
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

314

Manuscript received November 5, 2008

Manuscript revised November 20, 2008

Review of Complexity Metrics for Object Oriented Software
Products

Tieng Wei Koh, Mohd Hasan Selamat, Abdul Azim Abdul Ghani, Rusli Abdullah
Faculty of Computer Science and Information Technology, University Putra Malaysia,

43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.

Abstract

It is widely accepted that sizing or predicting the

volumes of various kinds of software deliverable items is
one of the first and most dominant aspects of software cost
estimating. Most of the cost estimation model or
techniques usually assume that software size or structural
complexity is the integral factor that influences software
development effort. Although sizing and complexity
measure is a very critical due to the need of reliable size
estimates in the utilization of existing software project cost
estimation models and complex problem for software cost
estimating, advances in sizing technology over the past 30
years have been impressive. This paper attempts to review
the 12 object-oriented software metrics proposed in 90s’
by Chidamber, Kemerer and Li.

1. Introduction

In 90s’, several software industries have moved to the
object-oriented paradigm (OOP) in the hope that with this
new technology could increase their capability for
programming in “large” through reusability function
offered by OOP. This trend has created a new challenge
especially to the management team as the conventional
metrics invented for classical paradigm seemed not longer
valid in supporting their project planning and resource
allocation, where the OOP consider both attributes and
operations to be equally important. In contrast, the
classical techniques are either operation oriented or
attribute.

Since the implementation of OOP, several researchers
have made efforts to modify and validate the conventional
metrics theoretically or empirically in order for object-
oriented software production to fulfill its promise. Among
the most impressive contributions are the sizing and
complexity metrics which is use for effort and cost
estimation in project planning.

This paper is organized as follows. Section 2 presents a
very brief summary on the literature review have been

done. Section 3 describes the 6 metrics proposed by
Chidamber and Kemerer [11, 12]. Section 4 presents
another new metric suite for object-oriented programming,
also six in number proposed by Li [14] and short
concluding remarks are presented in Section 5.

2. Literature review

Several approaches for predicting software size have
been proposed in the literature since 70s’. Most of the
researchers assume that complexity and size are strongly
related to the effort value. In fact, most of object-oriented
metrics are also based on this assumption.

In general, object-oriented metrics can be classified
into two categories: 1) Adaptation of classical sizing
metrics and 2) Object-oriented sizing and complexity
metrics. We review these contributions found in the
literature in the following sub-section.

2.1 Adaptation of classical sizing metrics

Laranjeira [5] proposed a software size estimation
model and claimed that the model has the potential for
providing more accurate size estimates than existing
methods which are not yet reliable enough to be
consistently used with existing cost estimation models.
This method – functional model takes advantage of a
characteristic of object-oriented systems, the natural
correspondence between specification and implementation,
in order to enable users to come up with better size
estimates at early stages of the software development cycle.
We notice that there is no obvious comparison between
this model and the existing methods.

Another similar finding was reported by Condori-
Fernandez et al. [8] described a measurement protocol to
map the concepts used in the Object-Oriented Method
Requirement Model onto the concepts used by the
COSMIC Full Function Points (COSMIC-FFP). This
protocol describes a set of measurement operations for
modeling and sizing object-oriented software systems

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

315

from requirement specifications obtained in the context of
the object-oriented method. It is an extended set rules that
allows estimating the functional size of object-oriented
systems at an early of the development lifecycle.

Briand et al. [6] empirically investigated relationship
between class size and the development effort using
regression techniques. Antoniol et al. [1] defined an
adaptation of traditional function points, called “Object-
oriented Function Points” to enable the measurement of
object-oriented analysis and design specifications.
Similarly, Costagliola et al. [2] presented their class point,
a function points-like approach, which was conceived to
estimate the size of object-oriented products.

On the other hand, Braz and Vergilio [7] introduced
two new metrics based on use case: 1) Use case size points,
which if considers the internal structure if the use case and
better captures its functionality. 2) Fuzzy use case size
points, considers concepts of Fuzzy Set Theory to create
gradual classifications that better deal with uncertainty.

Nesi and Querci proposed a new complexity and size
metrics for effort evaluation and prediction are presented
in [10]. These metrics were compared with respect to the
most important classical metrics in their literature. They
were also reported the validation of those metrics. While
Sherif and Sanderson [4] reported the implementation of
object-oriented metrics on two software projects
developed at the Jet Propulsion Laboratory (JPL).

2.2 Object-oriented sizing metrics

The most impressive finding related to object-oriented
sizing metrics was the one proposed by Chidamber and
Kemerer. Since the proposal of the six metrics [11]
theoretically, other researchers have made effort to
validate the metrics empirically. Li and Henry [15]
conducted an empirical study on the metrics using
maintenance effort data, while Basili et al. [13] validated
the metrics using software defects collected from student
projects. In 1994, Chidamber and Kemerer revised the
original metrics which was proposed in 1991 using
measurement theory and empirical data [12]. Chucher and
Shepperd were having some comments on possible
ambiguities in some of those metrics was reported in [9].
Evaluation on those metrics based on Kitchenham’s
metric-evaluation framework has been reported and
another 6 new object-oriented metrics were reported by Li
[14].

3. Chidamber and Kemerer metrics

New set of software metrics for object-oriented design

has developed and implemented by Chidamber and
Kemerer [11, 12]. These metrics were based in
measurement theory and also reflect the viewpoints of

experienced object-oriented developers. In particular, this
set of six proposed metrics is presented as a first attempt at
development of formal metrics for object-oriented design.

The authors claimed that this proposal should lay the
groundwork for a formal language with which to describe
metrics for object-oriented design. The following sub-
section described the metrics proposed.

3.1 Weight methods per class (WMC)

The Weighted Methods per Class (WMC) metric is
defined as the sum of the complexity of a class’ local
methods and intended to count the combined complexity
of local methods in a given class. According to Jones [3],
the weight portion of this metric is still under examination
and is being actively researched. Li [14] claimed that the
metric carrying two different units respectively and can be
used with two intentions: 1) count of local methods, and 2)
sum of the internal complexity of all local methods, but
the problem is the number of local methods and the
internal structural complexity of local methods are two
independent attributes of a class and the dual interpretation
of WMC metric might create a difficulties to the
practitioner. Li [14] proposed two new metrics: 1) Number
of Local Methods (NLM) and 2) Class Method
Complexity (CMC) to measure the two attributes that the
WMC intends to capture. These two metrics are present in
Section 4.

3.2 Depth of Inheritance tree (DIT)

According to Li [14], the Depth of Inheritance Tree
(DIT) metric is defined as “Depth of inheritance of the
class is the DIT metric for the class. In cases involving
multiple inheritances, the DIT will be the maximum length
from the node to the root of the tree”. Li found there are
two ambiguous points in this definition: 1) maximum
length from node to root becomes unclear when
inheritance tree with multiple roots and 2) conflicting
goals stated in the definition, the theoretical basis, and the
viewpoints for the DIT metric where theoretical basis and
viewpoints indicate that the DIT metric measure the
number of ancestor class of a class, but the definition of
DIT stated that it should measure the length of the path in
the inheritance tree, which is the distance between two
nodes in a graph. Li [14] proposed a new metric: Number
of Ancestor Classes (NAC) as an alternative to DIT

3.3 Response for class (RFC)

The Response for Class (RFC) is the number of
methods that can execute in response to a message sent to
an object within this class, using to one level of nesting [3].

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

316

No ambiguity or inadequacy is reported for this metric.
The instrumentation model for the RFC is the means to
calculate the RFC metric stated in [12].

3.4 Number of children (NOC)

According to Chidamber and Kemerer [11, 12], the
Number of Children (NOC) metric is defined as the
number of immediate sub-classes subordinated to a class
in the class hierarchy. Li [14] proposed a new metric:
Number of Descendent Classes (NDC) as an alternative to
the NOC metric to remedy the insufficiency of immediate
sub-class counting in NOC.

3.5 Lack of cohesion of methods (LCOM)

This metric is a count of the number of disjoint method
pairs minus the number of similar method pairs. The
disjoint methods have no common instance variables,
while the similar methods have at least one common
instance variable [3, 13]. The different definitions of the
Lack of Cohesion of Methods (LCOM) metric in [11, 13]
were noticed and discussed [14].

3.6 Coupling between objects (CBO)

The coupling Between Object Classes (CBO) metric is
defined as “CBO for a class is a count of the number of
non-inheritance related couples with classes”. Li [14]
claimed that the unit of “class” used in this metric is
difficult to justify, and suggested different forms of class
coupling: inheritance, abstract data type and message
passing which are available in object-oriented
programming. Li [14] proposed 2 new metrics: 1)
Coupling Through Abstract Data Type (CTA) and 2)
Coupling Through Message Passing (CTM) as an
alternative metrics are presents in section 4.

4. Li metrics

The problems associated with some of the Chidamber

and Kemerer metrics were discovered during the course of
defining the unit definition model for the metrics. An
alternative suite of object-oriented metrics that does not
have the problem is proposed [14]. According to the
author, the attribute is related to a specific concept in
object-oriented programming and the following section
presents six metrics proposed in order to overcome some
limitation found in Chidamber and Kemerer metrics.

4.1 Number of ancestor classes (NAC)

The Number of Ancestor classes (NAC) metric was

proposed, as an alternative to the DIT metric, to measure
this attribute of a class. Li define the NAC as the total
number of ancestor classes from which a class inherits in
the class inheritance hierarchy. The theoretical basis and
viewpoints both are same as the DIT metric. The unit for
the NAC metric is “class”, Li [14] justified that because
the attribute that the NAC metric captures is the number of
other classes’ environments from which the class inherits.
This unit is defined with reference to a standard which is
class inheritance relation in object-oriented programming.

4.2 Number of descendent classes (NDC)

The Number of Descendent Classes (NDC) metric is
proposed as an alternative to the NOC metric. It defined as
the total number of descendent classes (subclass) of a class.
The theoretical basis and viewpoints remain the same as
NOC. Li [14] reported that the attribute of a class that the
NOC metric captures is the number of classes that may
potentially be influenced by the class because of
inheritance relations. Li claimed that the NDC metric
captures the classes attribute better than NOC.

4.3 Number of local methods (NLM)

This is one of the metric proposed in Li [14] in order to
measure the attributes of a class that WMC metric intends
to capture. The Number of Local Methods metric (NLM)
is defined as the number of the local methods defined in a
class which are accessible outside the class. The
theoretical basis and viewpoints are different from the
WMC metric.

The theoretical basis describes the attribute of a class
that the NLM metric captures is the local interface of a
class. This attribute is important for the usage of the class
in an object-oriented design because it indicates the size of
a class’s local interface through which other classes can
use the class.

Li [14] stated three viewpoints for NLM metric as
following:
1. The NLM metric is directly linked to a programmer’s
comprehension effort when a class is reused in an OO
design. The more local methods a class has, the more
effort is required to comprehend the class’ behavior.
2. The larger the local interface of a class, the more effort
is needed to design, implement, test, and maintain the class.
3. The larger the local interface of a class, the more
influence the class has on its descendent classes.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

317

4.4 Class method complexity (CMC)

The Class Method Complexity (CMC) metric is defined
as the summation of the internal structural complexity of
all local methods. Regardless whether they are visible
outside the class or not. This definition is essentially the
same as the first definition of the WMC metric in [12].
However, the CMC metric’s theoretical basis and
viewpoints are significantly different from WMC metric.

The NLM and CMC metrics are fundamentally
different because they capture two independent attributes
of a class. However, there is some commonality in the
viewpoints of the two metrics – they affect the effort
required to design, implement, test and maintain a class.

4.5 Coupling through abstract data type (CTA)

The Coupling Through Abstract Data Type (CTA) is
defined as the total number of classes that are used as
abstract data types in the data-attribute declaration of a
class. Two classes are coupled when one class uses the
other class as an abstract data type [14]. Consider the
example in Fig. 1. Class B is coupled with class A through
the use of abstract data type because class B use class A in
its data-attribute declaration.

Fig. 1. An example of coupling through abstract data
Type

Theoretical basis according to Li [14]:
The CTA metric relates to the notion of class coupling
through the use of abstract data types. This metric gives
the scope of how many other classes’ services a class
needs in order to provide its own service to others.

Viewpoints according to Li [14]:
1. A software engineer needs to spend more time in
understanding the interfaces of the used classes in order to
create the design for a high CTA class than a low one.
2. For a test engineer, more effort is needed to design test
cases and perform testing for high CTA class than a low
one because that the behaviors of the used classes also
need to be tested.
3. For a maintenance engineer, it takes more time to
understand a high CTA class than a low one because a

high CTA class uses more class whose behaviors may
compliance the class.

4.6 Coupling through message passing (CTM)

The Coupling Through Message Passing (CTM)
defined as the number of different messages sent out from
a class to other classes excluding the messages sent to the
objects created as local objects in the local methods of the
class. Two classes can be coupled because one class sends
a message to an object of another class, without involving
the two classes through inheritance or abstract data type
[14]. Consider the example in Fig. 2. Both classes A and B
are in the same object-oriented design, and they are not
related through inheritance or abstract data type as a class
attribute. However, class A is coupled with class B
because of A’s methods sends a message to B’s object.

Fig. 2. An example of coupling through message
passing

Theoretical basis according to Li [14]:
The CTM metric relates to the notion of message passing
in object-oriented programming. The metric gives an
indication of how many methods of other classes are
needed to fulfill the class’ own functionality.

Viewpoints according to Li [14]:
1. A class designer needs to spend more effort in
understanding the services provided by other classes in a
high CTM class than in a low CTM class because the
outgoing message are directly related to the services other
classes provide.
2. A test engineer needs to spend more effort and design
more test cases for high CTM calss than for a low CTM
class because a high CTM value means more other
classes’ methods are involved in the logical paths of the
class.
3. For a maintenance engineer, the higher the CTM metric
value, the more specific methods in other classes the
engineer needs to understand in order to diagnose and fix
problems, or to perform other types of maintenance.

class A { class B {

 int a; A anA;

public: public:

 void A (); void B ();
 }; };

class A { class B {

 int a; A anA;

public: public:

 void A (); void B ();
 void A1 (B*b)
 {b->B1();}; void B1 ();
 }; };

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

318

5. Discussion and concluding remark

This paper overview and compare the metrics related to
object-oriented paradigm which was proposed by
Chidamber and Kemerer and refine by Li. Chidamber and
Kemerer were evaluated using the metric evaluation
framework proposed by Kichenham and her colleagues
[11]. Li and other researchers have made effort to validate
the six metrics theoretically and empirically. A new suite
of object-oriented metrics that does not have the noted
deficiencies was proposed later.

The 6 metrics by Li is intended to complement and
strengthen the 4 metrics proposed by Chidamber and
Kemerer. However, we found out there is some shortfalls
for the metrics that have been proposed. The studies of the
metrics are discussed in the following sub section.

5.1 WMC Vs CMC and NLM

WMC proposed by Chidamber and Kemerer leave the
impression of measuring two independent attributes of a
class at the same time: 1) the count of local methods and
2) the sum of internal complexity of all local methods.
This issue was bring out by Li and proposed the CMC and
NLM metric.

The CMC metric intends to measure the internal
structural complexity of a class via capturing the
complexity of information hiding in the local methods.
The theoretical basis and viewpoints stated by Li sounds
logic. However, the unit definition model is defined by
reference to conversion from another unit. This metric
proposal doesn’t sound convincing as the conversion rules
among the complexity metrics have not well defined up to
circa 2008. The measures of structural complexity
mentioned in [14] are proposed for classical structural
paradigm, those metrics are not theoretically nor
empirically validated.

We suggested that if there is a metric proposed for class
method complexity based on the structure of the class
would be more practical.

The NLM, a metric that only consider local methods
defined in a class, which is accessible to the other classes.
The private methods in a class do not included in this
metric, although it shows the properties of object and
indicates the size of a class.
Due to the metric definition proposed by Li is not
completely comprehensive comply to the theoretical basis,
we suggested that NLM should be further divided into two
more comprehensive metrics 1) Number of private
methods and 2) Number of public methods with
appropriate weight allocation through empirical validation.

5.3 DIT Vs NAC

The attribute of a class that DIT metric intends to
capture is the number of classes that have potential
influence on the class because of the inheritance relations.
However, there are some ambiguous factors lie in 1) When
multiple inheritance and multiple roots, classes that do not
inherit from any other classes, are present at the same time,
and 2) Conflicting goals stated in the definition, the
theoretical basis, and the viewpoints.

NAC, this metric was proposed to overcome the
ambiguities lie in DIT metric. Li [14] claimed that number
of ancestor classes of a class could be the best metric to
capture the class inheritance relations, regardless of the
number of roots or whether multiple inheritances is
present compare to the metric DIT, which is a measure of
depth of inheritance of the class.

We notice that DIT and NAC both serve the same
objective – measure the inheritance relations among the
classes as both metrics having the same theoretical basis
and viewpoints. Proposed of NAC is not necessary, since
we can revise the definition of DIT in order to solve the
ambiguities. On the other hand, we believe that detailed
out the DIT or NAC metric would provide helpful
information in complexity measure for the class design in
object-oriented paradigm.

5.4 NOC Vs NDC

NOC is defined as the number of immediate subclass
subordinated to a class in the class hierarchy. However, Li
[14] claimed that the metrics should measures the number
of immediate and non-immediate subclasses as a class has
influence over all its subclasses.

The NDC metric refined the shortfall of NOC by
considering both immediate and non-immediate subclasses.
We agreed with this point. However, we argue that by
revise the definition of NOC would be good enough.

The more constructive works should focus on the type
of inheritance which comes in two forms: data attributes
and methods that are inheritable from the class by its
subclass. If we detailed out these two attributes for the
metric, it might increase the accuracy of complexity
measure cause by the inheritance relations among the
classes.

5.5 CBO Vs CTA and CTM

CBO measures the number of non-inheritance related
couples with other classes in general. Li[14] claimed that
the unit measure -class, is hard to justify the measure
coupling. Li proposed 2 new metrics based on different

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

319

form of class coupling unit definition model: abstract data
type and message passing

CTA defines as the total number of classes that are
used as abstract data types in the data attribute declaration
of a class. Li [14] proposed this metric by breaking down
the type of class coupled: inheritance, abstract type and
message passing.

We found out that the definition and theoretical of the
metric doesn’t exclude the non-inheritance related couples.
This might create double counting when the class is
having the different inheritance relations which are
capturing the same attributes.

CTM measures the number of different messages sent
out from a class to other classes excluding the messages
sent to the objects created as local objects in the local
methods of the class.

The issue for this metric is similar to the CTA. In
addition, we notice that the theoretical basis for this metric
indicate that the purpose of this metric is to measure the
services of other classes are needed to fulfill the class’
own functionality. We believe that by classifying or
measuring the services provided for one classes might be
more practical than CTM.

References

[1] G. Antoniol, C. Lokan, G. Caldiera and R. Fiutem, “A

Function Point-Like Measure for Object-Oriented
Software”, Empirical Software Engineering, Vol. 4,
Issue 3, September 1999, pp. 263-287.

[2] G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello,
“Class Point: An Approach for the Size Estimation of Object-
Oriented Systems”, IEEE Transaction on Software
engineering, Vol. 31, No. 1, January 2005, pp. 52-74

[3] Jones, C., Estimating Software Costs: Bringing Realism to
Estimating, 2nd Edition, Mc Graw Hill, New York, 2007.

[4] J. S. Sherif and P. Sanderson, “Metrics for Object-oriented
Software Projects”, The Journal of System and Software 44,
1998, pp. 147-154.

[5] L. A. Laranjeira, “Software Size Estimation of Object-
Oriented Systems”, IEEE Transaction on Software
Engineering, Vol. 16, No. 5, May 1990, pp. 510-522.

[6] L. C. Briand and J. Wust, “Modeling Development
Effort in Object-Oriented Systems Using Design
Properties”, IEEE Transactions on Software
Engineering, Vol. 27, No. 11, November 2001, pp.
963-986.

[7] M. R. Braz and S. R. Vergilio, “Software Effort Estimation
Based on Use Cases”, Proceedings of 30th Annual
International Computer Software and Applications
Conference (COMPASAC ’06), IEEE Computer Society,
September 2006, pp. 221-228.

[8] N. Condori-Fernandez, S. Abrahao, and O. Pastor,
“Towards a Functional Size Measure for Object-
Oriented Systems from Requirements Specifications”,
Proceedings of the Fourth International Conference on

Quality Software (QSIC ’04), IEEE Computer Society,
September 2004, pp. 94-101

[9] N.I. Chucher and M.J. Shepperd, “Comments on a
metrics Suite for Object-oriented Design” IEEE
Transaction on Software Engineering, Vol. 21, No.3,
1995, pp. 263-265.

[10] P. Nesi and T. Querci, “Effort Estimation and
Prediction of Object-oriented Systems”, The Journal of
Systems and Software, Vol. 42, Issue 1, July 1998, pp.
89-102.

[11] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on Software
Engineering, Vol. 20, No. 6, June 1994, pp. 476-493.

[12] S. R. Chidamber and C. F. Kemerer, “Towards a Metrics
Suite for Object Oriented Design”, Proceeding on Object
Oriented Programming Systems, Languages and Applications
Conference (OOPSLA’91), ACM, Vol. 26, Issue 11, Nov
1991, pp. 197-211.

[13] V. L. Basili, L. Briand and W. L. Melo, “A validation
of object-oriented Metrics as Quality Indicators”,
IEEE Transaction Software Engineering. Vol. 22, No.
10, 1996, pp. 751-761.

[14] W. Li, “Another Metric Suite for Object-oriented
Programming”, The Journal of System and Software,
Vol. 44, Issue 2, December 1998, pp. 155-162.

[15] W. Li and S. Henry, “Object-oriented Metrics which
Predict Maintainability”, The Journal of Systems and
Software, Vol. 23, Issue 2, November 1993, pp. 111-
122.

Koh Tieng Wei received the first
degree in computer science in 2003
and the M.S. degree in software
engineering in 2006 from University
Putra Malaysia. Currently, he is
pursuing a PhD degree with his
research work related to object-
oriented software sizing measure.

Mohd Hasan bin Selamat received
his M. Sc in Computer Science from
Essex University in 1981 and M. Phil
in Information System form East
Anglia University in 1989. His
research interest includes component-
based software development,
knowledge management, software
costing, and strategic information
system planning. He is now an

Associate Professor in The Department of Information
System, Faculty of Computer Science and Information
Technology, Universiti Putra Malaysia. He has published
a number of papers related to this area.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

320

Abdul Azim bin Abdul Ghani is an
Associate Professor cum the Dean of
the Faculty of Computer Science and
Information Technology, University
Putra Malaysia. He obtained his PhD
in computer science from University
of Strathclyde, Scotland. His research
interest is software engineering and
software measurement.

Rusli bin Haji Abdullah is a senior
lecturer in Information System
Department, Faculty of Computer
Science and Information Technology
of University Putra Malaysia. He
holds a B.Sc in Computer Science
from University Putra Malaysia
(1988), M.Sc in Computer Science
from University Putra Malaysia

(1996), and PhD in Knowledge Management field at
Faculty of Computer Science and Information System at
University Tecknologi Malaysia (2005). He has more 12
years of teaching experience and with about 8 years of
system development experience as a system analyst at
higher learning institution.

