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Summary 
Large amount of on-line information resides on the invisible web 
(deep or hidden web). These web pages are generated 
dynamically from databases and other data sources hidden from 
the user, such pages not indexed by a static URL, are generated 
only when queries are asked via a search interface rendering 
interface matching a critical problem in many application 
domains, such as: semantic web, interface integration, data 
warehouses, e-commerce, etc. Many different matching solutions 
have been proposed so far. In this paper, a novel framework for 
interface matching is being proposed. It employs extensible 
domain-specific Library for quickly identifying regions in the 
interface repository comprising of important mappings. 
Key words: 
Invisible web (deep or hidden web), Search interface, Interface 
matching. 

1. Introduction 

From this section, input the body of your manuscript 
according to the constitution that you had. For detailed 
information for authors, please refer to [1]. A multitude of 
search engines (A .K. Sharma et al, 2002), such as Google 
(A. K. Sharma et al, 2003), Yahoo, Infoseek and Altavista 
etc, are available to retrieve information from the huge 
repository of diverse information called World Wide Web. 
In general, these engines crawl the web by following 
URLs that are embedded in the Web pages. The 
downloaded Web pages are stored indexed into the local 
databases of the search engines. When a request in the 
form of keywords arrives, the local databases are searched 
and the appropriate web pages are returned.  
However, there is enormous amount of the Web contents 
that remains untouched by the traditional search engines 
i.e., “invisible web” or “deep web” (Bergman et al, 2001). 
Infact, hidden web represents information, stored in 
specialized databases, only accessible through specific 
search interfaces (A. K. Sharma et al, 2006) created by 
using CGI and HTML forms or Javascript etc. However, 
this type of data contents are a goldmine of information, as 
many databases contain detailed and specific information 
as indicated by the study in 2000 done by 
brightplanet.com (S. Raghavan et al, 2001). It is suggested 
that the invisible web contains about 400-550 times the 
information of the traditional, index able World Wide 

Web (Burner et al, 1997).  Thus, hidden web contains 
documents into tune of  
 
8000 terabytes of information, the access to which would 
provide the following benefits: 
Ability to access the invisible web would be a tremendous 
boost for information retrieval over the Web.  
Each database contains data from a specific domain (from 
car prices to court cases). Therefore, highly relevant 
information would be obtained.  
Since a query interface (B. He et al, 2004) acts as an entry 
point (see Fig. 1) for accessing the hidden web, interface 
matching (B. He et al, 2004; Do H. et al, 2002; Jayant 
Madhavan et al, 2001; R. Dhamankar et al, 2004; Sergey 
Melink et al, 2000) becomes an essential activity towards 
mediating queries across deep services. In fact, interface 
matching discovers the necessary semantic 
correspondences of attributes across Web interfaces. The 
interface matching also assumes important, especially 
when domain-specific applications need to search 
alternative resources of data in the same domain. 
 
 

 

Fig. 1 User-Search Interface Interaction 

In this paper, the problem of discovering semantic 
correspondences between attributes of different search 
interfaces, but in the same domain, has been identified and 
a framework to discover these mappings has been 
proposed. The paper has been organized as follows: 
Section 2 describes the related work in the area of 
interface (or schema) matching; section 3 describes the 
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proposed work i.e. a framework for Domain-specific 
Interface Mapper (DSIM) and explains the functionality of 
different components of DSIM; section 4 describes the 
experimental evaluation that is done over different 
domains and finally, section 5 draws the conclusion and 
describes the future research. 

2. Related Work 

With the easy access to information stored in different 
application specific databases, the problem of semantic 
heterogeneity (W. Wu et al, 2004) is becoming more 
severe, especially when the information is accessed from 
different resources. For example, a recent project at the 
GTE Telecommunications Company sought to integrate 
40 databases that have a total of 27,000 attributes of 
relational tables. The project planners estimated that, 
without the database creators, just finding and 
documenting the semantic mappings among the elements 
would take more than 12-person year’s (Ipeirotis, P. et al, 
2001) . Nevertheless, schema (or interface) mapping is the 
task of finding semantic correspondences between 
elements of two schemas and plays a central role to solve 
the problem of semantic heterogeneity. In the past years, 
following systems and approaches have been developed to 
determine schema matching:  
Cupid (Jayant Madhavan et al, 2001) uses a hybrid 
matching approach by combining a name matcher with a 
structural match algorithm, which derives the similarity of 
elements based on the similarity of their components. 
Therefore, this technique emphasizes on the name and 
data type similarities that exists at the finest level of 
granularity.  
LSD (Learning Source Description) (A. Doan et al, 2001) 
and its extension GLUE represent powerful composite 
approaches for combining different matchers. Both 
techniques use machine-learning techniques for each 
matcher. Machine learning used by these methods is a 
promising technique for evaluating data instances to find 
out element similarity. On the other hand, the accuracy of 
the element similarity depends on a suitable training, 
which requires some manual efforts. 
In COMA (Hong-Hai Do et al, 2004), the information 
related to previous schema matching i.e. schema mappings 
are stored in a reuse library. Given two schemas S1 and 
S2 that are to be matched, the reuse component tries to 
find a schema S in its reuse library for which it has stored 
matches between S and S1, and between S and S2. This 
stored information is combined to produce a new match. 
In SemInt matching technique (Li W, et al,2000), semantic 
mappings between individual attributes of two schemas 
are generated by exploiting up to 15 constraint-based and 
5 content-based matching criteria. Neural networks are 
used by this technique to determine match candidates. 

A critical look at the available literature indicates that the 
following issues need to be addressed while designing the 
framework for fully automatic schema matching 
technique: 
As the number of data sources is growing continuously at 
very high rate, it is very tedious, time consuming and 
error-prone to perform the interface matching manually in 
web-based applications. Therefore a faster, less error-
prone and more efficient approach is required that uses 
fully automated approach for schema matching. 
An effective schema matching method requires a 
combination of many matching techniques, such as 
linguistic matching (W. Wu et al, 2004) of names of 
schema elements, comparison of their data instances, 
considering structural similarities between schemas, and 
using domain knowledge and user feedback.  
In this paper, a Domain Specific Interface Mapping 
Scheme called DSIM is being proposed. DSIM provides 
an extensible domain specific library of match functions to 
support multi-strategy matching approach. It also uses 
mapping knowledge base to leverage previous matching 
experiences.  

3. Proposed architecture of Domain Specific 
Interface Mapper (DSIM)  

The proposed Domain Specific Interface Mapper (DSIM) 
finds the semantic mappings between the components of 
different web interfaces of the same domain i.e. all the 
interfaces belong to the same domain such as airline 
domain. The main inputs to this Interface mapping system, 
as shown in Fig.2, are two interfaces A and B comprising 
of a number of components i.e. {n1, n2…np} and {n’1, 
n’2…n’q} respectively.  
DSIM uses a Search Interface Repository that is the 
repository for domain-specific search interfaces. It also 
provides an extensible domain-specific matcher library to 
support multi-strategy match approach. The multi-strategy 
match approach uses different matching strategies like 
fuzzy matching, domain-specific thesaurus etc that are 
executed independently. The SVM Generator in DSIM is 
used to create matrices of mapping that are identified by 
the matching library. The SVM Selector generates the 
appropriate mapping which can be used as the output. The 
DSIM also uses a Mapping Knowledgebase which stores 
the important semantic mappings so that they can be used 
further when after sometime our search interface 
repository would be updated. 
The multi-strategy interface matching is carried out by the 
DSIM in three phases: parsing, semantic matching and 
semantic mapping generation. The working of each phase 
is explained as follows: 
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Fig 2.  The Domain-specific Interface Mapper 

3.1 Parsing 
 
The parsing phase extracts the interfaces from Search 
Interface Repository and parses them in to an ordered tree. 
It uses following two components: 
 
Search Interface repository: Form Identifier (A. K. 
Sharma et al, 2006) module identifies the domain specific 
search interfaces and stores them in the Search Interface 
Repository. This repository is further used by DSIM and is 
updated with domain-specific interfaces after a regular 
interval of time. Form Identifier sends a signal “match 
interfaces” to SI Parser whenever interfaces are available 
in the repository for parsing. 
 
SI Parser: On receiving the signal “match interfaces” 
from form identifier, the parser extracts the interfaces from 
the Search Interface repository and parses them to obtain 
the structure of a query interface represented by using 
hierarchical schema as shown in Fig. 3. In fact, it is an 
ordered tree of elements where each leaf correspond to a 
field in the interface, each non-leaf node correspond to a 
group or super-group of the field. In fact, the order among 
the sibling nodes within the tree resembles the order of 

fields in the interface in a left-to-right and top-to-bottom 
fashion.  For example, <attribute 11>, <attribute 12>, 
<attribute 2>, <attribute 3>, <attribute 41>, <attribute 
42>……….<attribute n> represent leaves in the interface, 
<attribute 1> and <attribute 2> represents non-leaf nodes 
and root represents the form name. 

 
 

 

Fig. 3 Hierarchical representation of a query interface in a particular 
domain 

Consider the example given below:  
Example Fig. 4 shows a typical example of two query 
interfaces in the books domain and its corresponding 
hierarchical representation.  
 

      

Fig. 4 Two query interfaces in book domain 

 
It may be observed that Fig. 5(a) and Fig. 5(b) have two 
and three levels respectively. The root represents the name 
of the interface, each leaf node corresponds to a field in 
the interface and each non-leaf node corresponds to a 
group or super- group. 
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Fig. 5 (a)  & (b) Hierarchical representation of two query interfaces in 
book domain 

3.2 Semantic Matching 

This phase of DSIM matches the components of two 
different interfaces by using a Domain Specific Matching 
Library, which is an extensible matcher library to support 
multi-strategy match approach. New matching strategies 
can be easily included in the library and used. Currently, 
Domain-specific Matching Library uses three types of 
matching strategies as given below: 

3.2.1 Fuzzy Matching: 

This Fuzzy Matching strategy uses a single element 
matcher called node name matcher (NNM). The NNM 
matcher is very similar to Similarity flooding’s 
StringMatch and EditDistance matcher in COMA (Hong-
Hai Do et al, 2004). The node name matcher can be 
implemented using the CompareStringFuzzy function. The 
CompareStringFuzzy function compares two strings and 
returns a similarity index in the range [0, 1]. The similarity 
index is computed based on character substitution, 
insertion, exclusion and transposition. Examples of the 
computed name similarity index are given in the third 
column of Table 1.  

Table 1 Examples of using CompareStringFuzzy and NNM functions. 

 
 
Note that in the third row, contrary to expected, the 
similarity between elements “Name” and “FirstName” is 
zero. This is because CompareStringFuzzy function gives 
more significance to a mismatch at the beginning of a 
string than to a mismatch at the end. It compares not only 
the original strings (column 3 in the table), but also their 
reverse strings, i.e., “emaN” and “emaNtsriF”(column 4 in 

the table). The larger of two similarity indexes becomes 
the final similarity index (column 5 in the table).  

3.2.2 Domain Specific Thesaurus: 

Identifying semantic relationships between concepts or 
objects is very important in database schema integration 
and Web source integration. To facilitate component 
matching, the domain-specific matching Library of 
proposed DSIM contains domain-specific thesaurus. By 
using domain-specific thesaurus, the following three types 
of semantic relationships between attribute names or 
elements have been identified: Synonymy, Hypernymy and 
Meronymy.  

• Synonymy. Two attributes A1 and A2 are 
synonyms if they have similar meanings. 

• Hypernymy. Attribute A1 is a hypernym of 
attribute A2 if A1 is more generic than A2. For 
example, tree is a hypernym of mango. 

• Meronymy. Attribute A1 is a meronym of attribute 
A2 if A1 is a part of A2. For example, first name 
is a meronym of name. 

In DSIM’s Domain-specific Thesaurus, hypernymy and 
meronymy relationships of two terms using the 
information in the interface representations are also 
identified (see Table 2). 

Table 2 Examples of  Domain-specific Thesaurus for Books domain 

 
Let us consider two interfaces consisting of attributes 
“hardcover” and “format” respectively. If the value of 
format is hardcover, obviously, the attribute format 
becomes hypernym of hardcover (see row 3). Thus, the 
existence of hypernym in an interface helps in mapping 
process. Also, the part relationships of elements may be 
used to discover meronyms. Consider a search interface 
that contains an attribute author with two parts, first name 
(row 1) and last name (row 2). From this interface, both 
first name and last name can be identified as meronym of 
author. 

3.2.3 Data Type Matching 

This matching strategy is used to match the data types of 
the attributes of two different interfaces. It considers only 
two data types: numeric and string. The data types of two 
attributes of different interfaces would match only if both 
attributes are of same type (see Table 3). 
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Table 3 Examples of Data Type Matching in Books domain 

 
For example, for attributes A1 and A2 in two different 
interfaces, the matcher can return the following similarity 
values in each case: 
While using, fuzzy matching strategy, the matcher 
compares two strings and returns a similarity value in the 
range [0, 1]. For example, for attributes “author” and “first 
Name” of two different interfaces (see Table 1), the 
matcher returns 0.80 as the similarity value. 
While using, Domain-specific Thesaurus, the matcher 
returns either 0 or 1 as the similarity value. The matcher 
returns 0 if there exists no relationship between attributes 
A1 and A2 of two different interfaces. If any relationship 
(synonymy, hypernymy or meronymy) exists between two 
attributes of different interfaces, the matcher returns 1. For 
example, for attributes “author” and “first name” of two 
different interfaces “Books” and “RefBooks” (see row 1 
of Table 2) respectively, the matcher returns 1 as the 
similarity value. 
Similarly, for Data type matching strategy, the matcher 
also return 1 as similarity value only if data type of two 
attributes of different interfaces are same else returns 0. 
For instance, for attributes “author” and “first name” of 
two different interfaces “Books” and “RefBooks” (see row 
1 of Table 3) respectively, the matcher returns 1 as both 
attributes are of type string. But for attributes “Total 
pages” and “pages” (row 3 of Table 3), the matcher 
returns 0 as both attributes are not of same type. 
The overall similarity value also called estimated 
similarity value is computed as an average of the similarity 
values obtained from the matcher for each mapping by 
using three matching strategies: fuzzy matching, Domain-
specific Thesaurus and Data Type Matching. The 
estimated similarity value is further used by the Similarity 
Value Matrices (SVMs) as explained in the next section. 
 

3.3 Semantic Mapping Generation 

This phase generates the necessary semantic mappings 
between the attributes of interfaces and stores them in 
mapping knowledge base for future reference. It uses 
following functional components for this purpose:  

3.3.1 SVM generator and Selector 

The state of system is represented by a triplet (S, O, SVM), 
where S is the set of attribute of one interface, O is the set 

of attributes of another interface, and SVM is a matrix, 
called Similarity Value Matrix (SVM), with a row for 
every attribute of one interface and a column for every 
attribute of another interface. The schematic diagram of a 
SVM is shown in Fig. 6 (a). Let variables s and o denote 
the attributes of one interface and another interface, 
respectively. An entry SVM[s, o] denotes the Estimated 
Similarity Value (ESV) between attribute s of first 
interface and attribute o of another interface. Fig. 6 (b) 
shows a SVM for interfaces F1 and F2 and Fig. 6 (c) 
shows a SVM for interfaces T1 and T2. 
 

 

Fig. 6(a) Schematic diagram of Similarity Value Matrix 

 

Fig. 6 (b) SVM for interfaces F1 and F2 

 

Fig. 6 (c) SVM for interfaces T1 and T2 
 

Fig. 6 Example of two Similarity Value Matrices 
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In fact, SVM generator identifies the estimated similarity 
values as returned by the Domain-specific Matching 
Library and generates the different Similarity Value 
Matrices (SVMs). Each entry in the SVMs shows interface 
mappings between the attributes of two interfaces. In a 
real system, some of interface mappings could be 
irrelevant and of no importance to the user. Since a good 
interface mapping would not spread over the repository 
and will remain located in rather small region of the 
repository, DSIM employs a SVM Selector which checks 
all the SVMs and their estimated similarity values. It also 
looks for mappings which are more valuable, instead of 
using all the mappings that are given by the Domain-
specific Matching Library, thereby improving the 
efficiency of interface matching. 
 

 
 

Fig. 7 Detailed Schematic Diagram of SVM Generator and Selector 
module 

To find the more valuable mappings, the SVM Selector 
uses a threshold value as the selection parameter. The 
threshold value is compared with the estimated similarity 
values for each SVM to find the more valuable mappings. 
The mappings having estimated similarity values greater 
than the threshold values are being stored in the Mapping 
Knowledge Base for future reference (see Fig. 7). The 
mappings having estimated similarity value below a 
particular threshold value would be ignored. For example, 
if an attribute author of first interface is matched with 
attributes first name, ISBN and subject of the second 
interface (see Fig. 8), the matcher returns estimated 
similarity values for each of three mappings i.e. for author 
and First Name, author and ISBN and for author and 
subject. 

 
 

Fig. 8 An Example of Matching process 

The estimated similarity values of these three mappings 
are compared with a threshold value. The mappings 
having estimated similarity values greater than threshold 
value are treated as important mappings and are stored in 
Mapping Knowledge Base for future reference and all 
other mappings having estimated similarity values less 
than threshold value are discarded. The algorithm for 
SVM Generator and SVM Selector is shown in Fig. 9. 
 
Algorithm SVMGenSelector(Iface1, Iface2) 

/* This algorithm stores the estimated similarity values in the 

SVMs. */ 

/* The attributes of the first and second interfaces are 

represented by rows and columns respectively. */ 

/* It calls SVMSelector Algorithm for selecting valuable 

mappings. */ 

Begin 

   Store the estimated similarity values for attributes of Iface1 

and Iface2 in SVMm*n; 

   SVMSelector (SVMm*n); 

end; 

Algorithm SVMSelector(SVMm*n) 

/*This algorithm finds the most valuable mappings by comparing the 

estimated similarity values in SVMs with the appropriate threshold value 

and store them in a Mapping Knowledge Base if the  mappings are not 

already there.*/ 

begin 

   for i = 1 to m do 

       for j = 1 to n do 

           begin 

 if (SVM[i, j] >= Threshold Value) then 

      if (SVM[I,j] does not exists in Mapping Knowledge Base)       

           then  
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Store SVM[i, j] for Iface1 and Iface2 in Mapping Knowledge Base 

with attributes names; 

 else  

           continue; 

           end; 

  end;  

Fig. 9 Algorithm for SVM Generator and Selector 

 

3.4 Mapping Knowledgebase 

The large numbers of mappings produced by SVM 
Selector are stored in Mapping Knowledge Base (see Fig. 
10). It contains five fields: attribute I, interface I, attribute 
II, interface II, estimated similarity value. In order to 
avoid duplicacy of match effort and redundancy of storage, 
the matcher consults the Knowledge Base in search / insert 
fashion. Before starting the next match cycle, the matcher 
searches the mappings in the Knowledge Base. If the 
mapping entry is found then they are discarded else the 
match process is continued in order to derive new 
semantic mappings. The mappings so obtained are inserted 
in the Knowledge Base. 
 

 

Fig. 10 Structure of Mapping Knowledge Base 

4. Experimental Evaluation  

Extensive experiments were conducted over several 
domains of sources on the Web with the goal to evaluate 
accuracy of matching and the contribution of different 
components of DSIM towards the same. Although results 
differ for different domains, the DSIM has shown fairly 
general behavior with consistent results. 

4.1. Performance Metrics 

Similar to (B. He. Et al, 2003), the performance of field 
matching has been measured via three metrics: precision, 
recall, and F-measure. Precision is the percentage of 
correct mappings over all mappings identified by the 

system, while Recall is the percentage of correct mappings 
identified by the system over all mappings as given by 
domain experts. Suppose the number of correctly 
identified mappings is C, the number of wrongly identified 
mappings is W and the number of unidentified correct 
mappings is M, then the precision of the approach is given 
by the expression given below 
 

                     P = C/ (C + W)   (1) 
 
and the recall, R, of the approach is  

  
  R = C/ (C + M)   (2) 

 
F-measure incorporates both precision and recall. F-

measure is given by 
  
  F = 2PR/ (P + R)   (3) 

 
where : precision P and recall R are equally weighted. 
In DSIM, schema trees were generated from the query 
interfaces collected from five domains. The schema trees 
have been used to conduct the experiments. For every 
domain average precision, average recall and average F-
measure were computed by the expressions given below: 

 
Average Precision = ∑ Pi /N   (4) 
 
Average recall = ∑ Ri / N   (5) 
 
Average F-measure = ∑ (F-measure)i /N (6) 
 

where N is total no. of interfaces matched and i range from 
1 to N. 
 

4.2. Data Set 

For experimental evaluation of the proposed work, query 
interfaces of the sources available on the deep Web for the 
following five domains have been considered:  

• Airfare 
• Automobile 
• Book 
• Job 
• real estate 

For each domain, 20-30 query interfaces were collected by 
utilizing the online directories: invisibleweb.com (now 
profusion.com) which maintains a directory of hidden 
sources along with their query interfaces and the Web 
directory maintained by yahoo.com. Yahoo.com houses 
both hidden and visible web. The query interfaces of 
hidden web were obtained and manually transformed into 
schema trees. 
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4.3. Experiments 

In the proposed work, SVM generator identifies the 
estimated similarity values as returned by the Domain-
specific Matching Library and generates the different 
Similarity Value Matrices (SVMs). The SVM Selector 
uses a threshold value as a selection parameter which is 
compared with the estimated similarity values for each 
SVM to find the more valuable mappings. The mappings 
with estimated similarity values greater than a particular 
threshold are stored in the Mapping Knowledge Base. The 
various strategies of Domain Specific Matching Library 
(DSML) were employed to perform same set of 
experiments for each domain using different threshold 
values. Average Threshold of a particular domain is 
computed by the following expression 
 

Average Threshold = ∑ Ti / N   (7) 
 
where N is total number of interfaces matched and i range 
from 1 to N. 
The results of the experiments are shown in Table 4. 

Table 4.  Average Threshold for each domain 

 
 
It may be observed that the Overall Average Threshold for 
all the five domains is about 0.80. The Average Threshold 
values listed in Table 4 and expressions (4), (5) and (6) 
were used to compute Average Precision, Average 
Recalland Average F-measure for every domain and the 
results are tabulated in Table 5. 
 
 
 
 
 
 
 
 
 
 
 

Table 5.  Experimental results in five domains 

 
 
From Table 5, it may be observed that overall average 
precision of matching process is high i.e. ranges from 84% 
to 93.5%, overall average recall of matching process is 
also high i.e. ranges from 85.5% to 96% and overall 
average F-measure of matching process is also quite high 
i.e. about 90%. 
If the estimated similarity values of mappings are higher 
than threshold values, the semantic mappings thus found 
by the matching process are stored in the Mapping 
Knowledgebase. In fact, these mappings could be used if 
after sometime search interface repository would be 
updated or new search interface are inserted in the Search 
Interface Repository. 
 

No. of mappings in Knowledge Base vs No. 
of Comparisons

No. of mappings in Knowledge Base

N
o.

 o
f C

om
pa

ris
on

s

 

Fig. 11 No. of mappings in Knowledge Base vs No. of Comparisons 

It has been found (see Fig. 11) that the number of 
comparisons done in the matching process decrease as the 
number of mappings in the mapping Knowledge Base 
increase indicating that the framework proposed in this 
paper is both scalable and efficient. Moreover, the 
efficiency of DSIM increases as the number of mappings 
in the mapping knowledge base increases.  
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5. Conclusion and Future research 

DSIM quickly identifies regions in the interface repository 
comprising of important mappings. It further improves by 
discarding the less important mappings as SVM Selector 
uses a threshold value as a selection parameter. The loss 
mostly occurs among the mappings which rank low, an 
acceptable trade off.  
Though the domain-specific Interface Matching Library 
currently supports three matching strategies, but it is 
extensible in the sense that newer and better strategies can 
be easily added later on. 
Future research includes: (1) establishing a tighter control 
over selection of the important mappings – more insight 
into the effects of certain selection parameters on the 
efficiency/effectiveness trade off allows for better tuning, 
(2) ordering the mappings in the Mapping Knowledge 
Base – a measure of mapping's quality can be used to 
decide which mappings have better chances to produce 
good mappings. In this way, the time-to-first good 
mapping can be improved, (3) extending the match library 
and improving the learning capability. 
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