide some attractive benefits to 
embedded systems. One is support for heterogeneous 
operating-system environments. Virtualization supports 
architectural abstraction as the same software architecture 
can be migrated essentially unchanged between a 
multicore and a (virtualized) single core. Another 
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motivation for virtualization is security and the wide 
support for virtualization enables a new model for 
distribution of application software. Virtualization can 
provide some attractive benefits to embedded systems, 
however there are significant limitations on the use of 
virtualization such as efficient sharing, scheduling, energy 
management, and software complexity [2]. 

3. System Model 

Models are often an abstract representation of reality. In 
this section, we are interested in determining how 
virtualization technology can enhance the preventive 
maintenance action in embedded software system. We 
have considered the systems’ availability in different 
stages with different actions in face of disruptions. The 
following scenarios are studied in this paper. 
• Condition-based preventive maintenance model 

without virtualization 
• Condition-based preventive maintenance model with 

virtualization 
We construct the state transition models to describe the 

behavior of these systems as shown in figure 2 and 5.  
Software aging in the target systems can be detected by 

monitoring the system state. We can restore system to 
initial or clean state using software rejuvenation. In our 
implementation, two kinds of preventive maintenance 
(software rejuvenation) will be performed on the system 
based on the deterioration stage: a minimal maintenance (a 
partial system clean up) and a major maintenance (clean 
restart). Assuming that, the time to repair is exponentially 
distributed with rate µ.  

Further assuming that, an inspection is triggered after a 
mean duration 1/ λin, and takes an average time of 1/µin. 
After an inspection is completed, no action is taken if the 
system is found to be in healthy stage. On the other hand, 
if the system is found to be in the first deterioration stage, 
minimal maintenance action will be performed.  

If the system is found to be in the second deterioration 
stage, major maintenance is carried out. By mapping 
through actions to these transition models with stochastic 
process, we get mathematical steady-state solution of the 
chain. 

Consider an embedded software system that starts in a 
robust state and as time progresses, it can transit to 
deterioration state and eventually suffers a major failure. 
To verify the validity of our derivation formulae, we 
compare the results obtained from the closed-form 
solution and the result obtained from the numerical 
solution by SHARPE. For this purpose, the parameters are 
chosen as follows: 

 
λ1 = λ2 = λ3 =  λ4 =  λ5 = 0.1,          µin = 0.6  

µ=1     µM = 2,          µm = 3 

3.1 Preventive Maintenance Model without 
Virtualization (PM model) 

In this section, we are interested in determining how 
condition-based preventive maintenance approach without 
virtualization technology can improve availability of 
embedded software system. Assume that time to system 
failure is hypoexponential with rates λ1, λ2, and λ3 as shown 
in Figure 2. 
 

 

Fig. 2 State transition diagram of PM model 
The state description of PM model is described in table 

1.  
Table 1 State Description for PM model. 

State Description 

(N,O) system is in normal operational state 
(N,I) system is under inspection state 
(D1,O) system is operational but in the 

deterioration state 
(D1,I) system is in deterioration and is  under 

inspection state 
(D1,m) system is in deterioration and is  under 

minimal maintenance 
(D2,O) system is operational but in major 

deterioration state 
(D2,M) system is in deterioration and is  under 

major maintenance state 
(F) system is in deterioration failure state 
 
Writing down and solving the steady-state balance 

equations, we get the probabilities as follows. 
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Availability models capture failure and repair behavior 
of systems and their components. States of the underlying 
Markov chain will be classified as up states or down states. 
The system is not available in the rejuvenation process in 
minimal maintenance state (D1,m), major maintenance 
state (D2,M) and the failure state (F). Since up states are 
(N,O), (N,I), (D1,O), (D1,I), and (D2,O), we obtain an 
expression for the steady-state availability: 
 

),(),(),(),(),()( 211 ODIDODINONPM PPPPPtyAvailabili ++++=

 (9)
We define the steady-state probabilities of the 

system are as follows: 
 
)0,(NP  The probability of the system is in normal 

operational state 

),( INP  The probability of the system is under inspection 
state 

)0,( 1DP  The probability of the system is operational but 
in the deterioration state 

),( 1 IDP  The probability of the system is in deterioration 
and is  under inspection state 

),( 1 mDP  The probability of the system is in deterioration 
and is  under minimal maintenance 

)0,( 2DP  The probability of the system is operational but 
in major deterioration state 

)0,( 2DP  The probability of the system is in deterioration 
and is  under major maintenance state 

)(FP  The probability of the system is in deterioration 
failure state 

In Figure 3, we plot the steady-state availability as a 
function of the mean time between inspections 
MTBI=1/λin. We use several different values of the time to 
carry out the inspection. Note that the steady-state 
availability reaches a maximum at MTBI=10 for µin=0.5.  
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Fig. 3 Steady-state availability of PM model with different µin. 

3.2 Preventive Maintenance Model with 
Virtualization (PMV model) 

In this section, we discuss our condition-based preventive 
maintenance with virtualization approach.  On top of the 
Hypervisor, we create 2 VMs as shown in Figure 4. The 
main application will be run on active VM. Another VM 
will work as standby VM. The embedded agent resides on 
embedded system as an application layer and it monitors 
system state, rejuvenating the applications or the operating 
system to recover from failures. Monitoring events in 
embedded system occur periodically with predefined 
interval. When major deterioration happens in active VM, 
first standby VM will be started and it will take active VM 
role. After that major deterioration VM will perform major 
maintenance. By using this approach the system can 
provide continued services even if VM needs to perform 
major maintenance.  

 
Fig 4. Virtualized system 
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Fig. 5 State transition diagram of PMV model 
 

Now we consider the state transition diagram of PMV 
model as shown in Figure 5. Assume that time to system 
failure is hypoexponential with rates λ1, λ2, λ3, λ4 and λ5. 
The state description of PMV model is described in table 2 

 
Table 2 State Description for PMV model. 

State Description 

(N,Oi) ith VM is in normal operational state 

(N,Ii) ith VM is under inspection state 

(D1,Oi) ith VM is operational but in the 
deterioration state 

(D1, Ii) ith VM is in deterioration and is  under 
inspection state 

(D1, mi) ith VM is in deterioration and is  under 
minimal maintenance 

(D2, Oi) ith VM is in operation but major 
deterioration state 

(D2, Mi) ith VM is in deterioration and is  under 
major maintenance state 

(F) System is in deterioration failure state 

i = (1, 2)      (number of virtual machines) 

 
Writing down and solving the steady-state balance 
equations, we get the probabilities of as follows. 
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Since up states are ((N,O1), (N,I1), (D1,O1), (D1,I1),(D2, 

M1), (N,O2), (N,I2), (D1,O2), (D1, I2) and (D2, O2), we obtain an 
expression for the steady-state availability: 
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We define the steady-state probabilities of the PMV 
model are as follows: 

 
),( iONP  The probability of ith VM is in normal 

operational state 
),( iINP   The probability of ith VM is under 

inspection state 
),( 1 iODP  The probability of ith VM is operational 

but in the deterioration state 
),( 1 iIDP   The probability of ith VM is in 

deterioration and is  under inspection 
state 

),( 1 imDP   The probability of ith VM is in 
deterioration and is  under minimal 
maintenance 

),( 2 iODP   The probability of ith VM is in operation 
but major deterioration state 

),( 2 iMDP   The probability of ith VM is in 
deterioration and is  under major 
maintenance state 

)(FP  The probability of System is in 
deterioration failure state 

i = (1, 2)      (number of virtual machines) 
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Fig. 6 Steady-state availability of PMV model with different µin.

 The variation of the steady-state availability with various 
MTBI is shown in Figure 6. Note that the steady-state 
availability reaches a maximum at MTBI= 10 for µin=5.  

3.3 Validation of Closed-form Results 

In this section, we compare the steady-state availability of 
virtualized system and non virtualized system as shown in 
Figure 7.  
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Fig. 7 Steady-state availability with different µin . 

 
To verify the validity of our formula derivations, we 

compare the results obtained from the closed-form 
solution and the results obtained from the numerical 
solution by SHARPE. We found that our closed-form 
result and SHARPE tool result are same.  

 4. Conclusions 

In this paper, we modeled and analyzed condition-based 
preventive maintenance in operational embedded software 
systems with and without virtualization approach, in 
which two levels of maintenance are performed. We 
carried out the close-form solutions and also validated the 
numerical result with SHARPE tool result. We have 
shown that combining software rejuvenation and 
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virtualization technology can be a partial contribution for 
enhancing the reliability of operational embedded software 
systems. Virtualization can provide some attractive 
benefits to embedded systems however there are some 
limitations. Future work will include experiments with an 
implementation under real world conditions to verify the 
practical efficacy of our approach. 
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