
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

56

Manuscript received December 5, 2008

Manuscript revised December 20, 2008

A Framework for Domain-Specific Interface Mapper (DSIM)

Komal Kumar Bhatia1† and A. K. Sharma2††,

YMCA Institute of Engineering, Faridabad, Haryana, INDIA

Summary
Large amount of on-line information resides on the invisible web
(deep or hidden web). These web pages are generated
dynamically from databases and other data sources hidden from
the user, such pages not indexed by a static URL, are generated
only when queries are asked via a search interface rendering
interface matching a critical problem in many application
domains, such as: semantic web, interface integration, data
warehouses, e-commerce, etc. Many different matching solutions
have been proposed so far. In this paper, a novel framework for
interface matching is being proposed. It employs extensible
domain-specific Library for quickly identifying regions in the
interface repository comprising of important mappings.
Key words:
Invisible web (deep or hidden web), Search interface, Interface
matching.

1. Introduction

From this section, input the body of your manuscript
according to the constitution that you had. For detailed
information for authors, please refer to [1]. A multitude of
search engines (A .K. Sharma et al, 2002), such as Google
(A. K. Sharma et al, 2003), Yahoo, Infoseek and Altavista
etc, are available to retrieve information from the huge
repository of diverse information called World Wide Web.
In general, these engines crawl the web by following
URLs that are embedded in the Web pages. The
downloaded Web pages are stored indexed into the local
databases of the search engines. When a request in the
form of keywords arrives, the local databases are searched
and the appropriate web pages are returned.
However, there is enormous amount of the Web contents
that remains untouched by the traditional search engines
i.e., “invisible web” or “deep web” (Bergman et al, 2001).
Infact, hidden web represents information, stored in
specialized databases, only accessible through specific
search interfaces (A. K. Sharma et al, 2006) created by
using CGI and HTML forms or Javascript etc. However,
this type of data contents are a goldmine of information, as
many databases contain detailed and specific information
as indicated by the study in 2000 done by
brightplanet.com (S. Raghavan et al, 2001). It is suggested
that the invisible web contains about 400-550 times the
information of the traditional, index able World Wide

Web (Burner et al, 1997). Thus, hidden web contains
documents into tune of

8000 terabytes of information, the access to which would
provide the following benefits:
Ability to access the invisible web would be a tremendous
boost for information retrieval over the Web.
Each database contains data from a specific domain (from
car prices to court cases). Therefore, highly relevant
information would be obtained.
Since a query interface (B. He et al, 2004) acts as an entry
point (see Fig. 1) for accessing the hidden web, interface
matching (B. He et al, 2004; Do H. et al, 2002; Jayant
Madhavan et al, 2001; R. Dhamankar et al, 2004; Sergey
Melink et al, 2000) becomes an essential activity towards
mediating queries across deep services. In fact, interface
matching discovers the necessary semantic
correspondences of attributes across Web interfaces. The
interface matching also assumes important, especially
when domain-specific applications need to search
alternative resources of data in the same domain.

Fig. 1 User-Search Interface Interaction

In this paper, the problem of discovering semantic
correspondences between attributes of different search
interfaces, but in the same domain, has been identified and
a framework to discover these mappings has been
proposed. The paper has been organized as follows:
Section 2 describes the related work in the area of
interface (or schema) matching; section 3 describes the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

57

proposed work i.e. a framework for Domain-specific
Interface Mapper (DSIM) and explains the functionality of
different components of DSIM; section 4 describes the
experimental evaluation that is done over different
domains and finally, section 5 draws the conclusion and
describes the future research.

2. Related Work

With the easy access to information stored in different
application specific databases, the problem of semantic
heterogeneity (W. Wu et al, 2004) is becoming more
severe, especially when the information is accessed from
different resources. For example, a recent project at the
GTE Telecommunications Company sought to integrate
40 databases that have a total of 27,000 attributes of
relational tables. The project planners estimated that,
without the database creators, just finding and
documenting the semantic mappings among the elements
would take more than 12-person year’s (Ipeirotis, P. et al,
2001) . Nevertheless, schema (or interface) mapping is the
task of finding semantic correspondences between
elements of two schemas and plays a central role to solve
the problem of semantic heterogeneity. In the past years,
following systems and approaches have been developed to
determine schema matching:
Cupid (Jayant Madhavan et al, 2001) uses a hybrid
matching approach by combining a name matcher with a
structural match algorithm, which derives the similarity of
elements based on the similarity of their components.
Therefore, this technique emphasizes on the name and
data type similarities that exists at the finest level of
granularity.
LSD (Learning Source Description) (A. Doan et al, 2001)
and its extension GLUE represent powerful composite
approaches for combining different matchers. Both
techniques use machine-learning techniques for each
matcher. Machine learning used by these methods is a
promising technique for evaluating data instances to find
out element similarity. On the other hand, the accuracy of
the element similarity depends on a suitable training,
which requires some manual efforts.
In COMA (Hong-Hai Do et al, 2004), the information
related to previous schema matching i.e. schema mappings
are stored in a reuse library. Given two schemas S1 and
S2 that are to be matched, the reuse component tries to
find a schema S in its reuse library for which it has stored
matches between S and S1, and between S and S2. This
stored information is combined to produce a new match.
In SemInt matching technique (Li W, et al,2000), semantic
mappings between individual attributes of two schemas
are generated by exploiting up to 15 constraint-based and
5 content-based matching criteria. Neural networks are
used by this technique to determine match candidates.

A critical look at the available literature indicates that the
following issues need to be addressed while designing the
framework for fully automatic schema matching
technique:
As the number of data sources is growing continuously at
very high rate, it is very tedious, time consuming and
error-prone to perform the interface matching manually in
web-based applications. Therefore a faster, less error-
prone and more efficient approach is required that uses
fully automated approach for schema matching.
An effective schema matching method requires a
combination of many matching techniques, such as
linguistic matching (W. Wu et al, 2004) of names of
schema elements, comparison of their data instances,
considering structural similarities between schemas, and
using domain knowledge and user feedback.
In this paper, a Domain Specific Interface Mapping
Scheme called DSIM is being proposed. DSIM provides
an extensible domain specific library of match functions to
support multi-strategy matching approach. It also uses
mapping knowledge base to leverage previous matching
experiences.

3. Proposed architecture of Domain Specific
Interface Mapper (DSIM)

The proposed Domain Specific Interface Mapper (DSIM)
finds the semantic mappings between the components of
different web interfaces of the same domain i.e. all the
interfaces belong to the same domain such as airline
domain. The main inputs to this Interface mapping system,
as shown in Fig.2, are two interfaces A and B comprising
of a number of components i.e. {n1, n2…np} and {n’1,
n’2…n’q} respectively.
DSIM uses a Search Interface Repository that is the
repository for domain-specific search interfaces. It also
provides an extensible domain-specific matcher library to
support multi-strategy match approach. The multi-strategy
match approach uses different matching strategies like
fuzzy matching, domain-specific thesaurus etc that are
executed independently. The SVM Generator in DSIM is
used to create matrices of mapping that are identified by
the matching library. The SVM Selector generates the
appropriate mapping which can be used as the output. The
DSIM also uses a Mapping Knowledgebase which stores
the important semantic mappings so that they can be used
further when after sometime our search interface
repository would be updated.
The multi-strategy interface matching is carried out by the
DSIM in three phases: parsing, semantic matching and
semantic mapping generation. The working of each phase
is explained as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

58

Fig 2. The Domain-specific Interface Mapper

3.1 Parsing

The parsing phase extracts the interfaces from Search
Interface Repository and parses them in to an ordered tree.
It uses following two components:

Search Interface repository: Form Identifier (A. K.
Sharma et al, 2006) module identifies the domain specific
search interfaces and stores them in the Search Interface
Repository. This repository is further used by DSIM and is
updated with domain-specific interfaces after a regular
interval of time. Form Identifier sends a signal “match
interfaces” to SI Parser whenever interfaces are available
in the repository for parsing.

SI Parser: On receiving the signal “match interfaces”
from form identifier, the parser extracts the interfaces from
the Search Interface repository and parses them to obtain
the structure of a query interface represented by using
hierarchical schema as shown in Fig. 3. In fact, it is an
ordered tree of elements where each leaf correspond to a
field in the interface, each non-leaf node correspond to a
group or super-group of the field. In fact, the order among
the sibling nodes within the tree resembles the order of

fields in the interface in a left-to-right and top-to-bottom
fashion. For example, <attribute 11>, <attribute 12>,
<attribute 2>, <attribute 3>, <attribute 41>, <attribute
42>……….<attribute n> represent leaves in the interface,
<attribute 1> and <attribute 2> represents non-leaf nodes
and root represents the form name.

Fig. 3 Hierarchical representation of a query interface in a particular
domain

Consider the example given below:
Example Fig. 4 shows a typical example of two query
interfaces in the books domain and its corresponding
hierarchical representation.

Fig. 4 Two query interfaces in book domain

It may be observed that Fig. 5(a) and Fig. 5(b) have two
and three levels respectively. The root represents the name
of the interface, each leaf node corresponds to a field in
the interface and each non-leaf node corresponds to a
group or super- group.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

59

Fig. 5 (a) & (b) Hierarchical representation of two query interfaces in
book domain

3.2 Semantic Matching

This phase of DSIM matches the components of two
different interfaces by using a Domain Specific Matching
Library, which is an extensible matcher library to support
multi-strategy match approach. New matching strategies
can be easily included in the library and used. Currently,
Domain-specific Matching Library uses three types of
matching strategies as given below:

3.2.1 Fuzzy Matching:

This Fuzzy Matching strategy uses a single element
matcher called node name matcher (NNM). The NNM
matcher is very similar to Similarity flooding’s
StringMatch and EditDistance matcher in COMA (Hong-
Hai Do et al, 2004). The node name matcher can be
implemented using the CompareStringFuzzy function. The
CompareStringFuzzy function compares two strings and
returns a similarity index in the range [0, 1]. The similarity
index is computed based on character substitution,
insertion, exclusion and transposition. Examples of the
computed name similarity index are given in the third
column of Table 1.

Table 1 Examples of using CompareStringFuzzy and NNM functions.

Note that in the third row, contrary to expected, the
similarity between elements “Name” and “FirstName” is
zero. This is because CompareStringFuzzy function gives
more significance to a mismatch at the beginning of a
string than to a mismatch at the end. It compares not only
the original strings (column 3 in the table), but also their
reverse strings, i.e., “emaN” and “emaNtsriF”(column 4 in

the table). The larger of two similarity indexes becomes
the final similarity index (column 5 in the table).

3.2.2 Domain Specific Thesaurus:

Identifying semantic relationships between concepts or
objects is very important in database schema integration
and Web source integration. To facilitate component
matching, the domain-specific matching Library of
proposed DSIM contains domain-specific thesaurus. By
using domain-specific thesaurus, the following three types
of semantic relationships between attribute names or
elements have been identified: Synonymy, Hypernymy and
Meronymy.

• Synonymy. Two attributes A1 and A2 are
synonyms if they have similar meanings.

• Hypernymy. Attribute A1 is a hypernym of
attribute A2 if A1 is more generic than A2. For
example, tree is a hypernym of mango.

• Meronymy. Attribute A1 is a meronym of attribute
A2 if A1 is a part of A2. For example, first name
is a meronym of name.

In DSIM’s Domain-specific Thesaurus, hypernymy and
meronymy relationships of two terms using the
information in the interface representations are also
identified (see Table 2).

Table 2 Examples of Domain-specific Thesaurus for Books domain

Let us consider two interfaces consisting of attributes
“hardcover” and “format” respectively. If the value of
format is hardcover, obviously, the attribute format
becomes hypernym of hardcover (see row 3). Thus, the
existence of hypernym in an interface helps in mapping
process. Also, the part relationships of elements may be
used to discover meronyms. Consider a search interface
that contains an attribute author with two parts, first name
(row 1) and last name (row 2). From this interface, both
first name and last name can be identified as meronym of
author.

3.2.3 Data Type Matching

This matching strategy is used to match the data types of
the attributes of two different interfaces. It considers only
two data types: numeric and string. The data types of two
attributes of different interfaces would match only if both
attributes are of same type (see Table 3).

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

60

Table 3 Examples of Data Type Matching in Books domain

For example, for attributes A1 and A2 in two different
interfaces, the matcher can return the following similarity
values in each case:
While using, fuzzy matching strategy, the matcher
compares two strings and returns a similarity value in the
range [0, 1]. For example, for attributes “author” and “first
Name” of two different interfaces (see Table 1), the
matcher returns 0.80 as the similarity value.
While using, Domain-specific Thesaurus, the matcher
returns either 0 or 1 as the similarity value. The matcher
returns 0 if there exists no relationship between attributes
A1 and A2 of two different interfaces. If any relationship
(synonymy, hypernymy or meronymy) exists between two
attributes of different interfaces, the matcher returns 1. For
example, for attributes “author” and “first name” of two
different interfaces “Books” and “RefBooks” (see row 1
of Table 2) respectively, the matcher returns 1 as the
similarity value.
Similarly, for Data type matching strategy, the matcher
also return 1 as similarity value only if data type of two
attributes of different interfaces are same else returns 0.
For instance, for attributes “author” and “first name” of
two different interfaces “Books” and “RefBooks” (see row
1 of Table 3) respectively, the matcher returns 1 as both
attributes are of type string. But for attributes “Total
pages” and “pages” (row 3 of Table 3), the matcher
returns 0 as both attributes are not of same type.
The overall similarity value also called estimated
similarity value is computed as an average of the similarity
values obtained from the matcher for each mapping by
using three matching strategies: fuzzy matching, Domain-
specific Thesaurus and Data Type Matching. The
estimated similarity value is further used by the Similarity
Value Matrices (SVMs) as explained in the next section.

3.3 Semantic Mapping Generation

This phase generates the necessary semantic mappings
between the attributes of interfaces and stores them in
mapping knowledge base for future reference. It uses
following functional components for this purpose:

3.3.1 SVM generator and Selector

The state of system is represented by a triplet (S, O, SVM),
where S is the set of attribute of one interface, O is the set

of attributes of another interface, and SVM is a matrix,
called Similarity Value Matrix (SVM), with a row for
every attribute of one interface and a column for every
attribute of another interface. The schematic diagram of a
SVM is shown in Fig. 6 (a). Let variables s and o denote
the attributes of one interface and another interface,
respectively. An entry SVM[s, o] denotes the Estimated
Similarity Value (ESV) between attribute s of first
interface and attribute o of another interface. Fig. 6 (b)
shows a SVM for interfaces F1 and F2 and Fig. 6 (c)
shows a SVM for interfaces T1 and T2.

Fig. 6(a) Schematic diagram of Similarity Value Matrix

Fig. 6 (b) SVM for interfaces F1 and F2

Fig. 6 (c) SVM for interfaces T1 and T2

Fig. 6 Example of two Similarity Value Matrices

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

61

In fact, SVM generator identifies the estimated similarity
values as returned by the Domain-specific Matching
Library and generates the different Similarity Value
Matrices (SVMs). Each entry in the SVMs shows interface
mappings between the attributes of two interfaces. In a
real system, some of interface mappings could be
irrelevant and of no importance to the user. Since a good
interface mapping would not spread over the repository
and will remain located in rather small region of the
repository, DSIM employs a SVM Selector which checks
all the SVMs and their estimated similarity values. It also
looks for mappings which are more valuable, instead of
using all the mappings that are given by the Domain-
specific Matching Library, thereby improving the
efficiency of interface matching.

Fig. 7 Detailed Schematic Diagram of SVM Generator and Selector
module

To find the more valuable mappings, the SVM Selector
uses a threshold value as the selection parameter. The
threshold value is compared with the estimated similarity
values for each SVM to find the more valuable mappings.
The mappings having estimated similarity values greater
than the threshold values are being stored in the Mapping
Knowledge Base for future reference (see Fig. 7). The
mappings having estimated similarity value below a
particular threshold value would be ignored. For example,
if an attribute author of first interface is matched with
attributes first name, ISBN and subject of the second
interface (see Fig. 8), the matcher returns estimated
similarity values for each of three mappings i.e. for author
and First Name, author and ISBN and for author and
subject.

Fig. 8 An Example of Matching process

The estimated similarity values of these three mappings
are compared with a threshold value. The mappings
having estimated similarity values greater than threshold
value are treated as important mappings and are stored in
Mapping Knowledge Base for future reference and all
other mappings having estimated similarity values less
than threshold value are discarded. The algorithm for
SVM Generator and SVM Selector is shown in Fig. 9.

Algorithm SVMGenSelector(Iface1, Iface2)

/* This algorithm stores the estimated similarity values in the

SVMs. */

/* The attributes of the first and second interfaces are

represented by rows and columns respectively. */

/* It calls SVMSelector Algorithm for selecting valuable

mappings. */

Begin

 Store the estimated similarity values for attributes of Iface1

and Iface2 in SVMm*n;

 SVMSelector (SVMm*n);

end;

Algorithm SVMSelector(SVMm*n)

/*This algorithm finds the most valuable mappings by comparing the

estimated similarity values in SVMs with the appropriate threshold value

and store them in a Mapping Knowledge Base if the mappings are not

already there.*/

begin

 for i = 1 to m do

 for j = 1 to n do

 begin

 if (SVM[i, j] >= Threshold Value) then

 if (SVM[I,j] does not exists in Mapping Knowledge Base)

 then

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

62

Store SVM[i, j] for Iface1 and Iface2 in Mapping Knowledge Base

with attributes names;

 else

 continue;

 end;

 end;

Fig. 9 Algorithm for SVM Generator and Selector

3.4 Mapping Knowledgebase

The large numbers of mappings produced by SVM
Selector are stored in Mapping Knowledge Base (see Fig.
10). It contains five fields: attribute I, interface I, attribute
II, interface II, estimated similarity value. In order to
avoid duplicacy of match effort and redundancy of storage,
the matcher consults the Knowledge Base in search / insert
fashion. Before starting the next match cycle, the matcher
searches the mappings in the Knowledge Base. If the
mapping entry is found then they are discarded else the
match process is continued in order to derive new
semantic mappings. The mappings so obtained are inserted
in the Knowledge Base.

Fig. 10 Structure of Mapping Knowledge Base

4. Experimental Evaluation

Extensive experiments were conducted over several
domains of sources on the Web with the goal to evaluate
accuracy of matching and the contribution of different
components of DSIM towards the same. Although results
differ for different domains, the DSIM has shown fairly
general behavior with consistent results.

4.1. Performance Metrics

Similar to (B. He. Et al, 2003), the performance of field
matching has been measured via three metrics: precision,
recall, and F-measure. Precision is the percentage of
correct mappings over all mappings identified by the

system, while Recall is the percentage of correct mappings
identified by the system over all mappings as given by
domain experts. Suppose the number of correctly
identified mappings is C, the number of wrongly identified
mappings is W and the number of unidentified correct
mappings is M, then the precision of the approach is given
by the expression given below

 P = C/ (C + W) (1)

and the recall, R, of the approach is

 R = C/ (C + M) (2)

F-measure incorporates both precision and recall. F-

measure is given by

 F = 2PR/ (P + R) (3)

where : precision P and recall R are equally weighted.
In DSIM, schema trees were generated from the query
interfaces collected from five domains. The schema trees
have been used to conduct the experiments. For every
domain average precision, average recall and average F-
measure were computed by the expressions given below:

Average Precision = ∑ Pi /N (4)

Average recall = ∑ Ri / N (5)

Average F-measure = ∑ (F-measure)i /N (6)

where N is total no. of interfaces matched and i range from
1 to N.

4.2. Data Set

For experimental evaluation of the proposed work, query
interfaces of the sources available on the deep Web for the
following five domains have been considered:

• Airfare
• Automobile
• Book
• Job
• real estate

For each domain, 20-30 query interfaces were collected by
utilizing the online directories: invisibleweb.com (now
profusion.com) which maintains a directory of hidden
sources along with their query interfaces and the Web
directory maintained by yahoo.com. Yahoo.com houses
both hidden and visible web. The query interfaces of
hidden web were obtained and manually transformed into
schema trees.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

63

4.3. Experiments

In the proposed work, SVM generator identifies the
estimated similarity values as returned by the Domain-
specific Matching Library and generates the different
Similarity Value Matrices (SVMs). The SVM Selector
uses a threshold value as a selection parameter which is
compared with the estimated similarity values for each
SVM to find the more valuable mappings. The mappings
with estimated similarity values greater than a particular
threshold are stored in the Mapping Knowledge Base. The
various strategies of Domain Specific Matching Library
(DSML) were employed to perform same set of
experiments for each domain using different threshold
values. Average Threshold of a particular domain is
computed by the following expression

Average Threshold = ∑ Ti / N (7)

where N is total number of interfaces matched and i range
from 1 to N.
The results of the experiments are shown in Table 4.

Table 4. Average Threshold for each domain

It may be observed that the Overall Average Threshold for
all the five domains is about 0.80. The Average Threshold
values listed in Table 4 and expressions (4), (5) and (6)
were used to compute Average Precision, Average
Recalland Average F-measure for every domain and the
results are tabulated in Table 5.

Table 5. Experimental results in five domains

From Table 5, it may be observed that overall average
precision of matching process is high i.e. ranges from 84%
to 93.5%, overall average recall of matching process is
also high i.e. ranges from 85.5% to 96% and overall
average F-measure of matching process is also quite high
i.e. about 90%.
If the estimated similarity values of mappings are higher
than threshold values, the semantic mappings thus found
by the matching process are stored in the Mapping
Knowledgebase. In fact, these mappings could be used if
after sometime search interface repository would be
updated or new search interface are inserted in the Search
Interface Repository.

No. of mappings in Knowledge Base vs No.
of Comparisons

No. of mappings in Knowledge Base

N
o.

 o
f C

om
pa

ris
on

s

Fig. 11 No. of mappings in Knowledge Base vs No. of Comparisons

It has been found (see Fig. 11) that the number of
comparisons done in the matching process decrease as the
number of mappings in the mapping Knowledge Base
increase indicating that the framework proposed in this
paper is both scalable and efficient. Moreover, the
efficiency of DSIM increases as the number of mappings
in the mapping knowledge base increases.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

64

5. Conclusion and Future research

DSIM quickly identifies regions in the interface repository
comprising of important mappings. It further improves by
discarding the less important mappings as SVM Selector
uses a threshold value as a selection parameter. The loss
mostly occurs among the mappings which rank low, an
acceptable trade off.
Though the domain-specific Interface Matching Library
currently supports three matching strategies, but it is
extensible in the sense that newer and better strategies can
be easily added later on.
Future research includes: (1) establishing a tighter control
over selection of the important mappings – more insight
into the effects of certain selection parameters on the
efficiency/effectiveness trade off allows for better tuning,
(2) ordering the mappings in the Mapping Knowledge
Base – a measure of mapping's quality can be used to
decide which mappings have better chances to produce
good mappings. In this way, the time-to-first good
mapping can be improved, (3) extending the match library
and improving the learning capability.

Acknowledgments

Insert acknowledgment, if any.

References

[1] Doan, J. Madhavan, P. Domingos, and A. Halevy.

Learning to Map between Ontologies on the Semantic
Web. In WWW, 2002.

[2] A. Doan, P. Domingos, A. Halevy. Reconciling Schemas
of Disparate Data Sources: A Machine-Learning
Approach. In SIGMOD Record, 2001.

[3] A.K.Sharma, J. P. Gupta, “An Architecture for Electronic
Commerce on the Internet”, Journal of Continuing
Engineering Education, Vol. 2, pp 10-15, Roorkee, July
2002.

[4] A.K.Sharma, J. P. Gupta, D. P. Agarwal, “A novel
approach towards Volatile Information Management”,
Journal of CSI, Vol. 33 No. 1, pp 18-27, Sept’ 2003.

[5] A.K. Sharma, J.P. Gupta, D. P. Agarwal, “An alternative
approach for generation of document fingerprints for
static documents“, Journal of CSI, Vol. 35 No. 1, pp 18-
27, Mar 2005

[6] A. K. Sharma, Komal Kumar Bhatia: “Automated
Discovery of Task Oriented Search Interfaces through
Augmented Hypertext Documents” Proc. First
International Conference on Web Engineering &
Application (ICWA2006).

[7] Alexandros Ntoulas Petros Zerfos Junghoo Cho,
“Downloading Hidden Web Content”, UCLA Computer
Science, fntoulas, pzerfos, chog@cs.ucla.edu He, K.
Chang, and J. Han. Discovering complex matching

[8] across web query interfaces: A correlation mining
approach. In SIGKDD, 2004.

[9] He, K. Chang, and J. Han. Statistical schema matching
across web query interfaces. In SIGMOD, pages 217–228,
2003.

[10] Bergman, M.K., The Deep Web: Surfacing Hidden Value.
2000,

[11] BrightPlanet.com,Sullivan, D., Search Engine sizes. The
Search Engine Report, 2001.

[12] Do H.-H., Melnik S., and Rahm E.: Comparison of
Schema Matching Evaluations, Proc. GI Workshop "Web
and Databases", Erfurt, Oct. 2002.

[13] Google.com., www.google.com
[14] H. He, W. Meng, C. Yu, and Z. Wu. WISE-integrator:

An automatic integrator of Web search interfaces for e-
commerce. In VLDB, 2003.

[15] Hong-Hai Do, Erhan Rahm, COMA-A system for
flexible combination of schema matching approaches. In
Proc. 28th VLDB Conference, 2004.

[16] Ipeirotis, P., Gravano, L. & Mehran, S. (2001), ‘Probe,
count, and classify: categorizing hidden web databases’,
ACM SIGMOD 30(2), 67 – 78.

[17] Jayant Madhavan, Philip A. Bernstein, Erhard Rahm,
Generic Schema Matching with Cupid, VLDB 2001.

[18] Li W, Clifton C, Liu S (2000) Database integration using
neural network: implementation and experiences. Knowl
Inf Syst 2(1): 73-96.

[19] Mike Burner, “Crawling towards Eternity: Building an
archive of the World Wide Web” Web Techniques
Magazine, 2[5], May 1997.

[20] N. Noy and M. Musen. PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment. In
AAAI/IAAI, pages 450–455, 2000.

[21] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P.
Domingos. iMAP: Discovering Complex Mappings
between Database Schemas. In SIGMOD, 2004.

[22] S. Raghavan and H. Garcia-Molina, “Crawling the
Hidden Web”, VLDB Conference, 2001.

[23] Sergey Melink, Hector Garcia-Molina, Erhard Rahm.
Similarity Flooding: A Versatile Graph Matching
Algorithm and its Application to Schema Matching. In
Proc. 18th International.Conf. On Data Engineering, San
Jose CA, 2002.

[24] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive
clustering-based approach to integrating source query
interfaces on the deep web. In SIGMOD, 2004.

[25] www.invisibleweb.com.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

65

Komal Kumar Bhatia received

the B.E. and M.Tech. degrees in
Computer Science Engineering with
Hons. from Maharishi Dayanand
University in 2001 and 2004,
respectively. Presently, he is working as
Assistant Professor in Information
Technology department in YMCA
Institute of Engineering, Faridabad. He
is also pursuing his Ph.D in Computer

Engineering and his areas of interests are Search Engines,
Crawlers and Hidden Web.

Prof. A. K. Sharma received his M.Tech. (Computer Sci. &
Tech) with Hons. From University of Roorkee in the year 1989
and Ph.D (Fuzzy Expert Systems) from JMI, New Delhi in the
year 2000. From July 1992 to April 2002, he served as Assistant
Professor and became Professor in Computer Engg. at YMCA
Institute of Engineering Faridabad in April 2002. He obtained
his second Ph.D. in IT from IIIT & M, Gwalior in the year 2004.
His research Interest include Fuzzy Systems, Object Oriented
Programming, Knowledge Representation and Internet
Technologies.

