
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

7

Time Critical Intrusion Detection System

 T.P.Saravanabavaa and P.Narayanasamyb,
a Department of Electrical and Electronics Engineering b Department of Computer Science &Engineering

Anna University
Chennai, India

Summary
. Communication system to support real-time system must
provide transparent protection, better adaptation to
changing environments, assured availability of critical
services, timing and performance guarantees and the
protection against disruption through naturally occurring
events or malicious attack. Most of the thrust in today’s
IDS research is focused on accurate detection of attacks.
Time critical real-time application demands the detection
of attacks at a minimal, uniform and predictable time. This
paper analysed, designed and implemented a parallel
implementation of intrusion detection rules learned using
RIPPER algorithm. We tested its performance using KDD
CUP 1999 intrusion detection data. Obtained accuracy and
time performance were analysed.

Key words:
 Intrusion Detection, Real-time applications, RIPPER

1. Introduction
Recent advances in technology and human’s thrust to
reach the heather too unexplored frontier let to situations
which forces us to be prepared for several new challenges.
As an example, stationing scientist in the space for an
extended period for the purpose of research and soldiers in
the front line of battlefield poses very peculiar challenges.
In these situations, if scientist or soldiers need urgent
medical attention at an affordable cost at the quickest
possible time, real-time systems come into help. It is
demonstrated successfully that surgeons were able to
perform an operation on a patient 7000 KM away with the
help of robots and dedicated high-speed low latency
communication infrastructure. This is to become cost
effective so as to reach small far away communities and
hostile places, technology should allow the usage of
secure and reliable shared networks which will provide the
same very low latency with high security. Main aim of our
research is to speed up of operation without sacrificing
accuracy of the total system. We have selected for this task
a soft computing technique RIPPER which provides for
excellent opportunity to parallelize the prediction

operation and there by allowing the overall performance
improvement in the resultant real-time system. The
particular case, which we have selected for our study for
the purpose of system requirement parameters and to rank
the perceived threat to such real-time system, is tele-
surgery.
Since these systems are particularly very sensitive to delay,
delay variations and bandwidth variations. These
parameters must be guaranteed. At the same time we must
come up with a strategy, which will satisfy these
requirements with a least cost. So, the ultimate choice
leads to use of shared data network, which will guarantee
the necessary bandwidth. Since, these real-time systems
are very sensitive and cannot be suspended at the middle,
all systems must provide the desired service through out
the procedure. So, we propose a system in which at least 2
layers of communication options are kept ready one is a
shared network that would be primarily used and another
stand by dedicated network, which will be utilised in case
the primary shared network fail to meet the system
requirement at any point of time of the procedure.
We propose an end-to-end encrypted tunnel from the
surgeon’s computer to the computer, which directly
connects to the robots, which perform the procedure under
the guidance of the surgeon. This tunnel should be
established by authenticating the both end systems and
applications at the both ends. All communication must be
encrypted between these two systems, which will ensure
both privacy, and integrity. Since, small deviation of
robots hand movement may cause severe damage to the
patient. So, integrity of the message transferred between
the two ends must be protected. Single largest threat is the
DOS and DDOS attacks which will eventually limit the
available bandwidth between the two ends. This must be
continuously monitored and responded quickly. For this
we propose an intrusion detection model based on the
RIPPER rule learning technique. We improved the
classification part of the learned rules by parallelising it.
Since, learning is a one-time process or a infrequent
process compared to the classification operation. So, we
considered in our research to improve the classification
process alone. We studied and analysed our ideas using

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

8

the 1999 version of MIT Lincoln Laboratory – DARPA
intrusion evaluation data. Our approach is to simulate the
process using the DARPA data only the portion of
classification of intrusions. Data collection and feature
construction are required when applied in real networks.
Architecture of our system is depicted in figure 1. Our
analysis showed that it gives 1.8 times better performance
for a system with two processors.
Intrusion detection is the process of monitoring the events
occurring in a computer system or network and analyzing
them for signs of possible incidents, which are violations
or imminent threats of violation of computer security
policies, acceptable use policies, or standard security
practices. Intrusion prevention is the process of
performing intrusion detection and attempting to stop
detected possible incidents. Intrusion detection and
prevention systems (IDPS) are primarily focused on
identifying possible incidents, logging information about
them, attempting to stop them, and reporting them to
security administrators. In addition, organizations use
IDPSs for other purposes, such as identifying problems
with security policies, documenting existing threats, and
deterring individuals from violating security policies.
IDPSs have become a necessary addition to the security
infrastructure of nearly every organization Karen et al [6].
There are many types of IDPS technologies, which are
differentiated primarily by the types of events that they
can recognize and the methodologies that they use to
identify possible incidents. These publications discusses
the following four types of IDPS technologies:
Network-Based, which monitors network traffic for
particular network segments or devices and analyzes the
network and application protocol activity to identify
suspicious activity.
Wireless, which monitors wireless network traffic and
analyzes it to identify suspicious activity involving the
wireless networking protocols themselves.
Network Behavior Analysis (NBA), which examines
network traffic to identify threats that generate unusual
traffic flows, such as DDoS attacks, scanning, and certain
forms of malware.
Host-Based, which monitors the characteristics of a single
host and the events occurring within that host for
suspicious activity.
IDPSs typically record information related to observed
events, notify security administrators of important
observed events, and produce reports. Many IDPSs can
also respond to a detected threat by attempting to prevent
it from succeeding. They use several response techniques,
which involve the IDPS stopping the attack itself,
changing the security environment (e.g., reconfiguring a
firewall), or changing the attack’s content.

2. Related Work
Srinivas et al [5] describes approaches to intrusion
detection using neural networks and support vector
machines. The key ideas of their research are to discover
useful patterns or features that describe user behaviour on
a system, and use the set of relevant features to build
classifiers that can recognize anomalies and known
intrusions. Their observation shows that both neural
networks and SVMs deliver accurate results and shows
compatible level of performance. Whether to use SVMs or
neural networks in implementing an intrusion detector
depends on the particular type of intrusion (anomaly or
misuse) that is under watch, as well as other security
policy requirements. SVMs have great potential to be used
in place of neural networks due to its scalability and faster
training and running time. But SVMs can only make
binary classification, which is a sevee disadvantage where
the intrusion detection system requires multiple-class
identification. On the other hand, neural network have
already proven to be useful in many IDSs, and are
especially suited for multi-category classification.
Sung et al. [4] presented a novel intrusion detection
system that models normal behaviours with hidden
Markov models and attempted to detect intrusions by
noting significant deviations from the models. Neural
network and fuzzy logic are incorporated into the system
to achieve robustness and flexibility. Self-organizing map
determines the optimal measures of audit data and reduces
them into appropriate size for efficient modelling by
HMM. Based on several models with different measures,
fuzzy logic makes the final decision of whether current
behaviour is abnormal or not. Experimental results with
some real audit data showed that the proposed fusion
produces a viable intrusion detection system.
Tatyana et al. [3] applied dynamic authorization
techniques to support fine grained access control and
application level intrusion detection and response
capabilities to overcome the shortcoming of current
intrusion detection systems that work in isolation from
access control for the application the system aim to protect.
Their argument is that this approach helps in cooperation
and interoperation between these components which helps
in early detection and response. They presented a generic
authorization framework that supports security policies
that can detect attempted and actual security breches and
which can actively respond by modifying security policies
dynamically. The GAA-API combines policy enforcement
with application-level intrusion detection and response,
allowing countermeasures to be applied to ongoing attacks
before they cause damage. Because the API processes
access control request by applications, it is ideally placed
to apply application-level knowledge about policies and

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

9

activities to identify suspicious activity and apply
appropriate response.
Suseela et. Al [2] presented a novel multilevel hierarchical
Kohonen Net (K-Map) for an intrusion detection System.
Each level of the hierarchical map is modelled as a simple
winner-take-all K-Map. One significant advantage of this
multilevel hierarchical K-map is its computational
efficiency. Unlike other statistical anomaly detection
methods such as nearest neighbour approach, K-means
clustering or probabilistic analysis that employ distance
computation in the feature space to identify the outliers,
our approach does not involve costly point-to-point
computation in organizing the data into clusters. Another
advantage is the reduced network size. They used the
classification capability of the K-Map on selected
dimensions of data set in detecting anomalies. Randomly
selected subsets that contain both attacks and normal
records from the KDD cup 1999 benchmark data are used
to train the hierarchical net. They use a confidence
measure to label the clusters. Then they used the test set
from the same KDD Cup 1999 benchmark to test the
hierarchical net. They showed that a hierarchical K-Map
in which each layer operates on a small subset of the
feature space is superior to single-layer K-Map operating
on the whole feature space in detecting a variety of attacks
in terms of detection rate as well as false positive rate.
Sang et al [1] proposes in this paper, a novel intrusion-
detection technique based on evolutionary neural networks
(ENNs). Advantage of using ENNs is that it takes less
time to obtain superior neural networks than when using
conventional approaches. This is because they discover the
structures and weights of the neural networks
simultaneously. Experimental results with the 1999
Defense Advanced Research Projects Agency (DARPA)
Intrusion Detection Evaluation (IDEVAL) data confirm
that ENNs are promising tools for intrusion detection.
 El-Moussa et al [7] proposed a new approach that deploys
active routers within a network to provide a distributed
and adaptable defence system. Each active router
integrates firewall functionality, intrusion detection, and a
cryptographic algorithm. The firewall and the intrusion
detection are used to detect and block attack traffic
coming from or going to a network. The active routers to
provide a secure communication between end users on
their behalf use the cryptographic algorithm. In addition,
active routers use a dedicated active protocol to control the
traffic passing through them, and to detect and to block the
attack close to its origin. They have through simulation,
demonstrated that their proposed architecture has the
required functionality to defeat well-known attack types.
Using a distributed approach overcomes the limitation of
conventional techniques that deploy a single firewall or
management station to protect an entire network. Each

active router provides its own protection of its attached
subnets and collectively they are able to offer a strong
defence for the whole network. Even if an active router is
directly connected to two subnets, it can still protect one
subnet from an attacker coming from the other subnet.
Should an active router become compromised then the
others continue to protect the network. The adoption of an
active router approach also allows each one to adapt in
real time and reconfigure to block certain traffic profiles
while allowing others to pass through. Using a distributed
array of active routers also means that when an attack is
detected then it can be traced back and blocked at the
active router that is closest to the point of origin of the
attack. Finally, the adoption of data encryption between
active routers adds further protection against an attacker
originating from within the network.

3. Background and Motivation:

3.1 Tele-surgery
A surgeon at a site remote from the patient performs tele-
surgery, also called remote surgery. Surgical tasks are
directly performed by a robotic system controlled by the
surgeon at the remote site.

3.1.1 Preceding technologies
Tele-surgery became a possibility with the advent of
laparoscopic surgery in the late 1980s. Laparoscopy (also
called minimally invasive surgery) is a surgical procedure
in which a laparoscope (a thin lighted tube) and other
instruments are inserted into the abdomen through small
incisions. The internal operating field may then be
visualized on a video monitor connected to the scope. In
certain cases, the technique may be used in place of more
invasive surgical procedures that require more extensive
incisions and longer recovery times.
Computer-assisted surgery premiered in the mid-1990s; it
was the next step toward the goal of remote surgery. The
ZEUS Surgical System, developed in 1995 by Computer
Motion, Inc., was approved by the Federal Drug
Administration (FDA) in 2002 for use in general and
laparoscopic surgeries with the patient and surgeon in the
same room. ZEUS comprises three table-mounted robotic
arms—one holding the AESOP endoscope positioner,
which provides a view of the internal operating field, the
others holding surgical instruments. The robotic arms are
controlled by the surgeon, who sits at a console several
meters away. Visualization of the operating field is
controlled by voice activation, while the robotic arms are
controlled by movements of the surgeon's hands and
wrists.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

10

Computer-assisted surgery has a number of advantages
over traditional laparoscopic surgery. The computer
interface provides a method for filtering out the normal
hand tremors of the surgeon. Two- and three-dimensional
visualization of the operating field is possible. The
surgeon can perform a maneuver on the console, review it
to be sure of its safety and efficacy, then instruct the
remote device to perform the task. The surgeon is also
seated in an ergonomic position with arms supported by
armrests for the duration of the operation.
Operation Lindbergh
While the concept of tele-surgery seems like a logical
technological progression—if a surgeon can perform a
procedure from several meters away, why not from several
thousand meters —there is a major constraint that could
lead to disastrous results during surgery, namely time
delay. In the case of computer-assisted surgery, the
computer console and remote surgical device are directly
connected by several meters of cable; there is therefore
virtually no delay in the transmission of data from the
console to the surgical device back to the console. The
surgeon therefore views his or her movements on the
computer interface as they are happening. If the surgical
system were removed to a more distant site, however, it
would introduce a time delay. Visualization of the
operating field could be milliseconds or even seconds
behind the real-time manipulations of the surgeon. Studies
showed that a delay of more than 150–200 milliseconds
would be dangerous; satellite transmission, for example,
would introduce a delay of more than 600 milliseconds.
In order to make tele-surgery a reality, expert surgeons
would need to work with the telecommunication industry
to develop secure, reliable, high-speed transmission of
data over large distances with imperceptible delays. In
January 2000, such a project, labeled "Operation
Lindbergh," began under the direction of Dr. Jacques
Marescaux, director of the European Institute of Tele-
surgery; Moji Ghodoussi, project manager at Computer
Motions, Inc.; and communication experts from France
Télécom. Testing began on a prototype remote system (a
modified version of the ZEUS Surgical System called
ZEUS TS) in September 2000, with data being relayed
between Paris and Strasbourg, France—a distance of
approximately 625 mi (1000 km). Once an acceptable
length of time delay was established, trials began in July
2001 between New York City and Strasbourg.
On September 7, 2001, Operation Lindbergh culminated
in the first complete remote surgery on a human patient (a
68-year-old female), performed over a distance of 4300 mi
(7000 km). The patient and surgical system were located
in an operating room in Strasbourg, while the surgeon and
remote console were situated in a high-rise building in
downtown New York. A team of surgeons remained at the

patient's side to step in if need arose. The procedure
performed was a laparoscopic cholecystectomy (gall
bladder removal), considered the standard of care in
minimally invasive surgery. The established time delay
during the surgery was 135 ms—remarkable considering
that the data travelled a distance of more than 8600 mi
(14,000 km) from the surgeon's console to the surgical
system and back to the console. The patient left the
hospital within 48 hours—a typical stay following
laparoscopic cholecystectomy—and had an uneventful
recovery.
Since then, remote surgery has been conducted many
times in numerous locations. To date Dr. Anvari, a
laparoscopic surgeon in Hamilton, Canada, has conducted
numerous remote surgeries on patients in North Bay, a city
400 kilometres from Hamilton. He uses a VPN over a non-
dedicated fiberoptic connection that shares bandwidth with
regular telecommunications data.

4. RIPPER

RIPPER was developed by William Cohen [13] based on
repeated application of Fumkranz and Widmer's [14] IREP
algorithm. (IREP stands for Incremental Reduced Error
Pruning and RIPPER stands for Repeated Incremental
Pruning to Produce Error Reduction.) The RIPPER
algorithm represents a significant performance
improvement over previous rule induction algorithms. For
a training set of size n, RIPPER's performance scales as
O(n log2n).
In order for objects to be classified by most learning
algorithms, they must first be transformed into a
representation suitable for concept learning [12]. All
representations must consist of a vector of features, each
describing some aspect of the objects to be classified. In
most machine learning systems, a feature may be either
nominal (including binary) or continuous. Nominal
features are those that take one of a finite number of pre-
defined values, whereas continuous features are those that
take on integer or real numeric values.
In RIPPER, a decision rule is defined as a sequence of
Boolean clauses linked by logical AND operators that
together imply membership in a particular class. The
clauses are of the form A = x or A ≠ x for nominal
attributes and A ≤ y or A ≥ y for continuous attributes and
y is some value for A that occurs in the training set. A
classification hypothesis is a sequence of rules usually
ending in a default rule with an empty set of clauses.
During classification, the left hand sides of the rules are
applied sequentially until one of them evaluates to true,
and then the implied class label from the right hand side of
the rule is offered as the class prediction.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

11

To explain{12] the operation of RIPPER, we consider the
restricted case in which the examples fall into one of two
classes: positive or negative. A high level view of the
algorithm is presented in Figure 2, which shows the
original steps in the IREP algorithm and the additions
made in RIPPER. To the basic algorithm, RIPPER adds
several rule optimization steps as well as the option to
improve the rule set by repeating the entire process for a
number of iterations. These additions will be discussed,
but first an overview of the IREP algorithm is presented.
LOOP n TIMES
 Start with the empty rule (TRUE => positive).
 LOOP UNTIL the stopping condition is reached.
Partition the training set into a growing set and a pruning
set.
Grow a rule by greedily adding a clause to the left hand
side guided by the grow heuristic.
Prune a rule by greedily deleting sequences of final
clauses guided by the prune heuristic.
Remove examples covered by the rule from the training
set
 END LOOP.
 Perform rule optimization on the entire rule set.
END LOOP
Figure 2: High-level description of the RIPPER algorithm
[12].
The original IREP algorithm forms rules through a process
of repeated growing and pruning. During the growing
phase the rules are made more restrictive in order to fit the
training data as closely as possible. During the pruning
phase, the rules are made less restrictive in order to avoid
over fitting, which can cause poor performance on unseen
examples. IREP splits the training examples into a
growing set and a pruning set. Rules to predict the positive
class are grown one at a time by starting with an empty
rule and then adding clauses to the left hand side in a
greedy fashion under the guidance of a grow heuristic.
Growing of a single rule stops when it covers no negative
examples from the growing set. Each rule is pruned
immediately after it is grown by deleting clauses that
cover too many negative clauses in the pruning set under
the guidance of a prune heuristic. After a new rule is
grown and pruned, the covered examples are removed
from both the growing and pruning set. Then the
remaining data is repartitioned and another rule is grown.
This rule growing process continues until all the examples
in the training set are covered or until some stopping
condition is reached.
 The bold-faced lines are new in RIPPER, while the
rest of the algorithm is an implementation of IREP. During
the rule growing phase, the goal is to add clauses greedily
to an initially empty rule in such a way that the set of
examples covered by the rule contains a maximum of

positive examples and a minimum of negative examples.
The grow heuristic used in RIPPER is the information
gain function proposed by Quinlan [15]. The algorithm
starts with a set To consisting of all examples remaining in
the growing set. At the ith iteration of the rule growing
algorithm, the learner is working with a set Ti consisting
of ti

+ positive examples and ti
- negative examples. A

measure of the information required to describe the class
membership of all the examples is:
I(Ti) = -log2 [ti

+ / (ti
+- ti

-)]
The goal is to reduce the total amount of information.
When a new clause Ai is added to a rule, a new set of
examples Ti+l is formed consisting of all examples from Ti
covered by the new rule with Ai added. Adding a clause
can only restrict the coverage of a rule, therefore Ti+l must
always be a subset of Ti, though the new set may still
contain both positive and negative examples. The
information required to describe the new state is:
I(Ti+1) = -log2 [ti+1

+ / (ti+1
+- ti+1

-)]
If the addition of Ai reduces the number of negative
examples covered by the rule in relation to the number of
positive examples, then the information required to
describe the set will tend to decrease. A drop in the
amount of information from Ti to Ti+l represents a gain in
the amount of information contained in the rule under
construction. But the goal is also to cover as many positive
examples as possible, so the gain heuristic is defined as
the number of remaining positive examples multiplied by
the gain in information. So if ti

++ of the positive examples
from Ti are still present in Ti+1 then:
Gain(Ai) = ti

++. (l(Ti) - l(Ti+1))
After a rule is grown it will ideally cover many positive
examples and no negative examples in the growing set
However, for noisy data it is not always desirable for the
rules to fit the particular idiosyncrasies of the training data
too closely. Rules that overfit the training data may
perform poorly on unseen examples. The function of the
pruning stage, therefore, is to relax the rule so that it is
more general and less prone to overfitting. In order to do
this, the rule is tested against the examples in the pruning
set If the rule overfit the growing set, it will cover negative
examples from the pruning set The prune heuristic
measures this coverage. The ideal is for the rule to cover
many positive examples and no negative examples.
Clauses are deleted to maximize the function:
v=(p-n)/(p+n)
where p and n are the number of positive and negative
examples in the pruning set that are covered by the rule.
Note that this value is maximized when n = O. In the
original IREP implementations, clauses are deleted one by
one in reverse order until no deletion can be found that
increases the value of v. RIPPER extends this process to
also consider dropping sequences of final clauses.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

12

Finally, a stopping condition is used to decide when to
stop adding rules to the hypothesis. Furnkranz and
Widmer propose a heuristic of stopping when the error
rate of the next rule is greater than that of the empty rule.
In RIPPER this heuristic is replaced with one based on the
Minimum Description Length (MDL) principle from
information theory. This criterion, described in [16], is an
elegant formula that balances accuracy against complexity
based on the number of bits required to communicate
complete and correct class information for a set of
examples. The description length is obtained by adding the
number of bits required to describe the classification
hypothesis to the number of bits required to enumerate the
exceptions to this hypothesis. Attempting to minimize this
measurement will bias the learner towards simple and
accurate rules. RIPPER stops adding rules when the new
description length is more than 64 bits larger than the best
description length so far.
As a refinement to the process described so far, RIPPER
also includes two rule optimization steps. In the first step,
each rule is considered in turn and two new potential
replacement rules are grown. The first rule is grown and
pruned starting with the empty rule as before and the
second is grown starting with the original rule instead of
the empty rule. The main difference is that both rules are
grown and pruned so as to optimize the error rate of the
entire rule set on the entire pruning set. After the new
rules are formed, the decision on which of the three
candidate rules to include in the hypothesis is guided by
the MDL heuristic. Finally, RIPPER simply repeats the
entire algorithm a number of times to try to cover any
remaining positive examples. The number of iterations of
this process is subject to a parameter set by the user. In the
current experiments the default value of 2 is always used.
The description of RIPPER given above is for a two-class
problem. RIPPER handles multiple classes by ordering
them from least to most prevalent and then treating each in
order as a distinct two-class problem. So if the classes are
ordered C1 to Ck, RIPPER first learns rules to distinguish
the least prevalent class C1 from classes C2 to Ck..Then all
examples covered by these rules are removed, and
RIPPER learns rules to distinguish C2 from C3 to Ck. This
continues until only the most prevalent class Ck remains
and this is used as the default class [13]. Note that this
only applies to non-overlapping classes. When classes
overlap, the only sensible choice is to train one binary
classifier for each class, so the effect of RIPPER's class
ordering means that rules will always be learned to cover
the positive class first. The negative class will be left as
the default.
 KDD Cup 1999 Data Set

The KDD Cup 1999 Intrusion detection contest data is
used in our project. The data set contains 24 attack types
[11]. These attacks fall into four main categories:
Denial of service (DOS):
 In this type of attack an attacker makes some computing
or memory resources too busy or too full to handle
legitimate requests, or denies legitimate users access to a
machine. Examples are Apache2, Back, Land, Mailbomb,
SYN Flood, Ping of death, Process table, Smurf, Teardrop.
Remote to user (R2L):
 In this type of attack an attacker who does not
have an account on a remote machine sends packets to that
machine over a network and exploits some vulnerability to
gain local access as a user of that machine. Examples are
Dictionary, Ftp_write, Guest, Imap, Named, Phf, Sendmail,
Xlock.
User to root (U2R):
In this type of attacks an attacker starts out with access to
a normal user account on the system and is able to exploit
system vulnerabilities to gain root access to the system.
Examples are Eject, Loadmodule, Ps, Xterm, Perl,
Fdformat.
Probing:
In this type of attacks an attacker scans a network of
computers to gather information or find known
vulnerabilities. An attacker with a map of machines and
services that are available on a network can use this
information to look for exploits. Examples are Ipsweep,
Mscan, Saint, Satan, Imap.

The data set has 41 attributes for each connection record
plus one class label. R2L and U2R attacks don’t have any
sequential patterns like DOS and Probe because the former
attacks have the attacks embedded in the data packets
whereas the later attacks have many connections in a short
amount of time. Therefore, some features that look for
suspicious behavior in the data packets like numbers of
failed logins are constructed and these are called content
features (www.ll.mit.edu).
The 41 attributes are:
duration: length (number of seconds) of the connection.
protocol_type: type of the protocol, e.g. tcp, udp, etc.
service: network service on the destination, e.g., http,
telnet, etc.
src_bytes: number of data bytes from source to
destination.
dst_bytes: number of data bytes from destination to
source.
flag: normal or error status of the connection.
land: 1 if connection is from/to the same host/port; 0
otherwise.
wrong_fragment: number of ``wrong'' fragments.
urgent: number of urgent packets.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

13

hot: number of ``hot'' indicators.
num_failed_logins: number of failed login attempts.
logged in: number of ``compromised'' conditions.
root_shell: 1 if root shell is obtained; 0 otherwise.
su_attempted: 1 if ``su root'' command attempted; 0
otherwise.
num_root: number of ``root'' accesses.
num_file_creations: number of file creation operations
num_shells: number of shell prompts.
num_access_files: number of operations on access control
files.
num_outbound_cmds: number of outbound commands in
an ftp session.
is_hot_login: 1 if the login belongs to the ``hot'' list; 0
otherwise.
is_guest_login: 1 if the login is a ``guest'' login; 0
otherwise.
count: number of connections to the same host as the
current connection in the past two seconds.
serror_rate: % of connections that have ``SYN'' errors.
rerror_rate: % of connections that have ``REJ'' errors.
same_srv_rate: % of connections to the same service.
diff_srv_rate: % of connections to different services.
srv_count: number of connections to the same service as
the current connection in the past two seconds.
srv_serror_rate: % of connections that have ``SYN''
errors.
srv_rerror_rate: % of connections that have ``REJ'' errors.
srv_diff_host_rate: % of connections to different hosts.

Experiment and Result
We first trained the classifier RIPPER with full data set of
494021 records. Time taken for training is 156565 seconds.
Classification of subset of data gave very good result of
99.99 percent. But this is not a realistic way of doing
experiment. Since, same data is used for both training and
testing.
Second time we took 75 percent data of 370514 records
from the total of 494021 records for training. It took
99325 seconds for training. Then using the learned rules
we tested the classification accuracy with remaining data.
Test was conducted by taking 100%, 75%, 50% and 25%
of remaining data and studied the accuracy and time taken
for classification for normal method and parallel method.
When 100% of remaining data, that is 25 percent of actual
data were tested, obtained accuracy is 99.91%, 98.63%,
42.85% and 99.29% for corresponding DOS, PROBE,
U2R, R2L and NORMAL as tabulated in Table 4. Total
number of records in each of DOS, PROBE, U2R, R2L
and NORMAL are 97866, 1028, 14, 288 and 24321.
Number of misclassified records in each of these
categories in the same order is 86, 14, 8, 2 and 74. By

perusing the accuracy, for U2R we are getting less
accuracy. But this occurs because number of records
available for training and as well as testing is very meagre.
This justifies the deficiency in the obtained rules for this
class. We repeated the experiment with the parallel model,
we obtained the improvement of 1.75 in the time taken to
classify all these test cases compared to the Sequential
single processor run. Similarly test was repeated for 75%,
50% and 25% of remaining data, that is 18.75%, 12.5%
and 6.25% of actual data and obtained results were
tabulated respectively in Table 3, Table 2 and Table 1.
These figures also confirm the same line of improvement
in classification time taken for our parallel method. Bar
chart were plotted for each attack type showing the
original time taken and the time for parallel run for
different number of test cases as shown in figures 3, 4,5 ,6
and 7. Figure 3 and 4 for DOS and NORMAL traffic
shows better improvement compared to other cases since
they have more number of test cases. Similar results can
be expected for other type of traffic also if number of test
cases improves.

4.1 Test Result for 75% Training Data

Attack Type PROBE U2R R2L
NORM

AL DOS
Misclassifie
d cases 1 2 0 14 2
Total test
cases 257 3 70 6080 24466
% of
Accuracy 99.61 33.33 100 99.77 99.99
Time with
two
processors 6 2 3 122 473
Time with
one
processor 9 2 3 210 845

Table 1: Results with 25% of Test Data

Attack Type PROBE U2R R2L NOR
MAL DOS

Misclassifie
d cases 8 4 0 19 2

Total test
cases 514 7 141 12160 48933

% of
Accuracy 98.44 42.86 100 99.84 100

Time with
two
processors

11 2 4 230 919

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

14

Time with
one
processor

16 2 4 416 1665

Table 2: Results with 50% of Test Data

Attack Type PROBE U2R R2L
NOR
MAL DOS

Misclassifie
d cases 14 4 0 70 13
Total test
cases 771 10 212 18240 73399
% of
Accuracy 98.18 60 100 99.62 99.98
Time with
two
processors 15 2 5 341 1368
Time with
one
processor 22 2 5 617 2478

Table 3: Results with 75% of Test Data

Attack Type PROBE U2R R2L
NOR
MAL DOS

Misclassifie
d cases 14 8 2 74 86
Total test
cases 1028 14 283 24321 97866
% of
Accuracy 98.64 42.9 99.3 99.7 99.9
Time with
two
processors 22 2 6 461 1853
Time with
one
processor 32 2 6 823 3395

Table 4: Results with 100% of Test Data

Figure 3: Time performance for detection of DOS Attack

Figure 4: Time performance for detection of Normal traffic

Figure 6: Time performance for detection of U2R Attack

Figure 5: Time performance for detection of R2L Attack

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

15

Figure 7: Time performance for detection of PROBE attack

4.2 Test Results for 50% Training Data

Attack Type
PRO
BE U2R R2L

NOR
MAL DOS

Misclassifie
d cases 1 0 30 34 0
Total test
cases 513 6 141 12160 48932
% of
Accuracy 99.8 100 78.7 99.7 100
Time with
two
processors 16 2 6 256 933
Time with
one
processor 23 2 6 463 1690

Table 5: Results with 25% of Test Data

Attack Type
PRO
BE U2R R2L

NOR
MAL DOS

Misclassified
cases 3 3 99 2127 8
Total test
cases 1027 13 282 24320 97865
% of
Accuracy 99.7 76.92 64.9 91.25 99.99
Time with
two
processors 21 2 9 529 1838
Time with
one
processor 30 2 9 949 3355

Table 6: Results with 50% of Test Data

Attack Type PROBE U2R R2L
NOR
MAL DOS

Misclassifie
d cases 7 6 99 6721 8
Total test
cases 1541 20 423 36480 146797
% of
Accuracy 99.55 70 76.6 81.58 99.99
Time with
two
processors 29 2 9 675 2769
Time with
one
processor 42 2 9 1222 5069

Table 7: Results with 75% of Test Data

Attack Type PROBE U2R R2L
NOR
MAL DOS

Misclassified
cases 9 10 126 8995 37
Total test
cases 2055 27 564 48640 195730
% of
Accuracy 99.56 62.96 77.6 81.51 99.98
Time with
two
processors 43 2 13 904 3644
Time with
one
processor 61 2 13 1637 6714

Table 8: Results with 100% of Test Data

Figure 8: Time performance for detection of DOS attack

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

16

Figure 9: Time performance for detection of Normal Traffic

Figure 10: Time performance for detection of R2L attack

Figure 11: Time performance for detection of U2R attack

Figure 12: Time performance for detection of PROBE attack

Next we took 50 percent data of Total records numbering
247010 for training. It took 53895 seconds for training.
Then using the learned rules we tested the classification
accuracy with remaining data. Tests were conducted by
taking 100%, 75%, 50% and 25% of remaining data and
studied the accuracy and time taken for classification for
normal method and parallel method as tabulated in tables 5,
6, 7 and 8. When 100% of remaining data, that is 50
percent of actual data were tested, obtained accuracy and
time taken for the normal method and proposed method
are tabulated above in table 8. Obtained results are
comparable to the previous case. We repeated the
experiment with the parallel model, we obtained the
improvement of 1.8% in the time taken to classify all these
test cases compared to the Sequential single processor run.
This shows that when number of data to be processed
increases, proposed method gives better performance.
Graphically plotted the obtained gain in processing time
for different type of attacks for different number of test
cases for both the models for the easy visualization in
figures 8 through 12.

5. Conclusion
As the result shows, our proposed method gives expected
speed up to the intrusion detection process at the desired
level. Results also shows attacks DOS and PROBE are
detected more than 99 percent. Other attacks looks as if
exhibiting poor performance but in reality considering the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

17

number of cases available for training and testing indicates
this is not a poor performance. As also considering the
application, the computer used in these systems will not be
providing any other service other than the specific service
meant for the real-time system. So, perceived threat of
U2R and R2L are small. More over, these specialised
application will be available only with the institutions
offering such a service and hence its exposure to large
number of people for vulnerability analysis will be very
limited. Considering all these factors our proposed system
will serve the intended purpose at the desired time limit.

Other subsystem of the over all real-time system may also
be studied for their enhancement in terms of improving its
performance in achieving the desired result in a shorter
and predictable time.

REFERENCES
[1] Sang-Jun Han and Sung-Bae Cho (2006)

“Evolutionary Neural Networks for Anomaly
Detection Based on the Behavior of a Program”, IEEE
transactions on Systems, Man, and Cybernetics-Part B:
Cybernetics, Vol 36, No. 3 Pg 559-570.

[2] Suseela T.Sarasamma, Qiuming A.Zhu, Julie Huff
(2005), “Hierarchical kohonenen Net for Anomaly
Detection in Network Security”, IEEE transactions on
Systems, Man, and Cybernetics-Part B: Cybernetics,
Vol 35, No. 2 Pg 302-160

[3] Tatyana Ryutov, Clifford Neuman, Dongho Kim, Li
Zhou (2003) “Integrated Access Control and Intrusion
Detection for Web Servers”, IEEE Transaction on
Parallel and Distributed Systems, Vol 14, No. 9 Pg
841-850.

[4] Sung-Bae Cho (2002) “Incorporating Soft Computing
Techniques Into a Probabilistic Intrusion Detection
System” IEEE transactions on Systems, Man, and
Cybernetics-Part C: Applications and Reviews, Vol 32,
No. 2 Pg 154-160

[5] Srinivas Mukkamala, Guadalupe Janoski, Andrew
Sung (2002) “Intrusion Detection Using Neural
Networks and Support Vector Machines”, Proceedings
of IEEE Intrnational Joint Conference on Neural
Networks, pp. 1702-1701.

[6] Karen Scarfone, Peter Mell (2007) “Guide to Intrusion
Detection and Prevention Systems (IDPS)” NIST
Special publication 800-94.

[7] El-Moussa, F.A.; Linge, N.; Hope, M (2007),” Active
router approach to defeating denial-of-service attacks
in networks”, IET Communications, Vol 1 pp. 55.63

[8] Jane W.S. Liu (2000), Real-Time Systems, Pearson
Education

[9] St-Wr (2008) “Encyclopedia of Surgery: A Guide for
Patients and Caregivers”,
http://www.surgeryencyclopedia. com/St-
Wr/Telesurgery.html

[10] “Application - Revolutionary Telemedicine
Techniques Lydia Dotto reports on Long-Distance
Surgery”,
http://www.haivision.com/downloads/CSCmas.pdf

[11] MIT Lincoln Laboratory, “KDD cup 99 Intrusion
detection data set.”,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data
_10_percent.gz

 [12] Sam Scott (1998) “Feature Engineering for a
Symbolic Approach to Text Classification”’, Master’s
Thesis, University of Ottawa, Ottawa, Ontario

[13] William W. Cohen. (1995) Fast Effective Rule
Induction. In Proc. ICML-95. 1995. 115-123.

[14] Johannes Furnkranz and Gerhard Widmer. (1994)
Incremental Reduced Error Pruning. Proc. ICML-94.
1994. 70-77.

[15] J. R. Quinlan. (1990) Learning Logical Definitions
from Relations. Machine Learning 5:3. August, 1990.
236-266.

[16] J. Ross Quinlan and Ronald L. Rivest.(1989) Inferring
Decision Trees Using the Minimum Description
Length Principle. Information and Computation 80:3.
March, 1989.227-248.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

18

About the Authors

P. Narayanasamy received the Bachelor of Engineering
Degree in Electrical and Electronics Engineering from
Coimbatore Institute of Technology, Coimbatore,
University of Madras, India in 1980, Master of
Engineering Degree in Electrical and Electronics
Engineering in 1982 and PhD Degree in the area of
Computer Applications in Electrical Engineering in 1989
from Anna University, India. He is currently Professor and
Head of the Department of Computer Science and
Engineering, Anna University, Chennai, India. His
research interests include VLSI Design and Testing,
Computer Communication Networks, Wireless and
Mobile Computing. He is guiding many research scholars
in these areas for MS and PhD Programmes. He has
published many technical and research papers in the
National and International Conferences and Journals.

T.P. Saravanabava is presently working as a Selection
Grade Lecturer in the Department of Electrical and
Electronics Engineering, Anna University Chennai,
Chennai – 600 025, INDIA. He obtained his M.E. Degree
in Computer Science and Engineering and currently
undergoing his PhD in the area of Network Security and
Intrusion Detection System in the Faculty of Information
and Communication Engineering, Anna University
Chennai, Chennai – 600 025, INDIA.

