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Summary 
. Communication system to support real-time system must 
provide transparent protection, better adaptation to 
changing environments, assured availability of critical 
services, timing and performance guarantees and the 
protection against disruption through naturally occurring 
events or malicious attack. Most of the thrust in today’s 
IDS research is focused on accurate detection of attacks. 
Time critical real-time application demands the detection 
of attacks at a minimal, uniform and predictable time. This 
paper analysed, designed and implemented a parallel 
implementation of intrusion detection rules learned using 
RIPPER algorithm. We tested its performance using KDD 
CUP 1999 intrusion detection data. Obtained accuracy and 
time performance were analysed.  
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1. Introduction 
Recent advances in technology and human’s thrust to 
reach the heather too unexplored frontier let to situations 
which forces us to be prepared for several new challenges. 
As an example, stationing scientist in the space for an 
extended period for the purpose of research and soldiers in 
the front line of battlefield poses very peculiar challenges. 
In these situations, if scientist or soldiers need urgent 
medical attention at an affordable cost at the quickest 
possible time, real-time systems come into help. It is 
demonstrated successfully that surgeons were able to 
perform an operation on a patient 7000 KM away with the 
help of robots and dedicated high-speed low latency 
communication infrastructure. This is to become cost 
effective so as to reach small far away communities and 
hostile places, technology should allow the usage of 
secure and reliable shared networks which will provide the 
same very low latency with high security. Main aim of our 
research is to speed up of operation without sacrificing 
accuracy of the total system. We have selected for this task 
a soft computing technique RIPPER which provides for 
excellent opportunity to parallelize the prediction 

operation and there by allowing the overall performance 
improvement in the resultant real-time system. The 
particular case, which we have selected for our study for 
the purpose of system requirement parameters and to rank 
the perceived threat to such real-time system, is tele-
surgery.  
Since these systems are particularly very sensitive to delay, 
delay variations and bandwidth variations. These 
parameters must be guaranteed. At the same time we must 
come up with a strategy, which will satisfy these 
requirements with a least cost. So, the ultimate choice 
leads to use of shared  data network, which will guarantee 
the necessary bandwidth. Since, these real-time systems 
are very sensitive and cannot be suspended at the middle, 
all systems must provide the desired service through out 
the procedure. So, we propose a system in which at least 2 
layers of communication options are kept ready one is a 
shared network that would be primarily used and another 
stand by dedicated network, which will be utilised in case 
the primary shared network fail to meet the system 
requirement at any point of time of the procedure.  
We propose an end-to-end encrypted tunnel from the 
surgeon’s computer to the computer, which directly 
connects to the robots, which perform the procedure under 
the guidance of the surgeon. This tunnel should be 
established by authenticating the both end systems and 
applications at the both ends. All communication must be 
encrypted between these two systems, which will ensure 
both privacy, and integrity. Since, small deviation of 
robots hand movement may cause severe damage to the 
patient. So, integrity of the message transferred between 
the two ends must be protected. Single largest threat is the 
DOS and DDOS attacks which will eventually limit the 
available bandwidth between the two ends. This must be 
continuously monitored and responded quickly. For this 
we propose an intrusion detection model based on the 
RIPPER rule learning technique. We improved the 
classification part of the learned rules by parallelising it. 
Since, learning is a one-time process or a infrequent 
process compared to the classification operation. So, we 
considered in our research to improve the classification 
process alone. We studied and analysed our ideas using 
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the 1999 version of MIT Lincoln Laboratory – DARPA 
intrusion evaluation data. Our approach is to simulate the 
process using the DARPA data only the portion of 
classification of intrusions. Data collection and feature 
construction are required when applied in real networks. 
Architecture of our system is depicted in figure 1. Our 
analysis showed that it gives 1.8 times better performance 
for a system with two processors.  
Intrusion detection is the process of monitoring the events 
occurring in a computer system or network and analyzing 
them for signs of possible incidents, which are violations 
or imminent threats of violation of computer security 
policies, acceptable use policies, or standard security 
practices. Intrusion prevention is the process of 
performing intrusion detection and attempting to stop 
detected possible incidents. Intrusion detection and 
prevention systems (IDPS) are primarily focused on 
identifying possible incidents, logging information about 
them, attempting to stop them, and reporting them to 
security administrators. In addition, organizations use 
IDPSs for other purposes, such as identifying problems 
with security policies, documenting existing threats, and 
deterring individuals from violating security policies. 
IDPSs have become a necessary addition to the security 
infrastructure of nearly every organization Karen et al [6]. 
There are many types of IDPS technologies, which are 
differentiated primarily by the types of events that they 
can recognize and the methodologies that they use to 
identify possible incidents. These publications discusses 
the following four types of IDPS technologies:  
Network-Based, which monitors network traffic for 
particular network segments or devices and analyzes the 
network and application protocol activity to identify 
suspicious activity.  
Wireless, which monitors wireless network traffic and 
analyzes it to identify suspicious activity involving the 
wireless networking protocols themselves.  
Network Behavior Analysis (NBA), which examines 
network traffic to identify threats that generate unusual 
traffic flows, such as DDoS attacks, scanning, and certain 
forms of malware.  
Host-Based, which monitors the characteristics of a single 
host and the events occurring within that host for 
suspicious activity.  
IDPSs typically record information related to observed 
events, notify security administrators of important 
observed events, and produce reports. Many IDPSs can 
also respond to a detected threat by attempting to prevent 
it from succeeding. They use several response techniques, 
which involve the IDPS stopping the attack itself, 
changing the security environment (e.g., reconfiguring a 
firewall), or changing the attack’s content. 

2. Related Work 
Srinivas et al [5] describes approaches to intrusion 
detection using neural networks and support vector 
machines. The key ideas of their research are to discover 
useful patterns or features that describe user behaviour on 
a system, and use the set of relevant features to build 
classifiers that can recognize anomalies and known 
intrusions. Their observation shows that both neural 
networks and SVMs deliver accurate results and shows 
compatible level of performance. Whether to use SVMs or 
neural networks in implementing an intrusion detector 
depends on the particular type of intrusion (anomaly or 
misuse) that is under watch, as well as other security 
policy requirements. SVMs have great potential to be used 
in place of neural networks due to its scalability and faster 
training and running time. But SVMs can only make 
binary classification, which is a sevee disadvantage where 
the intrusion detection system requires multiple-class 
identification. On the other hand, neural network have 
already proven to be useful in many IDSs, and are 
especially suited for multi-category classification. 
Sung et al. [4] presented a novel intrusion detection 
system that models normal behaviours with hidden 
Markov models and attempted to detect intrusions by 
noting significant deviations from the models. Neural 
network and fuzzy logic are incorporated into the system 
to achieve robustness and flexibility. Self-organizing map 
determines the optimal measures of audit data and reduces 
them into appropriate size for efficient modelling by 
HMM. Based on several models with different measures, 
fuzzy logic makes the final decision of whether current 
behaviour is abnormal or not. Experimental results with 
some real audit data showed that the proposed fusion 
produces a viable intrusion detection system. 
Tatyana et al. [3] applied dynamic authorization 
techniques to support fine grained access control and 
application level intrusion detection and response  
capabilities to overcome the shortcoming of current 
intrusion detection systems that work in isolation from 
access control for the application the system aim to protect. 
Their argument is that this approach helps in cooperation 
and interoperation between these components which helps 
in early detection and response. They presented a generic 
authorization framework that supports security policies 
that can detect attempted and actual security breches and 
which can actively respond by modifying security policies 
dynamically. The GAA-API combines policy enforcement 
with application-level intrusion detection and response, 
allowing countermeasures to be applied to ongoing attacks 
before they cause damage. Because the API processes 
access control request by applications, it is ideally placed 
to apply application-level knowledge about policies and 
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activities to identify suspicious activity and apply 
appropriate response. 
Suseela et. Al [2] presented a novel multilevel hierarchical 
Kohonen Net (K-Map) for an intrusion detection System. 
Each level of the hierarchical map is modelled as a simple 
winner-take-all K-Map. One significant advantage of this 
multilevel hierarchical K-map is its computational 
efficiency. Unlike other statistical anomaly detection 
methods such as nearest neighbour approach, K-means 
clustering or probabilistic analysis that employ distance 
computation in the feature space to identify the outliers, 
our approach does not involve costly point-to-point 
computation in organizing the data into clusters. Another 
advantage is the reduced network size. They used the 
classification capability of the K-Map on selected 
dimensions of data set in detecting anomalies. Randomly 
selected subsets that contain both attacks and normal 
records from the KDD cup 1999 benchmark data are used 
to train the hierarchical net. They use a confidence 
measure to label the clusters. Then they used the test set 
from the same KDD Cup 1999 benchmark to test the 
hierarchical net. They showed that a hierarchical K-Map 
in which each layer operates on a small subset of the 
feature space is superior to single-layer K-Map operating 
on the whole feature space in detecting a variety of attacks 
in terms of detection rate as well as false positive rate. 
Sang et al [1] proposes in this paper, a novel intrusion-
detection technique based on evolutionary neural networks 
(ENNs). Advantage of using ENNs is that it takes less 
time to obtain superior neural networks than when using 
conventional approaches. This is because they discover the 
structures and weights of the neural networks 
simultaneously. Experimental results with the 1999 
Defense Advanced Research Projects Agency (DARPA) 
Intrusion Detection Evaluation (IDEVAL) data confirm 
that ENNs are promising tools for intrusion detection. 
 El-Moussa et al [7] proposed a new approach that deploys 
active routers within a network to provide a distributed 
and adaptable defence system. Each active router 
integrates firewall functionality, intrusion detection, and a 
cryptographic algorithm. The firewall and the intrusion 
detection are used to detect and block attack traffic 
coming from or going to a network. The active routers to 
provide a secure communication between end users on 
their behalf use the cryptographic algorithm. In addition, 
active routers use a dedicated active protocol to control the 
traffic passing through them, and to detect and to block the 
attack close to its origin. They have through simulation, 
demonstrated that their proposed architecture has the 
required functionality to defeat well-known attack types. 
Using a distributed approach overcomes the limitation of 
conventional techniques that deploy a single firewall or 
management station to protect an entire network. Each 

active router provides its own protection of its attached 
subnets and collectively they are able to offer a strong 
defence for the whole network. Even if an active router is 
directly connected to two subnets, it can still protect one 
subnet from an attacker coming from the other subnet. 
Should an active router become compromised then the 
others continue to protect the network. The adoption of an 
active router approach also allows each one to adapt in 
real time and reconfigure to block certain traffic profiles 
while allowing others to pass through. Using a distributed 
array of active routers also means that when an attack is 
detected then it can be traced back and blocked at the 
active router that is closest to the point of origin of the 
attack. Finally, the adoption of data encryption between 
active routers adds further protection against an attacker 
originating from within the network.  

3. Background and Motivation: 

3.1 Tele-surgery 
A surgeon at a site remote from the patient performs tele-
surgery, also called remote surgery. Surgical tasks are 
directly performed by a robotic system controlled by the 
surgeon at the remote site. 

3.1.1 Preceding technologies 
Tele-surgery became a possibility with the advent of 
laparoscopic surgery in the late 1980s. Laparoscopy (also 
called minimally invasive surgery) is a surgical procedure 
in which a laparoscope (a thin lighted tube) and other 
instruments are inserted into the abdomen through small 
incisions. The internal operating field may then be 
visualized on a video monitor connected to the scope. In 
certain cases, the technique may be used in place of more 
invasive surgical procedures that require more extensive 
incisions and longer recovery times. 
Computer-assisted surgery premiered in the mid-1990s; it 
was the next step toward the goal of remote surgery. The 
ZEUS Surgical System, developed in 1995 by Computer 
Motion, Inc., was approved by the Federal Drug 
Administration (FDA) in 2002 for use in general and 
laparoscopic surgeries with the patient and surgeon in the 
same room. ZEUS comprises three table-mounted robotic 
arms—one holding the AESOP endoscope positioner, 
which provides a view of the internal operating field, the 
others holding surgical instruments. The robotic arms are 
controlled by the surgeon, who sits at a console several 
meters away. Visualization of the operating field is 
controlled by voice activation, while the robotic arms are 
controlled by movements of the surgeon's hands and 
wrists. 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 
 

 

10 

Computer-assisted surgery has a number of advantages 
over traditional laparoscopic surgery. The computer 
interface provides a method for filtering out the normal 
hand tremors of the surgeon. Two- and three-dimensional 
visualization of the operating field is possible. The 
surgeon can perform a maneuver on the console, review it 
to be sure of its safety and efficacy, then instruct the 
remote device to perform the task. The surgeon is also 
seated in an ergonomic position with arms supported by 
armrests for the duration of the operation. 
Operation Lindbergh 
While the concept of tele-surgery seems like a logical 
technological progression—if a surgeon can perform a 
procedure from several meters away, why not from several 
thousand meters —there is a major constraint that could 
lead to disastrous results during surgery, namely time 
delay. In the case of computer-assisted surgery, the 
computer console and remote surgical device are directly 
connected by several meters of cable; there is therefore 
virtually no delay in the transmission of data from the 
console to the surgical device back to the console. The 
surgeon therefore views his or her movements on the 
computer interface as they are happening. If the surgical 
system were removed to a more distant site, however, it 
would introduce a time delay. Visualization of the 
operating field could be milliseconds or even seconds 
behind the real-time manipulations of the surgeon. Studies 
showed that a delay of more than 150–200 milliseconds 
would be dangerous; satellite transmission, for example, 
would introduce a delay of more than 600 milliseconds. 
In order to make tele-surgery a reality, expert surgeons 
would need to work with the telecommunication industry 
to develop secure, reliable, high-speed transmission of 
data over large distances with imperceptible delays. In 
January 2000, such a project, labeled "Operation 
Lindbergh," began under the direction of Dr. Jacques 
Marescaux, director of the European Institute of Tele-
surgery; Moji Ghodoussi, project manager at Computer 
Motions, Inc.; and communication experts from France 
Télécom. Testing began on a prototype remote system (a 
modified version of the ZEUS Surgical System called 
ZEUS TS) in September 2000, with data being relayed 
between Paris and Strasbourg, France—a distance of 
approximately 625 mi (1000 km). Once an acceptable 
length of time delay was established, trials began in July 
2001 between New York City and Strasbourg. 
On September 7, 2001, Operation Lindbergh culminated 
in the first complete remote surgery on a human patient (a 
68-year-old female), performed over a distance of 4300 mi 
(7000 km). The patient and surgical system were located 
in an operating room in Strasbourg, while the surgeon and 
remote console were situated in a high-rise building in 
downtown New York. A team of surgeons remained at the 

patient's side to step in if need arose. The procedure 
performed was a laparoscopic cholecystectomy (gall 
bladder removal), considered the standard of care in 
minimally invasive surgery. The established time delay 
during the surgery was 135 ms—remarkable considering 
that the data travelled a distance of more than 8600 mi 
(14,000 km) from the surgeon's console to the surgical 
system and back to the console. The patient left the 
hospital within 48 hours—a typical stay following 
laparoscopic cholecystectomy—and had an uneventful 
recovery. 
Since then, remote surgery has been conducted many 
times in numerous locations. To date Dr. Anvari, a 
laparoscopic surgeon in Hamilton, Canada, has conducted 
numerous remote surgeries on patients in North Bay, a city 
400 kilometres from Hamilton. He uses a VPN over a non-
dedicated fiberoptic connection that shares bandwidth with 
regular telecommunications data. 

4. RIPPER 

 
RIPPER was developed by William Cohen [13] based on 
repeated application of Fumkranz and Widmer's [14] IREP 
algorithm. (IREP stands for Incremental Reduced Error 
Pruning and RIPPER stands for Repeated Incremental 
Pruning to Produce Error Reduction.) The RIPPER 
algorithm represents a significant performance 
improvement over previous rule induction algorithms. For 
a training set of size n, RIPPER's performance scales as 
O(n log2n). 
In order for objects to be classified by most learning 
algorithms, they must first be transformed into a 
representation suitable for concept learning [12]. All 
representations must consist of a vector of features, each 
describing some aspect of the objects to be classified. In 
most machine learning systems, a feature may be either 
nominal (including binary) or continuous. Nominal 
features are those that take one of a finite number of pre-
defined values, whereas continuous features are those that 
take on integer or real numeric values.  
In RIPPER, a decision rule is defined as a sequence of 
Boolean clauses linked by logical AND operators that 
together imply membership in a particular class. The 
clauses are of the form A = x or A ≠ x for nominal 
attributes and A ≤ y or A ≥ y for continuous attributes and 
y is some value for A that occurs in the training set. A 
classification hypothesis is a sequence of rules usually 
ending in a default rule with an empty set of clauses. 
During classification, the left hand sides of the rules are 
applied sequentially until one of them evaluates to true, 
and then the implied class label from the right hand side of 
the rule is offered as the class prediction.  
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To explain{12] the operation of RIPPER, we consider the 
restricted case in which the examples fall into one of two 
classes: positive or negative. A high level view of the 
algorithm is presented in Figure 2, which shows the 
original steps in the IREP algorithm and the additions 
made in RIPPER. To the basic algorithm, RIPPER adds 
several rule optimization steps as well as the option to 
improve the rule set by repeating the entire process for a 
number of iterations. These additions will be discussed, 
but first an overview of the IREP algorithm is presented. 
LOOP n TIMES 
     Start with the empty rule (TRUE => positive). 
     LOOP UNTIL the stopping condition is reached. 
Partition the training set into a growing set and a pruning 
set. 
Grow a rule by greedily adding a clause to the left hand 
side guided by the grow heuristic.  
Prune a rule by greedily deleting sequences of final 
clauses guided by the prune heuristic. 
Remove examples covered by the rule from the training 
set 
     END LOOP. 
     Perform rule optimization on the entire rule set. 
END LOOP 
Figure 2: High-level description of the RIPPER algorithm 
[12]. 
The original IREP algorithm forms rules through a process 
of repeated growing and pruning. During the growing 
phase the rules are made more restrictive in order to fit the 
training data as closely as possible. During the pruning 
phase, the rules are made less restrictive in order to avoid 
over fitting, which can cause poor performance on unseen 
examples. IREP splits the training examples into a 
growing set and a pruning set. Rules to predict the positive 
class are grown one at a time by starting with an empty 
rule and then adding clauses to the left hand side in a 
greedy fashion under the guidance of a grow heuristic. 
Growing of a single rule stops when it covers no negative 
examples from the growing set. Each rule is pruned 
immediately after it is grown by deleting clauses that 
cover too many negative clauses in the pruning set under 
the guidance of a prune heuristic. After a new rule is 
grown and pruned, the covered examples are removed 
from both the growing and pruning set. Then the 
remaining data is repartitioned and another rule is grown. 
This rule growing process continues until all the examples 
in the training set are covered or until some stopping 
condition is reached.  
            The bold-faced lines are new in RIPPER, while the 
rest of the algorithm is an implementation of IREP. During 
the rule growing phase, the goal is to add clauses greedily 
to an initially empty rule in such a way that the set of 
examples covered by the rule contains a maximum of 

positive examples and a minimum of negative examples. 
The grow heuristic used in RIPPER is the information 
gain function proposed by Quinlan [15]. The algorithm 
starts with a set To consisting of all examples remaining in 
the growing set. At the ith iteration of the rule growing 
algorithm, the learner is working with a set Ti consisting 
of ti

+ positive examples and ti
- negative examples. A 

measure of the information required to describe the class 
membership of all the examples is: 
I(Ti) = -log2 [ti

+  / (ti
+- ti

-)] 
The goal is to reduce the total amount of information. 
When a new clause Ai is added to a rule, a new set of 
examples Ti+l is formed consisting of all examples from Ti 
covered by the new rule with Ai added. Adding a clause 
can only restrict the coverage of a rule, therefore Ti+l must 
always be a subset of Ti, though the new set may still 
contain both positive and negative examples. The 
information required to describe the new state is: 
I(Ti+1) = -log2 [ti+1

+  / (ti+1
+- ti+1

-)] 
If the addition of Ai reduces the number of negative 
examples covered by the rule in relation to the number of 
positive examples, then the information required to 
describe the set will tend to decrease. A drop in the 
amount of information from Ti to Ti+l represents a gain in 
the amount of information contained in the rule under 
construction. But the goal is also to cover as many positive 
examples as possible, so the gain heuristic is defined as 
the number of remaining positive examples multiplied by 
the gain in information. So if ti

++ of the positive examples 
from Ti are still present in Ti+1 then: 
Gain(Ai) = ti

++. (l(Ti) - l(Ti+1)) 
After a rule is grown it will ideally cover many positive 
examples and no negative examples in the growing set 
However, for noisy data it is not always desirable for the 
rules to fit the particular idiosyncrasies of the training data 
too closely. Rules that overfit the training data may 
perform poorly on unseen examples. The function of the 
pruning stage, therefore, is to relax the rule so that it is 
more general and less prone to overfitting. In order to do 
this, the rule is tested against the examples in the pruning 
set If the rule overfit the growing set, it will cover negative 
examples from the pruning set The prune heuristic 
measures this coverage. The ideal is for the rule to cover 
many positive examples and no negative examples. 
Clauses are deleted to maximize the function: 
v=( p-n)/(p+n) 
where p and n are the number of positive and negative 
examples in the pruning set that are covered by the rule. 
Note that this value is maximized when n = O. In the 
original IREP implementations, clauses are deleted one by 
one in reverse order until no deletion can be found that 
increases the value of v. RIPPER extends this process to 
also consider dropping sequences of final clauses. 
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Finally, a stopping condition is used to decide when to 
stop adding rules to the hypothesis. Furnkranz and 
Widmer propose a heuristic of stopping when the error 
rate of the next rule is greater than that of the empty rule. 
In RIPPER this heuristic is replaced with one based on the 
Minimum Description Length (MDL) principle from 
information theory. This criterion, described in [16], is an 
elegant formula that balances accuracy against complexity 
based on the number of bits required to communicate 
complete and correct class information for a set of 
examples. The description length is obtained by adding the 
number of bits required to describe the classification 
hypothesis to the number of bits required to enumerate the 
exceptions to this hypothesis. Attempting to minimize this 
measurement will bias the learner towards simple and 
accurate rules. RIPPER stops adding rules when the new 
description length is more than 64 bits larger than the best 
description length so far. 
As a refinement to the process described so far, RIPPER 
also includes two rule optimization steps. In the first step, 
each rule is considered in turn and two new potential 
replacement rules are grown. The first rule is grown and 
pruned starting with the empty rule as before and the 
second is grown starting with the original rule instead of 
the empty rule. The main difference is that both rules are 
grown and pruned so as to optimize the error rate of the 
entire rule set on the entire pruning set. After the new 
rules are formed, the decision on which of the three 
candidate rules to include in the hypothesis is guided by 
the MDL heuristic. Finally, RIPPER simply repeats the 
entire algorithm a number of times to try to cover any 
remaining positive examples. The number of iterations of 
this process is subject to a parameter set by the user. In the 
current experiments the default value of 2 is always used. 
The description of RIPPER given above is for a two-class 
problem. RIPPER handles multiple classes by ordering 
them from least to most prevalent and then treating each in 
order as a distinct two-class problem. So if the classes are 
ordered C1 to Ck, RIPPER first learns rules to distinguish 
the least prevalent class C1 from classes C2 to Ck..Then all 
examples covered by these rules are removed, and 
RIPPER learns rules to distinguish C2 from C3 to Ck. This 
continues until only the most prevalent class Ck remains 
and this is used as the default class [13]. Note that this 
only applies to non-overlapping classes. When classes 
overlap, the only sensible choice is to train one binary 
classifier for each class, so the effect of RIPPER's class 
ordering means that rules will always be learned to cover 
the positive class first. The negative class will be left as 
the default. 
 KDD Cup 1999 Data Set 

The KDD Cup 1999 Intrusion detection contest data is 
used in our project. The data set contains 24 attack types 
[11]. These attacks fall into four main categories: 
Denial of service (DOS): 
 In this type of attack an attacker makes some computing 
or memory resources too busy or too full to handle 
legitimate requests, or denies legitimate users access to a 
machine. Examples are Apache2, Back, Land, Mailbomb, 
SYN Flood, Ping of death, Process table, Smurf, Teardrop. 
Remote to user (R2L): 
                In this type of attack an attacker who does not 
have an account on a remote machine sends packets to that 
machine over a network and exploits some vulnerability to 
gain local access as a user of that machine. Examples are 
Dictionary, Ftp_write, Guest, Imap, Named, Phf, Sendmail, 
Xlock. 
User to root (U2R): 
In this type of attacks an attacker starts out with access to 
a normal user account on the system and is able to exploit 
system vulnerabilities to gain root access to the system. 
Examples are Eject, Loadmodule, Ps, Xterm, Perl, 
Fdformat. 
Probing: 
In this type of attacks an attacker scans a network of 
computers to gather information or find known 
vulnerabilities. An attacker with a map of machines and 
services that are available on a network can use this 
information to look for exploits. Examples are Ipsweep, 
Mscan, Saint, Satan, Imap. 
 
The data set has 41 attributes for each connection record 
plus one class label. R2L and U2R attacks don’t have any 
sequential patterns like DOS and Probe because the former 
attacks have the attacks embedded in the data packets 
whereas the later attacks have many connections in a short 
amount of time. Therefore, some features that look for 
suspicious behavior in the data packets like numbers of 
failed logins are constructed and these are called content 
features (www.ll.mit.edu).  
The 41 attributes are: 
duration: length (number of seconds) of the connection.  
protocol_type: type of the protocol, e.g. tcp, udp, etc.  
service: network service on the destination, e.g., http, 
telnet, etc.  
src_bytes:  number of data bytes from source to 
destination.  
dst_bytes: number of data bytes from destination to 
source.  
flag: normal or error status of the connection. 
land: 1 if connection is from/to the same host/port; 0 
otherwise.  
wrong_fragment:  number of ``wrong'' fragments.  
urgent:  number of urgent packets.  
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hot: number of ``hot'' indicators. 
num_failed_logins: number of failed login attempts.  
logged in: number of ``compromised'' conditions.  
root_shell: 1 if root shell is obtained; 0 otherwise.  
su_attempted: 1 if ``su root'' command attempted; 0 
otherwise.  
num_root: number of ``root'' accesses.  
num_file_creations: number of file creation operations  
num_shells: number of shell prompts.  
num_access_files: number of operations on access control 
files.  
num_outbound_cmds: number of outbound commands in 
an ftp session.  
is_hot_login: 1 if the login belongs to the ``hot'' list; 0 
otherwise.  
is_guest_login: 1 if the login is a ``guest'' login; 0 
otherwise.  
count: number of connections to the same host as the 
current connection in the past two seconds.  
serror_rate: % of connections that have ``SYN'' errors.  
rerror_rate: % of connections that have ``REJ'' errors.  
same_srv_rate: % of connections to the same service.  
diff_srv_rate: % of connections to different services.  
srv_count: number of connections to the same service as 
the current connection in the past two seconds.  
srv_serror_rate: % of connections that have ``SYN'' 
errors.  
srv_rerror_rate: % of connections that have ``REJ'' errors.  
srv_diff_host_rate: % of connections to different hosts.  
 

Experiment and Result 
We first trained the classifier RIPPER with full data set of 
494021 records. Time taken for training is 156565 seconds. 
Classification of subset of data gave very good result of 
99.99 percent. But this is not a realistic way of doing 
experiment. Since, same data is used for both training and 
testing. 
Second time we took 75 percent data of 370514 records 
from the total of 494021 records for training. It took 
99325 seconds for training. Then using the learned rules 
we tested the classification accuracy with remaining data. 
Test was conducted by taking 100%, 75%, 50% and 25% 
of remaining data and studied the accuracy and time taken 
for classification for normal method and parallel method. 
When 100% of remaining data, that is 25 percent of actual 
data were tested, obtained accuracy is 99.91%, 98.63%, 
42.85% and 99.29% for corresponding DOS, PROBE, 
U2R, R2L and NORMAL as tabulated in Table 4. Total 
number of records in each of DOS, PROBE, U2R, R2L 
and NORMAL are 97866, 1028, 14, 288 and 24321. 
Number of misclassified records in each of these 
categories in the same order is 86, 14, 8, 2 and 74. By 

perusing the accuracy, for U2R we are getting less 
accuracy. But this occurs because number of records 
available for training and as well as testing is very meagre. 
This justifies the deficiency in the obtained rules for this 
class. We repeated the experiment with the parallel model, 
we obtained the improvement of 1.75 in the time taken to 
classify all these test cases compared to the Sequential 
single processor run. Similarly test was repeated for 75%, 
50% and 25% of remaining data, that is 18.75%, 12.5% 
and 6.25% of actual data and obtained results were 
tabulated respectively in Table 3, Table 2 and Table 1. 
These figures also confirm the same line of improvement 
in classification time taken for our parallel method. Bar 
chart were plotted for each attack type showing the 
original time taken and the time for parallel run for 
different number of test cases as shown in figures 3, 4,5 ,6 
and 7. Figure 3 and 4   for DOS and NORMAL traffic 
shows better improvement compared to other cases since 
they have more number of test cases. Similar results can 
be expected for other type of traffic also if number of test 
cases improves. 
 

4.1 Test Result for 75% Training Data 
 

Attack Type PROBE U2R R2L 
NORM 

AL DOS
Misclassifie
d cases 1 2 0 14 2
Total test 
cases 257 3 70 6080 24466
% of 
Accuracy 99.61 33.33 100 99.77 99.99
Time with 
two 
processors 6 2 3 122 473
Time with 
one 
processor 9 2 3 210 845

Table 1: Results with 25% of Test Data 
 

Attack Type PROBE U2R R2L NOR 
MAL DOS

Misclassifie
d cases 8 4 0 19 2

Total test 
cases 514 7 141 12160 48933

% of 
Accuracy 98.44 42.86 100 99.84 100

Time with 
two 
processors 

11 2 4 230 919
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Time with 
one 
processor 

16 2 4 416 1665

Table 2: Results with 50% of Test Data 

 

Attack Type PROBE U2R R2L 
NOR 
MAL DOS

Misclassifie
d cases 14 4 0 70 13
Total test 
cases 771 10 212 18240 73399
% of 
Accuracy 98.18 60 100 99.62 99.98
Time with 
two 
processors 15 2 5 341 1368
Time with 
one 
processor 22 2 5 617 2478

Table 3: Results with 75% of Test Data 
 

Attack Type PROBE U2R R2L 
NOR 
MAL DOS

Misclassifie
d cases 14 8 2 74 86
Total test 
cases 1028 14 283 24321 97866
% of 
Accuracy 98.64 42.9 99.3 99.7 99.9
Time with 
two 
processors 22 2 6 461 1853
Time with 
one 
processor 32 2 6 823 3395

Table 4: Results with 100% of Test Data 
 

 

Figure 3: Time performance for detection of DOS Attack  

 

Figure 4: Time performance for detection of Normal traffic 

 

Figure 6: Time performance for detection of U2R Attack 

 

Figure 5: Time performance for detection of R2L Attack 
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Figure 7: Time performance for detection of PROBE attack 

 

4.2 Test Results for 50% Training Data 

Attack Type 
PRO 
BE U2R R2L 

NOR 
MAL DOS 

Misclassifie
d cases 1 0 30 34 0
Total test 
cases 513 6 141 12160 48932
% of 
Accuracy 99.8 100 78.7 99.7 100
Time with 
two 
processors 16 2 6 256 933
Time with 
one 
processor 23 2 6 463 1690

Table 5: Results with 25% of Test Data 

 

Attack Type 
PRO 
BE U2R R2L 

NOR 
MAL DOS 

Misclassified 
cases 3 3 99 2127 8
Total test 
cases 1027 13 282 24320 97865
% of 
Accuracy 99.7 76.92 64.9 91.25 99.99
Time with 
two 
processors 21 2 9 529 1838
Time with 
one 
processor 30 2 9 949 3355

Table 6: Results with 50% of Test Data 
 

Attack Type PROBE U2R R2L 
NOR 
MAL DOS 

Misclassifie
d cases 7 6 99 6721 8
Total test 
cases 1541 20 423 36480 146797
% of 
Accuracy 99.55 70 76.6 81.58 99.99
Time with 
two 
processors 29 2 9 675 2769
Time with 
one 
processor 42 2 9 1222 5069

Table 7: Results with 75% of Test Data 

 

Attack Type PROBE U2R R2L 
NOR 
MAL DOS 

Misclassified 
cases 9 10 126 8995 37
Total test 
cases 2055 27 564 48640 195730
% of 
Accuracy 99.56 62.96 77.6 81.51 99.98
Time with 
two 
processors 43 2 13 904 3644
Time with 
one 
processor 61 2 13 1637 6714

Table 8: Results with 100% of Test Data 

 

 

Figure 8: Time performance for detection of DOS attack 
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Figure 9: Time performance for detection of Normal Traffic 

 

 

Figure 10: Time performance for detection of R2L attack 

 

 

Figure 11: Time performance for detection of U2R attack 

 

 

Figure 12: Time performance for detection of PROBE attack 

 

Next we took 50 percent data of  Total records numbering 
247010 for training. It took 53895  seconds for training. 
Then using the learned rules we tested the classification 
accuracy with remaining data. Tests were conducted by 
taking 100%, 75%, 50% and 25% of remaining data and 
studied the accuracy and time taken for classification for 
normal method and parallel method as tabulated in tables 5, 
6, 7 and 8. When 100% of remaining data, that is 50 
percent of actual data were tested, obtained accuracy and 
time taken for the normal method and proposed method 
are tabulated above in table 8. Obtained results are 
comparable to the previous case. We repeated the 
experiment with the parallel model, we obtained the 
improvement of 1.8% in the time taken to classify all these 
test cases compared to the Sequential single processor run. 
This shows that when number of data to be processed 
increases, proposed method gives better performance. 
Graphically plotted the obtained gain in processing time 
for different type of attacks for different number of test 
cases for both the models for the easy visualization in 
figures 8 through 12. 

5. Conclusion 
As the result shows, our proposed method gives expected 
speed up to the intrusion detection process at the desired 
level. Results also shows attacks DOS and PROBE are 
detected more than 99 percent. Other attacks looks as if 
exhibiting poor performance but in reality considering the 
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number of cases available for training and testing indicates 
this is not a poor performance. As also considering the 
application, the computer used in these systems will not be 
providing any other service other than the specific service 
meant for the real-time system. So, perceived threat of 
U2R and R2L are small. More over, these specialised 
application will be available only with the institutions 
offering such a service and hence its exposure to large 
number of people for vulnerability analysis will be very 
limited. Considering all these factors our proposed system 
will serve the intended purpose at the desired time limit. 

Other subsystem of the over all real-time system may also 
be studied for their enhancement in terms of improving its 
performance in achieving the desired result in a shorter 
and predictable time.  
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