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Abstract 
In this paper, we consider the problem of pricing for 

optimal resource allocation service using Engineering 
Optimization with Particle Swarm algorithm that ensures 
efficient resource allocation that provides guaranteed 
quality of service while maximizing profit in multiservice 
networks. We formulate our generalized optimization 
algorithm based on the notion of a “profit center” with an 
arbitrary number of service classes, linear revenue and 
nonlinear cost functions and general performance 
constraints. To ensure the resource constraint is satisfied, 
we incorporate adaptive resource bounds to guide the 
search. Specifically, we develop a fast, low complexity 
algorithm for online dynamic resource allocation, and 
examine its properties. Finally, its performance is 
evaluated through an extensive numerical study.  

 
Keywords: Nonlinear resource allocation problem; 

Adaptive resource bounds; particle swarm optimization; 
mathematical programming.   

  
 
1. INTRODUCTION 

The next generation Internet will provide advanced 
services, such as Quality of Service (QoS) guarantees, to 
users and their applications. As a result of, these 
enhancements, it is expected that service providers will 
face an increasing number of users as well as a wide 
variety of applications. Under these demanding conditions, 
network service providers must carefully provision and 
allocate network resources (e.g. bandwidth, buffer size, 
CPU capacity) for their customers. Provisioning is the 
acquisition of large end-to-end network services 
(connections) over a long time scale. In contrast, allocation 
is the distribution of these provisioned services (via 
pricing) to individual users over a smaller time scale [1]. 
Determining the optimal amounts to provision and allocate 
remains a difficult problem under realistic conditions. 
Service providers must balance user needs in the short-
term while provisioning connections for the long term. 
Furthermore, this must be done in a scalable fashion to 

meet the growing demand for network services, while also 
being adaptable to future network technologies. This paper 
presents a modified particle swarm optimization (PSO) 
algorithm for engineering optimization problems with 
constraints. PSO is started with a group of feasible 
solutions and a feasibility  

 
 
 
 
 
function is used to check if the newly explored 

solutions satisfy all the constraints. All the particles keep 
only those feasible solutions in their memory. Several 
engineering design optimization problems were tested and 
the results show that PSO is an efficient and general 
approach to solve most nonlinear optimization problems 
with inequity constraints [2].                            

In this paper, we propose a service pricing model that 
ensures efficient allocation of resources in a dynamic 
manner in the aforementioned multiservice networks. The 
scheme requires close on-line monitoring of the incoming 
traffic.  

We assume a Fractional Brownian Motion traffic 
model, because of its ability to adequately capture 
characteristics of real network traces, such as self-
similarity and the presence of heavy tailed marginal 
distributions [3]. Optimal resource allocation is also 
studied in [4-6]. Specifically, Peng et al. propose a 
measurement-based resource allocation scheme based on a 
linear pricing model and average queue delay guarantees. 
This scheme has the disadvantage of not being scalable to 
large number of service classes. Moreover, average queue 
delay is not always an appropriate QoS constraint. In [5], 
they perform maximization over a utility function provided 
from the network users and resources are shared based on 
the solution of that optimization problem. In [6], the 
authors study the problem of resource allocation with 
dynamic pricing in which the network administrator 
controls the price of the resources that users demand; 
based on the demand the prices are dynamically changed 
over different time periods so as to maximize the revenue 
of the administrator. Finally, measurement-based resource 
allocation has also been studied in different contexts in [7-
9]. 

 

Optimal Resource Allocation in Next Generation Network Services using 
Engineering Optimization with Linear Constraint Particle Swarm



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 

329

2. MODELING FRAMEWORK 
The employed modeling framework was introduced in 

[4], [10] and is depicted in Figure 1. In its present form it 
represents a single network element, which can be either a 
traditional network component, such as switch or a router, 
or a modern network “service center”, like IBM’s Data 
Power Service Oriented appliances [11] or CISCO’s 
Application Oriented Network (AON) message routing 
system [12]. It is assumed that the network element serves 
two categories of traffic classes; deterministic delay-bound 
classes and flexible delay-bound ones. Due to the fact that 
deterministic delay-bound classes have strict requirements, 
their service level agreement (SLA) can be satisfied only 
by traffic shaping and admission control schemes [13, 14]. 
Thus, an amount of resources is dedicated to them and 
these classes are excluded from subsequent analysis. 
Examples of these inelastic classes of service include 
teleconferencing, remote seminars, real-time distributed 
computation/simulation and high-precision medical 
imaging.  

Therefore, the proposed system is responsible for 
optimally allocating the excess resources to the remaining 
flexible delay bound classes. These classes enter the 
Measurement Based Optimal Resource Allocation 
(MBORA) system proposed in [10] and shown in Figure 2. 
The MBORA system consists of a measurement module, 
an optimization module and a resource orchestrator 
module. The statistics of the arrival traffic are measured by 
the measurement module. It is assumed that the traffic can 
be accurately approximated by a Fractional Brownian 
motion model, which can account for the burst ness and 
long-range dependence observed in real traffic traces. 
Such a model can be fully described by the following 
parameters: the Hurst parameter H , the mean arrival rate 
α  and the variance σ . An algorithm for on-line 
measurement of these parameters is discussed in [15]. 

 

 
Fig. 1: Depiction of the proposed framework 

 

Fig. 2: The MBORA system 
 

The optimization module receives the traffic 
characteristics of each class and calculates the optimal 
allocation of resources by solving the optimization 
problem discussed in Section III. It should be noted that 
the optimization problem is solved only when there is a 
significant change in traffic characteristics. The optimal 
solution is fed to the resource orchestrator which 
dynamically updates the allocation of resources for each 
traffic class and forwards the packets (or, more generally, 
the messages, for example XML) toward their destination. 

 
3. PRICING MODEL AND OPTIMIZATION 
PROBLEM FORMULATION 

We start by introducing the pricing model, whose 
solution yields the optimal allocation of resources to the 
network service node we described in the previous section. 

 
A. Non-Linear Pricing Model  

Suppose that the node can provide K different types of 
services. The proportions of these services to be allocated 
are denoted by ),,( 1 Kφφφ K= .  

According to [16], the profit of a provider is the 
difference between the revenue )(φr  that is obtained for 
providing these services and the cost )(φc  that incurs 
from producing them. The aim of this provider is to 
maximize the profit function subject to the feasibility 
constraints:  

))()((max)}()(max{
1
∑
=

−=−=
K

k
kkkk crcr φφφφπ  (1) 

Subject to the feasibility constraints: 
∑ ≤=≥

k kk Kk 1,,,1,0 φφ K . The revenue is given 

by a linear function, while the cost by a nonlinear one. 
Specifically, iiii pr φφ .)( =  while the cost function has 

the form )]d)(D(exp[).(D.b)(c iiiiiii −= φβφφ . 
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The coefficient ip  corresponds to the price that the 

provider charges for service i and the parameter ib  is the 
amount that the provider has to reimburse the users 
whenever the SLAs are not met. A higher priority class u 
requires better service than a lower one v and thus it is 
charged more (i.e., vu pp >  and vu bb > ). The 

parameter β  controls the steepness of the cost function, 
while )( iD φ denotes the value of the performance metric 

experienced by users of service i and id  the target level 
under the SLA. Hence, if ii dD >)(φ the users are not 
receiving adequate resources from the provider, which 
would incur a cost, until the situation is rectified. This 
function is monotone in )( iiD φ and is shown in Figure 3. 
The steep increase in the cost observed beyond the desired 
by the users SLA value of id would force the provider to 
adjust the allocation of resources (if possible), in order to 
satisfy the QoS requirements and maximize profit. 

Probabilistic Delay Constraints: We employ stochastic 
delay bounds as the metric for QoS considerations. 
Specifically, we adopt the approach used in [17], [18], 
where traffic is treated as Long Range Dependent (LRD) 
and is characterized by the Hurst parameter H , the mean 
α and the varianceσ .  

 
Fig. 3: Cost function 

 
Notice that even a small increase of 2.5% above the 

delay threshold yields an increase above 100% in the cost 
function. In this case parameter β = 10. 

It is shown that the queue length at any given time t is 
bounded by a value maxq with probability 0>ε related to 
the desired QoS. It is shown that for a specific class the 
following holds:  

ε≈> ))(Pr( maxqtQ  (2)                                                                                                                      
and  

)1()()( )1/()1/(1)1/(
max HHKCq HHHHH −−= −−− σα           

(3)                              

Where C can be interpreted as the resources (e.g., 
bandwidth) dedicated to this particular class, ε  is the 
required QoS and εln2−=k .  

Thus, since the queue length and expected delay are 
related, we have the following probabilistic delay bound:  

ε≈> ))(Pr( maxDtD           (4) 
and                                                             

C
)H1(H)k()C(

maxD
)H1/(H)H1/(1)1H/(H −−

=
−−− σα  (5) 

This delay bound is used in the cost function. 
 

B. Particle Swarm Optimization  
Particle swarm optimization (PSO) was originally 

designed and introduced by Eberhart and Kennedy [19-21] 
in 1995. The PSO is a population based search algorithm 
based on the simulation of the social behavior of birds, 
bees or a school of fishes. This algorithm originally 
intends to graphically simulate the graceful and 
unpredictable choreography of a bird folk. A vector in 
multidimensional search space represents each individual 
within the swarm. This vector has also one assigned vector, 
which determines the next movement of the particle and is 
called the velocity vector. The PSO algorithm also 
determines how to update the velocity of a particle. Each 
particle updates its velocity based on current velocity and 
the best position it has explored so far; and based on the 
global best position explored by swarm [22-24]. The PSO 
process then is iterated a fixed number of times or until a 
minimum error based on desired performance index is 
achieved. It has been shown that this simple model can 
deal with difficult optimization problems efficiently. 

A detailed description of PSO algorithm is presented 
in [19-21]. Here we will give a short description of the 
PSO algorithm proposed by Kennedy and Eberhart. 
Assume that our search space is d-dimensional, and i-th 
particle of the swarm can be represented by a d-
dimensional position vector ),,,( 21

i
d

iii xxxX K= . The 
velocity of the particle is denoted by 

),,,( 21
i

d
iii vvvV K= . Also consider best visited 

position for the particle is ),,,( 21
i

d
iiibest pppP K=  and 

also the best position explored so far 
is ),,,( 21

g
d

gggbest pppP K= . So the position of the 
particle and its velocity is being updated using following 
equations: 

))t(x)t(p(c
))t(x)t(p(c)t(v.w)1t(v

ig22

ii11ii

−+
−+=+

ϕ
ϕ

 (6)                          

 
)1()()1( ++=+ tvtxtx iii  (7)  
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Where 1c and 2c are positive constants, and 1ϕ  and 

2ϕ are two uniformly distributed number between 0 and 1. 
In this equation, W is the inertia weight which shows the 
effect of previous velocity vector on the new vector. The 
inertia weight W plays the role of balancing the global and 
local searches and its value may vary during the 
optimization process. A large inertia weight encourages a 
global search while a small value pursues a local search. In 
[25] authors have proposed an Adaptive Weighted PSO 
(AWPSO) algorithm in which the velocity formula of PSO 
is modified as follows: 

))](())((.[)(.)1( 21 txprtxprtvwtv igiiii −+−+=+ α  (8)                                                                  
The second term in Equation (8) can be viewed as an 

acceleration term, which depends on the distances between 
the current position ix , the personal best ip and the global 

best gp . The acceleration factorα is defined as follows: 

tNt+= 0αα  (9)                                                                                                                  

Where tN  denotes the number of iterations, t  
represents the current generation, and the suggested range 
for α  is [0.5, 1]. As can be seen from Equation (9), the 
acceleration term will increase as the number of iterations 
increases, which will enhance the global search ability at 
the end of run and help the algorithm to jump out of the 
local optimum, especially in the case of multi-modal 
problems. Furthermore, instead of using a linearly 
decreasing inertia weight, they used a random number, 
which was proved by Zhang et al. [26] to improve the 
performance of the PSO in some benchmark functions as 
follows: 

)1( 00 wrww −+=  (10)                               

Where ]1,0[0 ∈w  is a positive constant, and r  is a 
random number uniformly distributed in [0, 1]. The 
suggested range for 0w  is [0, 0.5], which makes the 
weight w  randomly varying between 0 and 1. An upper 
bound is placed on the velocity in all dimensions. This 
limitation prevents the particle from moving too rapidly 
from one region in search space to another. This value is 
usually initialized as a function of the range of the problem. 
For example if the range of all ijx  is [-1, 1] then maxV  is 
proportional to 1. 

ibestp  For each particle is updated in each iteration 
when a better position for the particle or for the whole 
swarm is obtained. The feature that drives PSO is social 
interaction. Individuals (particles) within the swarm learn 
from each other, and based on the knowledge obtained 
then move to become similar to their “better” previously 
obtained position and also to their “better” neighbors. 
Individual within a neighborhood communicate with one 

other. Based on the communication of a particle within the 
swarm different neighborhood topologies are defined. One 
of these topologies which is considered here, is the star 
topology. In this topology each particle can communicate 
with every other individual, forming a fully connected 
social network. In this case each particle is attracted 
toward the best particle (best problem solution) found by 
any member of the entire swarm. Each particle therefore 
imitates the overall best particle. So the gbestp  is updated 
when a new best position within the whole swarm is found. 

In order to evaluate the performance of individual 
particles, an appropriate evaluation function (or profit 
function) should be defined. 

Now putting the revenue and cost components 
together, the provider’s profit problem becomes: 

)]}d)(D(exp[

)(DbCpmax{

iii

i
k

1i
ii

k

1i
ii

−

×− ∑∑
==

φβ

φφ  (11) 

Subject to the feasibility constraints previously 
described. In the above expression, )( iiD φ  is given from 

Eq. 5 by substituting parameter C with Ci .φ , since we are 
dealing with a network element with multiple input classes 
each of which is allocated a portion iφ of the total C 

resources. Note also that )( iiD φ is actually )(max, iiD φ . 

In the Eq.11 iφ  is generated as uniformly distributed 
random number within the interval [0,1]. In this way, we 
can obtain a uniformly distributed random iφ combination, 
which is generated at every  iteration. In the light of above 
considerations, the proposed algorithm can be summarized 
as follows: 

1. Initialization: Set population number N and iteration 
number tN . Initialize the position ix  and velocity iv of 

the particles )( iφ  with random numbers within the pre-

defined decision variable range. maxV is set to the upper 
bound of the decision variables. Set personal best 
position ii xp = , iteration counter t=0. 
2. Evaluation: t=t+1. Evaluate each particle in the current 
population using equation (11). If )1()( −> tt ii ππ , then 

ii xp = . Find }max{max iππ =  , and corresponding 

position maxX . Select global best maxXpg = . 
3. Calculate the new velocity and position: Calculate the 
new velocity iNV and new position iNX  based on the 
current ),2,1( Nixi K= , using equations (7) and (8), and 
the profit function values for all the new particles.  
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4. If all max1.0 Vvi < , execute the following steps, 
otherwise go to 5:  
a) Randomly select 20% particles in current population 

and randomly change their positions by 10% of the maxV .  
b) Repeat a) K times (K=1~10), make sure the number of 
x dose not exceed N. 

5. If t < tN , go to 2. 
Remark: For the under-provisioned case, the problem is 
not particularly interesting, since the QoS constraints 
would be surely violated. Hence, the service provider 
would allocate resources according to the average traffic 
intensities; further, it is easy to see that the operation 
would not be profitable. Hence, this regime is not studied 
in this paper. 
 

4. RESULTS AND DISCUSSION 
In this section, we evaluate our pricing model in the 

over provisioned case with a numerical case study. It is 
assumed that there are two types of service classes and the 
profit function becomes: 

))d)(D(exp(
)(Db))d)(D(exp(

)(DbCpCp),(

222

222111

111221121

−
×−−

×−+=

φβ
φφβ

φφφφφπ
               

(12) 
  
Where 

2,1i

,
)H1(H)k()(

)(D
i

iH1

H

i
H1

1

i
1H

H

ii
ii

i

i
ii

i

=

−−
=

−
−−

φ

σαφ
φ  (13) 

Hence, we have to solve the optimization problem: 
),(max 21 φφπ  subject to  121 =+φφ  

The parameters of the profit function used in the study are 
shown (Table 1). Optimal solution is shown when the 
arrival rate and the price coefficients are varied (Tables 
2,3). It can be seen that with equal arrival rates and all the 
other parameters the same, the optimal solution allocates 
the resource equally amongst the two classes, as expected 
(Table 2). On the other hand, the class with the higher 
arrival rate is allocated a larger portion of the resources, 
especially if the system is not too stressed (see rows 2 and 
3 in the Table 2). In that situation the profit does not also 
fluctuate much. Finally, when the system becomes stressed 
(last row in the Table 2) the class with higher arrival rate 
gets a higher proportion, but the overall profit for the 
provider decreases substantially, since violations of the 
SLA occur more often and therefore a large cost is 
incurred. In Table 3, the price coefficient varies, while all 
other parameters are held fixed (Table 1). Again, with 
equal prices we obtain equal allocations, while the 
allocation of resources exhibits a strong sensitivity to the 
price ratio 21 PP . 

 
 

 

 
Fig. 4: Our Profit Function as a function of inputs ),( 21 φφ

0.2
0.3

0.4
0.5

0.6
0.7

0.2
0.4

0.6

0.8
1

18.6

18.8

19

19.2

19.4

19.6

19.8

Input1

Profit function as a function of inputs

Input2



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 

333

 
Table1: Parameters for two different classes 

   Class1  Class2 
 p  (cents/Mbps) 1 1 
 b  (cents/ms) 0.1 0.1 
 d  (in delay units) 0.01 0.01 
 )( ε=QoS  10-6 10-6 
α (normalized to C) 0.2 0.2 
σ (normalized to C) 0.01 0.01 
              H  0.70 0. 70 

 
      Table 2: Changing the arrival rates iα                                                          Table3: Changing the pricing factor 

ip  
 

 
5. CONCLUSION 

In this paper, we have studied a pricing scheme for 
next generation multiservice networks. An optimization 
problem based on an intelligent searchable pricing 
model was formulated, whose solution yields the 
optimal resource allocation in a network/service node, 
given the QoS requirements of each service class that 
the network element serves. Our non-linear pricing 
model responds well to changes of the characteristics in 
the input traffic, pricing parameters and QoS 
requirements. Further, the resulting particle swarm 
optimization problem can easily and efficiently be 
solved using standard iterative methods and hence the 
proposed modeling framework approach is scalable to 
any number of service classes. 
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