
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

130

Manuscript received December 5, 2008

Manuscript revised December 20, 2008

 A Survey On Active Queue Management Mechanisms

G.Thiruchelvi1 and J.Raja2,

1Periyar Maniammai University,Thanjavur,Tamilnadu,India 2 SSN College of
Engineering,Kalavakkam,Tamilnadu,India

Summary
Congestion control mechanism is one of the key that keeps
any network efficient and reliable for the users. Many
mechanisms were proposed in the literature over theses
years for the efficient control of congestion that occur in
the network. Active Queue Management (AQM) is one
such mechanism which provides better control in the
recent years. It works at the router for controlling the
number of packets in the router's buffer by actively
discarding an arriving packet. Many schemes were
proposed which give better delay performance and high
throughput over different traffic conditions. In this paper
an exhaustive survey is made on the AQM techniques
that are proposed and the merits and short falls is
presented
Key words:
Active Queue Management, Congestion Control, Queue
length, Link utilization, TCP, Non-TCP

1. Introduction

Congestion in Internet occurs when the link
bandwidth exceeds the capacity of available routers. This
results in long delay in data delivery and wasting of
resources due to lost or dropped packets. The primary role
of a router is to switch packets from the input links to
output links through buffer. Apart from forwarding the
packets, routers are involved for controlling the
congestion in the network. It is known from [1] that
routing algorithms focus on two main concepts namely
queue management and scheduling. Queue management
algorithms manage the length of packet queues by
dropping packets whenever necessary whereas scheduling
algorithms determine which packets to be sent next. These
algorithms are used primarily to manage the allocations of
bandwidth among various flows.

New trends in communication, especially the
deployment of multicast and real time audio/ video
streaming applications, are likely to increase the
percentage of non –TCP traffic in the internet [2]. They
don’t share the available bandwidth fairly with

applications built on TCP, such as Web browsers, FTP or
e-mail clients. The Internet community strongly fears that
the current evolution could lead to congestion collapse and
starvation of TCP traffic.

TCP can detect packet drops and interpret them as
indications of congestion in the network. TCP sender will
react to these packet drops by reducing their sending rates.
This reduction in sending rate translates into a decrease in
the incoming packet rate at the router, which effectively
allows the router to clear up its queue. When the incoming
packet rate is higher than the router’s outgoing packet rate,
the queue size will gradually increase and queue becomes
full at one stage.

The traditional technique for managing queue lengths
is to set a threshold (in terms of packets) for each queue,
accepts packets for the queue until the threshold is reached,
then reject (drop) subsequent incoming packets until the
queue decreases below the value of threshold. This
technique is known as “tail drop”, since packet that arrived
most recently is dropped when the queue is full. Even
though this method has served the Internet well for years,
Baren B.et al pointed out two important drawbacks namely,
Lock-Out and Full Queues. In some situations tail drop
allows a single connection or a few flows to monopolize
queue space, preventing other connections from getting
room in the queue. This “Lock-Out” phenomenon is often
due to the result of synchronization or other timing effects.
The tail drop discipline allows queue to maintain a full
status for long periods of time, since tail drop signals
congestion only when the queue has become full. It is
important to reduce the steady- state queue size and this is
perhaps the queue management’s most important goal.

In routing the packets there is a need to tradeoff
between delay and throughput. If the queue is full or
almost full, an arriving burst will cause multiple packets to
be dropped. This can result in global synchronization of
flows throttling back, a sustained period of lowered link
utilization, reducing overall throughput. The point of
buffering in the network is to absorb data bursts and to
transmit them during the ensuing bursts of silence. This is
essential to permit the transmission of bursty data.
Maintaining small queues can result in higher throughput

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

131

as well as lower end-to-end delay. In short, queue limits
should not reflect the steady state queues; instead they
have to reflect the size of the bursts needs to be absorbed.

Besides tail drop, B.Braden et al.. Considered two
alternative queue disciplines that can be applied when the
queue becomes full. They are “random drop on full ”[3]
or “drop front on full”[4]. Both disciplines solve lock out
problem but neither of them solves full queues problem.

In Internet, dropped packets serve as a critical
mechanism of congestion notification to end nodes. The
solution to the full queues problem is for routers to drop
packets before a queue becomes full, so that end nodes can
respond to congestion before buffers overflow. Such
approach is called as “Active Queue Management
(AQM)” which is discussed elaborately in RFC2309.By
dropping packets before buffers overflow, AQM allows
routers to control packet drops.

By keeping the average queue size small, queue
management will reduce the delays seen by flows. This is
particularly important for interactive applications whose
subjective (and objective) performance is better when the
end-to-end delay is low. Active queue management can
prevent lock-out behavior by ensuring that there will
almost always be a buffer available for an incoming packet.
It can also prevent a router bias against low bandwidth for
highly bursty flows.

This paper is organized as follows. In section 2 we
introduce the concept of AQM and classification of AQM
schemes based on metrics of congestion measure. In
section 3 some of the AQM schemes based on queue
length metrics was discussed. AQM schemes based on
load metrics were discussed in section 4. In Section 5
AQM schemes based on both queue length and load
metrics were discussed. A detailed discussion was carried
out in section 6 and the paper is concluded with section 7

2. Active Queue Management

The essence of Internet congestion control is that a
sender adjusts its transmission rate according to the
congestion measure of the underline networks. There are
two approaches to accomplish this. One is a source
algorithm that dynamically adjusts the transmission rate in
response to the congestion along its path; the other one is a
link algorithm that implicitly or explicitly conveys
information about the current congestion measure of the
network to sources using that link. In the current Internet,
the source algorithm is carried out by TCP, and the link
algorithm is carried out by active queue management
(AQM) schemes at routers

According to the metrics used to measure congestion,
AQM schemes can be classified into three catalogs:
queue-based, rate based, and schemes based on concurrent
queue and rate metrics. In queue-based schemes,
congestion is observed by average or instantaneous queue
length and the control aim is to stabilize the queue length.
The drawback of queue-based schemes is that a backlog is
inherently necessitated. Rate- based schemes accurately
predict the utilization of the link, and determine
congestion and take actions based on the packet arrival
rate. Rate-based schemes can provide Early feedback for
congestion Other AQM schemes deploy a combination of
queue length and input rate to measure congestion and
achieve a tradeoff between queues stability and
responsiveness

 1. RED 10. SHRED

 2. FRED 11. HRED

 3. CBT 12. ARED

 4. SRED 13. RARED

 5. DSRED 14. QVARED

 6. MRED 15. PUNSI

 7. Adaptive RED 16. CHOCKe

 8. PDRED 17 Stochastic RED

 9. LRED

1. BLUE
2. SFB
3. SFED
4. FABA
5. AVQ
6. SAVQ
7. EAVQ
8. YELLOW
9. LUBA
10. RAQM
11. PRC
12. REAQM

Active Queue Management

1. REM
2. SVB
3. RaQ

Queue Length Based LoadBased Queue Length & Load
based

Fig 1.Classification of AQM Schemes

3. AQMs Based On Queue Length Merit

3.1 Random Early Detection (RED)

An active queue management scheme namely
Random Early Deduction (RED) [5] alleviates congestion
by detecting incipient congestion early and delivering
congestion notification to the end source allowing them to
reduce the transmission rates before overflow occurs.
Since RED acts in anticipation of congestion, it does not
surfer from the “Lockout” and “Full queue” problems
inherent in the widely deployed drop tail mechanism. By
keeping the average queue size small, RED reduces the
delays experienced by most flows. The effectiveness of
RED depends to a large extent, on the appropriate
selection of the RED parameters. Self Configuring RED
was later proposed by Feng [6] that self parameterizes
itself based on the traffic mix. However adaptive

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

132

determination of the RED parameters complicates buffer
management of high speed routers/gateways

3.2 Flow RED (FRED)

RED is vulnerable to unresponsive flows dominating
a router’s queue. Lin and Morris recognize this
shortcoming of RED and proposed a scheme, called Flow
Random Early Detection (FRED)[7], to promote fair
buffer allocation between flows. FRED attempts to
provide fair buffer allocation between flows, isolating
each flow from the effects of misbehaving or non-
responsive flows. FRED’s approach is to impose
uniformity during times of congestion by constraining all
flows to occupying loosely equal shares of the queue’s
capacity (and hence receiving loosely equal shares of the
outbound link’s capacity). Moreover, flows that repeatedly
exceed an average fair share of the queue’s capacity are
tightly constrained to consume no more than their fair
share. This uniformity comes at a cost, however. Statistics
must be maintained for every flow that currently has
packets in the outbound queue of the router. These so-
called “active flows” are allocated an equal share of the
queue, which is determined by dividing the current queue
size by the number of active flows. The number of packets
a flow has enqueued is compared to the product of the
flow’s share value and a constant multiplier. This
multiplier allows for non-uniform (bursty) arrival patterns
among flows. A flow that exceeds the threshold including
the multiplier is considered unresponsive and is
constrained to its share (without the multiplier) until it has
no more packets in the queue. FRED’s major weakness,
however, is the overhead associated with tracking active
flows and keeping statistics (packet counts) for each active
flow.

3.3 Class Based Thresholds(CBT)

Most multimedia applications choose UDP an
unreliable transport mechanism as their underlying
transport mechanism because they are concerned with
throughput and latency rather than reliable delivery. CBT
is an active queue management scheme that will maintain
the positive features of RED, limit the impact of
unresponsive flows, but still allow UDP flows access to a
configurable share of the link bandwidth. Moreover, it
does this without having to maintain per flow state in the
router. CBT builds upon the drop thresholds of RED and
the buffer allocations of FRED to provide a queue
management policy that efficiently meets these goals[8].
The approach is to isolate TCP flows from the effects of
all other flows by constraining the average number of non-

TCP packets that may reside simultaneously in the queue.
Classes of non-TCP traffic are also isolated from one
another, specifically isolating continuous media traffic
from all other traffic. Continuous media streams are
tagged before they reach the router so that they can be
classified appropriately. These flows are either self-
identified at the end-system or identified by network
administrators. Statistics are maintained for these classes
of traffic and their throughput is constrained during times
of congestion by limiting the average number of packets
they can have enqueued. Untagged packets are likewise
constrained by a different threshold on the average
number of untagged packets enqueued. These thresholds
only determine the ratios between the classes when all
classes are operating at capacity (and maintaining a full
queue). When one class is operating below capacity, other
classes can borrow that class’s unused bandwidth.

 In CBT, the classification packets into one of the
three classes i.e TCP, tagged or untagged is an operation
that takes constant time. In FRED the packet are classified
by which flow it is associated with. This classification is
conceptually O(N) where N is the number of active flows.
In the case of CBT the number of statistics involved is
constant, one set for each of the three classes. Whereas in
the case of FRED there are packet counts, strike counts,
and a 5-tuple to identify the associated flow for every
active flow (O(n)).

3.4 Stabilized RED (SRED)

Like RED, Stabilized Random Early Drop (SRED)
[9] preemptively discards packets with a load dependent
probability when buffer in a router in the Internet or an
intranet seems congested. SRED has an additional feature
that over a wide range of load levels helps it stabilize its
buffer occupation at a level independent of the number of
active connections. SRED does this by estimating of the
number of active connections or flows. This estimate is
obtained without collecting or analyzing state information
on individual flows. The same mechanism can be used to
identify flows that may be misbehaving. In SRED there is
no computation of average queue length. The packet loss
probability depends only on the instantaneous buffer
occupation and on the estimated number of active flows.

 T.J.Ott et al showed that, while buffer occupancy
in SRED is independent of the number of connections
when the number of connections are less ,it increases only
slightly if the number of connections increased to 1000.In
RED the buffer occupancy increases in proportion with
the number of connections. For SRED the buffer
occupancy is almost always at least B/3 where B is the
buffer occupancy. Next observation in SRED is, for TCP

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

133

flows, the impact of packet drop is very high when the
bottleneck buffer occupancy is dominated by a few active
flows with large windows and is very little when the
bottleneck buffer occupancy is caused by a large number
of connections with small windows. Hence, mechanisms
like RED, which tries to control buffer occupancy, can be
benefited by adjusting their drop probabilities, using the
estimates of the number of active connections. As SRED
can stabilize over a wide range of load levels, the buffer
occupancy at a level, which is independent of the number
of active connections, therefore overcomes the scalability
issues but suffers from low through put.

3.4 Double Slope RED (DSRED)

 The low through put of the RED is the most
important problem which needs to be carefully addressed.
A new active queue management scheme called “Double
Slope Random Early deduction (DSRED)” was proposed
in [10] that use a combination of two different drop
probability distributions to achieve higher performance
than RED. It resembles RED in two aspects; first, both of
them use linear drop functions to give a smooth increase in
drop action based on average queue length. Secondly they
calculate the average queue length using the same
definition to account for the effect of long-term congestion.
Therefore DSRED inherits the advantages of RED. When
congestion increases, drop will increase with higher rate
instead of constant rate. This will give an early warning to
hosts to back off, preventing congestion from getting
worse. As a consequence, congestion will be relieved and
throughput will increase. The two segments of the drop
function can be adjusted by the parameter γ where γ
represents mode selector for adjusting drop function
slopes. Therefore the operating mode of DSRED can be
easily adjusted by a single parameter. i.e., by adjusting γ ,
one can get high drop rate first followed by a low drop
rate, or vice versa. This is more effective than RED in
handling complicated network congestion situations. Bing
Zheng et al concluded that, under heavy load ,with γ =
0.96 and max drop= 0.1 DSRED gateway always has lower
queuing delay, smaller queue size and lower packet drops
than the RED gate way queue .

Table 1 Performance comparison between DSRED and RED (Reprinted
from Ref10)

3.5 MRED

A new concept of active queue management called
MRED [11] was developed which controls queue by using
packet loss information and link utilization history
information with small queue size. MRED estimate
average queue size either using a simple EWMA in the
forwarding path or using a similar mechanism in the
background. Therefore MRED has two separate
algorithms. One is for computing the average queue size to
determine the degree of burstiness that will be allowed in
the router queue and the other is the one for calculating the
packet drop probability to determine how frequently the
router drops packets at the current level of congestions.
Since it calculates a drop probability value based on link
utilization history information, MRED efficiently controls
the congestion caused by retransmission of dropped packet.
From Fig 2 it is found that the through put of MRED is
slightly better than that of RED as shown below.

Fig -2 Throughput Vs Buffer size (Reprinted from Ref 11)

DSRED RED

Parameter H Load L load H load L load

Norm
Thrupt

0.525 0.372 0.445 0.355

Avg QD(s) 0.0081 0.0081 0.013 0.0011
8

Avg
QS(Pkt)

2.6 2.7 7.3 6.8

Avg PD
(Pkt/s)

2.5 2.5 13.1 11.25

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

134

Fig-3 Delay time vs Buffer Size (Reprinted from Ref 11)

3.6 Adaptive RED

Floyed et al. proposed another AQM method called
adaptive RED [12].In this the parameter maxp is adapted
using an additive increase multiplicative decrease policy to
keep the average queue length within a target range and is
adapted not just to keep the average queue size between
minth and maxth, but to keep the average queue size within
a target range halfway between minth and maxth. maxp is
adapted slowly, over time scales greater than a typical
round trip time and in small steps. As adaptive RED can
stabilize the queue length at a given target, its performance
can still be improved if we adapt the drop probability maxp
in a more methodological manner. Despite significant
control theory advancement most industrial processes use
proportional integral derivative (PID) controller. The new
PDRED AQM [13] solution is composed of two parts (i) a
new PD controller (ii) The original RED AQM. Jinsheng
Sun et al. showed that the fluctuation in amplitude of PD-
RED queue length is smaller and the variance of the drop
probability is much smaller than those of adaptive RED.

3.7 Loss Ratio Based RED (LRED)

Another AQM scheme with fast response time was
introduced by [14] called Loss Ratio based RED
(LRED).It measures the latest packet loss ratio and uses it
as a compliment to queue length in order to dynamically
adjust packet drop probability. Employing the closed
form relationship between packet loss ratio and the
number of TCP flows this scheme is responsive if the
number of TCP flows varies significantly. An increasing
packet loss ration is a clear indication that severe
congestion occurs and that aggressive packet dropping is

needed. On the other hand a decrease in packet loss ratio
can serve as a signal that congestion is receding and
consequently, that packet drop action can change from
aggressive to moderate. Therefore it is possible to use the
packet loss ratio to design more adaptive and robust AQM
scheme. LRED uses instantaneous queue length to
calculate the packet drop probability each time packets
arrive while dynamically adjusting the packet drop
probability according to the measured packet loss ratio
over relatively large time scale. Such a combination
enables fast response time and high robustness. LRED is
most suitable for congested networks though its
performance is comparable to PI & REM in a network of a
light traffic load. Another version of AQM, which uses
the same packet loss ratio, is proposed in AQMS_PLR.
The arriving packet is marked as the early drop probability
by the network loss ratio of the early network so that the
probability can approach the loss ratio of current real
network

3.7 Short Lived Flow Friendly RED (SHRED)

Short-lived flow friendly RED (SHRED) [15]
targeted at providing better network performance for short
web traffic. The basic idea is to use a lower drop
probability for flows with small congestion window and to
have the drop probability to increase linearly with a flow’s
increased relative congestion window size. Using an edge
hint to indicate the congestion window size in each packet
sent by the flows source or by an edge router, SHRED
preferentially drops packets from short-lived web flows
less often than packet from long lived flows. Mark
Claypool et al.. concluded that for web only traffic
SHRED performs slightly better than drop tail for low to
moderate congestion level whereas RED performs worse
than drop tail. RED always performs better than drop tail
for mixed traffic and SHRED performs significantly better
than RED and drop tail with mixed traffic and web only
traffic for moderate to high levels of congestion.

3.8 Hyperbola RED (HRED)

A minimal adjustment to the RED algorithm was
proposed by Hyperbola RED (HRED) that uses the
hyperbola as the drop probability curve[16]. The control
law of HRED can regulate the queue size, which can be
set by the user. As the reference queue size is set by the
user, HRED is no longer sensitive to the level of network
load and it can achieve higher network utilization and
result in predictable average queuing delays. It retains the
ability to control the short congestion by absorbing bursts,
because its still keeps the moving average queue size
algorithm and maintain a non-full queue.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

135

3.9 ARED

Another adaptive AQM mechanism ARED was
proposed in [17] which can keep queue around the
expected value through adjusting maximum drop rate
adaptively using gradient descent method. Simulation
results show that ARED can stabilize the average queue
length and instantaneous queue length around the target
value with different number of connections while original
RED algorithm oscillates violent both under heavy and
light traffic loads. The performance of Adaptive RED is
further increased by tuning the maxp which in the Refined
Adaptive RED (RARED) [18] constrained to remain in the
range[0.01,0.5].The metrics used in RARED for analysis
are TCP good put and TCP and UDP packet drop rate.
From Figure 4 and table 2 it is observed that RARED has
a slightly higher or similar to TCP good put than those
with RED, ARED, and a slightly lower TCP/UDP packet
drop rate. From Fig 5 it is clear that RARED maintains
steady true average queue size than RED,ARED

Fig - 4 TCP goodput(left) and TCP/UDP packet drop rate(right) for 25
long-lived TCP connections with 10% UDP traffic (Reprinted from Ref

18)

3.10 Queue Variation Adaptive RED (QVARED)

“Queue Variation Adaptive RED” [19] a variant of
ARED responds to bursty traffic more actively. This is
based on the variation of a queue per hour. As QVARED
handles bursty traffic dynamically, dropped packets

decrease significantly in comparison with RED and ARED.
Thus end- to- end delay, like Web traffic gets short as a
result. The study showed that the drop rate of QVARED is
decreased by 80% and 40% compared to RED and ARED
respectively. It reduces the bias effect over 18% than that
of drop- tail method, therefore packets are transmitted
stably with respect to bursty traffic

Table -2 TCP/UDP packet drop rate for 25 long-lived TCP
connections.(Reprinted from Ref 18)

Fig – 5 True average queue size of RED, ARED and RARED, for 50
long-lived TCP connections with 1-4 UDP traffic.(Reprinted from Ref

18)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

136

3.11 PUNSI

Another algorithm, which deals unresponsive flows,

is the PUNSI algorithm [20]. It prevents unresponsive
flows from dominating available bandwidth shared with
responsive flows. This is done by penalizing packets from
unresponsive flows with a higher probability than those
from responsive flows. It is motivated by the observation
that unresponsive flows tend to generate traffic of higher
rates than responsive flows and that, when a packet is
dropped due to buffer overflow, fellow packets from the
same flow seem to be found in the buffer among those
having joined recently. This algorithm first allocates good
fair share of bandwidth among all flows passing through a
router and achieves this without per flow information.
Queuing algorithms with good fair sharing of bandwidths
and stateless information are important since they reduce
the complexity due to large overhead caused by more
number of flows as against algorithms like Flow Random
early Drop (FRED) which maintain per flow status.
CHOKe algorithm [21] penalizes not only high bandwidth
UDP flows but also TCP ones. Several packet losses in a
short period worsen TCP performance significantly It
doesn’t work well if there are only a few packets from
unresponsive flows in the queue. These two shortcomings
of CHOKe are overcome by PUNSI algorithm that
penalized UDP flows more effectively in accordance with
its burstiness. The authors have shown using Figures 6 and
7, that PUNSI doesn’t worsen the TCP performance In
contrast to UDP flow, the TCP loss rate is consistently
around 1% which means that PUNSI penalizes the bursty
UDP flows but not TCP flows

Fig -6 Loss Rate of On - Off CBR traffic with Burst rate of
10Mbps(Reprinted from Ref 20)

Fig -7 Loss Rate of On - Off CBR traffic with Burst
rate of 100Mbps(Reprinted from Ref 20)

3.11 Stochastic RED

A scalable algorithm called Stochastic RED [22] was
introduced later keeping in mind the tremendous growth of
unresponsive traffic in Internet. A major difficulty in
distinguishing individual flows without requiring per-flow
state information at the routers is overcome by Stochastic
RED. It is called stochastic because it does not really
distinguish the flows accurately. The arriving traffic is
divided by the router into a limited number of counting
bins using a hashing algorithm. On the arrival of each
packet at the queue, a hash function is used to assign the
packet to one of the bins based on the flow information.

Stochastic Red dispatches the packets of the different

flows to the set of bins. With a given hash function,
packets of the same flow are mapped to the same bin.
Therefore, when the flow is unresponsive, the bin load
increases dramatically. Stochastic RED estimates the bin
loads and uses these loads to penalize flows that map to
each bin according to the load of the associated bin. Thus
unresponsive flows experience a larger packet drop
probability. However, because of the hashing and limited
number of bins, multiple flows may end up associated
with the same bin. Thus flows that share a bin with an
unresponsive flow are punished unnecessarily. To prevent
this situation, Stochastic RED changes it’s hashing
function often enough so that the time span for any two
flows to collide into the same bin is within several seconds.
In the long run, only misbehaving flows get significantly
disciplined by Stochastic RED, making them TCP friendly
and improving the response time of Web transfers.

From the above discussion on various queue length

based AQMs we observe that the RED has problems such
as low throughput, large delay/jitter, unfairness to
connections and inducing instability in the network.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

137

Tuning of parameters of RED is the main goal of almost
all newly developed AQMs. Most of the simulation
studies assume idealized traffic, which differs significantly
from real bursty traffic. The queue based AQM schemes
use average queue length (or instantaneous queue length)
as a congestion indicator. However the window size and
packet marking probability are relative to input traffic load
directly. Therefore a new congestion indicator and control
function are needed to provide adaptive control to the
traffic characteristics such as the amount of traffic,
fluctuation of traffic load and traffic nature

4. AQMs Based On Load Merit

Rate based AQMs determine congestion and take
actions based on packet arrival rate. The goals of the rate
based AQMs are to alleviate rate mismatch between
enqueue and dequeue, and achieve low loss ,low delay and
high link utilization. Since the queue length is a
cumulative difference values of rate mismatch between
enqueue and dequeue, queue merit is insensitive to current
queue arrival and drain rates. This incurs the conservative
/aggressive packet marking behavior when the queue
length is small or large It explains in part the promising
performance of rate based AQMs compared with queue
based schemes under dynamic traffic scenarios.

4.1 BLUE

The inherent problem with the AQM algorithms is
that they use queue length as the indicator of the severity
of congestion. In the light of this observation, a
fundamentally different AQM, called BLUE, [23] is
proposed, implemented and evaluated. BLUE uses packet
loss and link idle events to manage congestion. BLUE
maintains a single probability, pm, which it uses to mark
(or drop) packets when they are enqueued. If the queue is
continually dropping packets due to buffer overflow,
BLUE increments pm, thus increasing the rate at which it
sends back the congestion notification. Conversely, if the
queue becomes empty or if the link is idle, BLUE
decreases its marking probability. This effectively allows
BLUE to “learn” the correct rate it needs to send back
congestion notification. BLUE uses two other parameters,
which control how quickly the marking probability
changes over time. The parameter freeze _time determines
the minimum interval between two successive updates of
pm. The value of freeze _time should be randomized in
order to avoid global synchronization. The other
parameters used δ1 and δ2 determine the amount by which
pm is incremented when queue overflows or is
decremented when the link is idle. In BLUE the value of
δ1 is set slightly larger than δ2 . This is because the link
under utilization can occur when congestion management

is either too conservative or too aggressive, but packet loss
occurs only when the congestion management is too
conservative. The most important consequence of using
BLUE is that congestion control can be performed with a
minimal amount of buffer space. This reduces end-to-end
delay over the network, which in turn improves the
effectiveness of the congestion control algorithm. Using
both simulation and controlled experiments the authors
Wu –Chung Feng et.al. showed that, BLUE is performing
significantly better than RED, both in terms of packet loss
rates and buffer size requirements

Fig -8 Queue management performance Throughput Vs Number of
Connections (Reprinted fromRef -

23)

Fig - 9 Queue management performance - percent packet loss Vs
Number of Connections (Reprinted from Ref-23)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

138

4.2 Stochastic Fair BLUE

As an extension to BLUE, a Stochastic Fair Blue [23]
algorithm based on Bloom filter is proposed that can
identify and limit the rate of non-responsive flows using
very small amount of state information. SFB maintains
NxL accounting bins. The bins are organized in L levels
with N bins in each level. In addition SFB maintains L
independent hash functions ,each associated with one level
of the accounting bins. Each hash function maps a flow,
vis its connection ID(Source address, Destination address,
Source port ,Destination port, Protocol) into one of the N
accounting bins in that level. The accounting bins are used
to keep track of queue occupancy statistics of packets
belonging to a particular bin. This is in contrast to
Stochastic Fair Queueing (SFQ) where the hash functions
map flows into separate queues. SFQ is similar to SFB
with one level of bins. The biggest difference is that
instead of having separate queues SFB uses hash function
for accounting purposes. Thus the SFB has two
advantages over SFQ. The first is that it can make better
use of its buffers. SFB gets some statistical multiplexing
of buffer space as it is possible for the algorithm to
overbook buffer space to individual bins in order to keep
the buffer space fully utilized. Other is that SFB is a FIFO
queueing discipline. As a result, it is possible to change
the hash function on the fly without having to worry about
packet reordering caused by mapping flows into a
different set of bins. Each bin in SFB maintains a marking
probability pm , as in BLUE ,which is updated based on
bin occupancy. As a packet arrives at the queue , it is
hashed into one of the N bins in each of the L levels, If the
number of packets mapped to a bin goes above a certain
threshold (i.e the size of the bin) pm for the bin is increased
and if the number of packets drops to zero, pm is decreased.
The observation which drives SFB is that a non responsive
flow quickly drives pm to 1 in all of the L bins it is hashed
into. Responsive flows may share one or two bins with
non responsive flows, however, unless the number of non
responsive flow is extremely large compared to the
number of bins, a responsive flow is likely to be hashed
into at least one bin that is not polluted with non-
responsive flows and thus has normal pm value.

4.3 SFED

SFED is an easy to implement rate control based

AQM discipline,[24] which can be coupled with any
scheduling discipline. It operates by maintaining a token
bucket for every flow (or aggregates of flow). The token
filling rates are in proportion to the permitted bandwidths.
Whenever a packet is enqueued, tokens are removed from
the corresponding bucket. The decision to enqueue or drop

a packet of any flow depends on the occupancy of its
bucket at that time. A sending rate higher than the
permitted bandwidth results in low bucket occupancy and
so a larger drop probability thus indicating the onset of
congestion at the gateway. This ensures the adaptive flow
to attain a steady state and prevents it from getting
penalized severely. However non-adaptive flows will
continue to send at the same rate and thus will suffer more
losses. The rate at which the tokens are removed from
bucket of a flow is equal to the rate of incoming packets
of that flow, but the rate of addition of tokens in a bucket
depends on its permitted share of bandwidth and not on
the rate at which packets of that particular flow are
dequeued. In this way token bucket controls the bandwidth
consumed by a flow. This SFED takes O(N) operations for
enqueue and dequeue .

4.4 FABA

The extension of SFED called FABA [25] is

proposed which takes O(1) operations for both enqueue
and dequeue. This extension makes FABA algorithm
scalable, and hence, practical to implement as compared to
the SFED algorithm. The observation from Fig-10 and Fig
11 is that the fairness index is the largest with FABA for
even very large number of HTTP connections and for FTP
and Telnet connections also, FABA performs consistently
better than any other AQM mechanisms. With a traffic
mix of fragile and non-fragile sources, FABA provides
bandwidth allocation for fragile flow almost as good as in
the ideal case. For a small maximum window size every
algorithm is able to accommodate the bursts of the fragile
flows without any drops, but with increasing maximum
window size, packet drops result in drastic reduction of
the fragile flow throughput. A packet drop is fatal for a
fragile flow as it is slow in adapting to the state of the
network. the throughput becomes constant after a while
since the window size of the fragile source is not able to
increase beyond a threshold. Therefore no matter how
large the maximum window size is increased beyond this
threshold, the throughput does not increase and
approaches a constant value as shown in Fig 12. This
constant is much less than its fair share due to less
adaptive nature of fragile flows

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

139

Fig- 10 Fairness Coefficient versus number of HTTP connections for
different AQM mechanisams (Reprinted from Ref 25)

Fig-11Fairness Coefficient versus number of FTP connections for
different AQM mechanisms (Reprinted from Ref 25)

4.5 Adaptive Virtual Queue (AVQ)

 Another rate based AQM called Adaptive Virtual
Queue algorithm for active Queue Management (AVQ)
which maintains a virtual queue whose capacity is less
than the actual capacity of the link [26]. When a packet
arrives in a real queue, virtual queue is also updated to
reflect the new arrival. Packets in the real queue are
dropped/marked when the virtual buffer overflows. The
virtual capacity at each link is then adapted to ensure that
the total flow entering each link achieves desired
utilization of the link. There are two parameters that have
been chosen to implement AVQ. One is desired utilization
γ and the other is damping factor α. The desired utilization

determines the robustness to the presence of
uncontrollable short flows. It

Fig-12 Performance of the fragile flow with increasing receiver window
constraint (Reprinted from Ref 25)

allows an ISP to trade off between high levels of
utilization and small queue length. Both the parameters
determine the stability of the AVQ algorithm. Srisankar
S.Kunniyur et al. showed that in the presence of long lived
FTP flows alone AVQ achieves low loss with high
utilization. They also showed that AVQ is responsive to
changes in network load and is able to maintain a small
queue length even when network load keeps increasing.
When short flows are introduced along with FTP flows,
the AVQ has lower drops compared to REM, PI and RED
and higher drop than GKVQ. Even though the drop is
higher than GKVQ, the utilization at the link for AVQ is
significantly greater than GKVQ algorithm. When
dropping (instead of marking) is employed at the routers,
the AVQ performs better than other AQM schemes in
terms of utilization and average queue length but the
fairness can be improved using probabilistic AQM scheme
like RED on AVQ. Probabilistic AQM scheme is required
only when the link drops packets and not when the link
marks packets, because multiple marks within a single
window does not cause TCP to timeout or to go into slow
start. However it is difficult to achieve a fast system
response and high link utilization simultaneously using a
constant value γ.

4.6 Stabilized Adaptive Virtual Queue(SAVQ)

An adaptive setting method for γ is proposed
according to the instantaneous queue size and the given
reference queue value in Stabilized Adaptive Virtual
Queue Management algorithm (SAVQ) which stabilizes
the dynamics of queue maintaining a high link utilization

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

140

[27].The table 3 shows the performance indices of AVQ
(with γ=1.0, γ=0.98) and SAVQ.

Table –3 Performance indices of AVQ and SAVQ(Reprinted from Ref
27)

 AVQ

Criterion γ =1.0 γ=0.98

 SAVQ

Average Queue

Length

115.4 37.64 43.19

STD of Average

Queue Length

72.52 52.53 38.09

Utilisation% 99.86 98.22 99.58

Loss Ratio% 0.339 0.129 0.092

In the case of AVQ with γ=1, the queue jitter is

remarkable which deteriorates the transient performance
and increases the average queue length and packet loss
ratio. The link utilization reduces much using AVQ with
γ=0.98.The above table shows that the transient response
of SAVQ algorithm outperforms AVQ and the queue
length of SAVQ converges fast to the desired length while
maintaining a satisfactory utilization and packet loss ratio.

4.7 Stable Enhanced Adaptive Virtual Queue
(EAVQ)

An enhancement to AVQ was proposed in rate-based
Stable Enhanced Adaptive Virtual Queue (EAVQ)
algorithm[28]. The concepts of the Principal and
subordinate measures of congestion, as well as desired
link utilization ratio were introduced into EAVQ. Arrival
rate at the network link was maintained as a principal
measure of congestion. The desired link utilization ratio
was used as a subordinate measure and a rate-based
adaptive mechanism of which was designed to resolve the
problems, such as hardness of parameters setting, poor
ability of anti-disturbance, and a little link capacity loss.
EAVQ improved the transient performances of the system
and ensured the entire utilization of link capacity. Qian
Yanping et al , shown the excellent performances of
EAVQ in terms of higher utilization, the lower link loss
rate, the more stable queue length, and the faster system
dynamic response than AVQ. Furthermore the
performances of EAVQ are insensitive to the number of
TCP connections

4.8 YELLOW

Yellow active queue management algorithm [29] uses

the mismatch between the input rate and link capacity as
the primary metric. Therefore the advantages of rate based
AQMs are inherited. Furthermore, queue size is made as a
secondary metric. Queue length affects the load factor
using Queue Control function, which is computed by a
non-linear hyperbola function of instantaneous queue
length and reference queue size. Known from other rate
based schemes Yellow provides an early controlling
queuing delay maintaining the main load merit. The
average queue length and Standard deviation of queue
length of Yellow are little affected by the introduction of
the UDP flows.

4.9 Link Utilization Based Approach (LUBA)

Another Link Utilization based Approach is LUBA
[30]. In this approach, the malicious flows are identified
which might be causing congestion at the router and
assign them drop rates in proportion of their abuse of the
network. If the overload factor U=λ/μ (where λ is the
aggregate arrival rate at the router and μ is the outgoing
link capacity of the router), is below the target link
utilization ,the router is non-congested and packets are not
marked or dropped. When it is greater, all arriving packets
are monitored while assigning flow _id to each ingress
flow at the router. A history table is maintained to monitor
flows which take more than their fair share of bandwidth
in a luba interval which is a byte count of total packets
received by the congested router during an interval in
which we measure whether a flow is hogging more than its
fair share. For each incoming packet, if its flow _id is not
listed in the history table, its flow _id is inserted in the
table with drop probability that is assigned to all those
flows that are not identified as malicious , to limit their
aggregate share to the residual link capacity that is
remaining after rate limiting the malicious flows. The
packet is inserted in FIFO queue if it is not dropped as per
the dropping probability. If the flow _id is present in the
history table, the packet is dropped as per the drop
probability and if the packet does not get dropped, it is
inserted into the FIFO buffer. All packets in the buffer are
serviced by the router at the μÛ per second where Û is the
target link rate. The LUBA interval should not be very
large as that would result in sluggish system and
unresponsive behavior in the presence of short-lived flows.
But it should be large enough to capture active flows.
When λ increases, the time duration τ to get the Luba
interval bytes decreases. It implies that during high
congestion period, history table contains mostly malicious
flows because during such a short time interval only those

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

141

flows can regularly figure in history table that are
consistently sending at a very high rate. Jitter degrades the
performance of both TCP and UDP flows. With the
change in arrival rate, queue builds up at the rate
proportional to log (λ) instead of λ. This has implications
in FIFO queue buildup and jitter properties of the router.
The end-to-end jitter introduced due to a series of routers,
demonstrate that LUBA acts as jitter suppressor. Manoj
K.Agarwal et al. showed that UDP sources with rate less
than 1 Mbps do not figure in the drop table. And UDP
sources with data rate above 1 Mbps are almost always
present in the history table. In the presence of large
number of UDP flows, the fairness index is much better
than other AQMs (Fig 13). SFB gives results closest to
LUBA. But SFB is computationally expensive and
difficult to configure. LUBA is also able to maintain the
high TCP throughput with increasing load on the
bottleneck link compared with other algorithms(Fig 14)

 Fig -13 Fairness Comparison with other AQMs
(Reprinted from Ref 30)

Fig -14 TCP throughput with varying load (Reprinted from Ref 30)

4.10 RAQM

Another new rate based AQM (RAQM) [31] uses the
aggregated traffic input rate to calculate packet drop
probability according to an exponential rule. This RAQM
works in two modes. Although RAQM needs to measure
traffic input rate, yet this operation is for the aggregated
flows and there is no need to differentiate each micro
flow: Queue independent mode and Queue dependent
mode. In the queue independent mode it only relies on the
aggregate traffic input rate to regulate the input rate to the
expected link utility. In queue dependent mode, it also
uses the instantaneous queue length to further adjust the
packet drop probability and to regulate the queue length to
the expected value. The rational for using the exponential
rule is that it can achieve stability and leads to faster
convergence of the packet drop probability to the expected
value. RAQM also obtains higher Good put at the same
cost of average queue length and better trade off between
good put and queuing delay.

4.11 Proportional Rate Control (PRC)

In the proportional rate based control (PRC) two
parameters i.e minimum threshold and maximum
threshold are maintained to effectively control input rate
under the desired level. virtual queue concept also
introduced into system to regulate the queue size[32]. The
attractive features include packet dropping to control the
arrival rate between minimum and maximum desired rate
and ECN marking to inform the source to reduce the
transmission rate quickly when virtual buffer becomes full.
It combines the advantages of quick responsiveness and
persistent stability

4.11 Rate based Exponential AQM

Current AQMs and TCP are designed and tuned to
work well for wired networks where packet loss is mainly
due to network congestion. In wireless networks, however
communication links suffer from transmission bit errors
and handoff failures. As a result the performance of TCP
flows is significantly degraded. To mitigate this problem a
Rate based Exponential AQM (REAQM) is
proposed[33] .It tries to stabilize the system and achieve
low delay, low packet loss and high link utilization
regardless of the dynamic of network conditions. Similar
to REM REAQM maintains a variable, price, as a
congestion measure and uses an exponential marking
probability function. On the other hand, REAQM differs
from REM in the definition of congestion measure. The

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

142

AQM Loss
rate

Good
put

Avg q
(packets)

STD q
(packets)

Drop
Tail

11.8% 1249.2 92.7

8.7

RED

13.1% 1245.8 42.1 26.0

REM 13.6% 1237.0 40.1 28.3

AVQ 14% 1218.0 10.5 11.8

SVB 13.2% 1249.2 51.4 5.9

price at queue l at time t is denoted by pl(t).The marking
probability function of REAQM is ml(t)=1-Ф–p

l
(t) where

Ф is a constant larger than 1.

Price is updated, periodically or asynchronously
mainly based on rate mismatch. Rate mismatch is positive
when the input rate exceeds the link capacity and negative
otherwise. The price is incremented if the rate mismatch is
positive and decremented otherwise. Queue length is used
to compute the coefficient of rate mismatch and adjust the
scale of rate mismatch. If queue length is small, the effects
of rate mismatch decrease and REAQM is less aggressive.
Otherwise, REAQM is more aggressive. The rational
behind it is that smaller the queue size, the more rate
mismatch is allowed. This makes the tradeoff between
system stability and utilization. if the current input rate
exceeds the link capacity, packet marking probability will
increase. Otherwise it will decrease. The larger the current
queue length, the larger the co efficient of rate mismatch
is; thus the larger the price value increases or decreases as
well. REAQM decouples packet loss and congestion
measure. In wireless packets are lost mainly because of bit
errors and intermittent connectivity. Simulation results
demonstrate that REAQM is capable of performing well
for TCP flows over both wired and wireless links.

Although the rate based AQM schemes can obtain

good transient performance because of its fast
responsiveness, large queuing delays jitter may occur by
the reason of no explicit control mechanism of queue size
under dynamic network scenarios especially

5. AQMs Based On Queue Length And Load
Merits

5.1Random Exponential Marking (REM)

REM [34] is an active queue management mechanism
that aims to achieve both high utilization and negligible
loss and delay in a simple and scalable manner. The key
idea is to decouple congestion measure from performance
measure such as loss, queue length or delay. While
congestion measure indicates excess demand for
bandwidth and must track the number of users,
performance measure should be stabilized around their
targets independently of the number of users. Simulation
results suggest that this goal seems achievable without
sacrificing the simplicity and scalability of the original
RED. This property can be exploited to improve the
performance of TCP over wireless links.

5.2 Stabilized Virtual Buffer (SVB)

Like REM, Stabilized Virtual Buffer (SVB) [35]
considers both the packet arrival rate and queue size to
stabilize them around target value but unlike REM it
maintains a virtual queue and responds to the traffic
dynamics faster for better stability, especially in the
presence of short flows. While the virtual concept queue is
similar to AVQ, this SVB considers both arrival rate and
queue length. Unlike AVQ where the service rate of the
virtual queue is adaptable and packet is dropped/marked
whenever the virtual queue overflows the physical buffer
limit, in SVB the service rate is fixed as link capacity of
the real queue and adapt the limit of the virtual buffer to
the packet arrival rate. Another difference with respect to
AVQ is that the incoming packets in SVB are then marked
with a probability, which is calculated based on both the
current virtual buffer limit and virtual queue occupancy.
The performance of SVB is compared with other AQMs
and the result is given in table 4 with the following
parameters for various AQMs.

 N = 200; Number of connections
 RED : Minth = 20 packets,
 Maxth = 80 packets,
 Q-weight = 0.002, Maxp= 0.5

 REM : Ф=1.005, γ=0.001, α=0.1, T=8ms,
 Target queue length =50packets

 AVQ : γ = 1.0
 SVB : b=45

Table 4 Performance comparison of SVB with other AQMs (Reprinted
from Ref 35)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

143

5.3 Active queue management algorithm
considering queue and load states

Jaesung Hong et.al suggest another AQM that
predicts the average queue length and controls it to
maintain a certain reference value to achieve high link
utilization and low queueing delay by considering both the
average queue length and the estimated packet arrival
rate.[36] The algorithm uses two functions to calculate
drop probability; One for averaging the queue length and
the other for estimating the rate of queue change. The
authors have showed that, with different values of Qmax,
this algorithm keeps the average queue length constantly
at the provided reference value Q ref, regardless of traffic
loading. It also has smaller deviation, which also gradually
decreases with the traffic load and buffer size. It assures
the queueing delay by reducing jitter under dynamic traffic
load.

5.4 RaQ

Another mechanism called RaQ [37] uses the input
rate and current queue length to calculate the packet
dropping/marking probability. From the point of control
theory, RaQ can be seen as dual loop feedback control.
The inner loop is rate feedback and outer loop is queue
length feedback control. Thus the rate feedback control
enables RaQ to respond congestion quickly, so that it can
decrease the packet loss due to buffer overflow, and queue
length feedback control stabilizes RaQ’s queue length
around given target. So it can achieve predictable
queueing delay and lower delay jitter.The simulation
results show that RaQ is able to maintain queue length
around the given target under different traffic loads,
different RTPTs, and different bottleneck link capacities.
Further simulation testing involving non-TCP traffic types
and a multiple bottleneck topology have further confirmed
the robustness of RaQ Comparison showed that the
superiority of RaQ in low packet loss, achieving faster
convergence to target queue length and then
maintaining the queue length closest to the target .

From the analysis of the literature [38],the AQM

schemes of this category can be viewed as a PID type
controller, which essentially belongs to queue based
category

6.DISCUSSION

Even though many mechanisms have been developed
since 1999,a few of them are considered in this study. The
goals of AQM are to maintain a stabilized queue, to
achieve high resources utilization and lower queueing

delay. The lock out and Full queue problems of tail drop
mechanism are the issues that are being considered while
developing any new AQM mechanisms. RED is the most
widely employed AQM and tuning of parameters of RED
is the main goal of almost all newly developed AQMs.
Several AQMS like SRED, DSRED, MRED, Adaptive
RED, ARED, RARED etc., were developed on this basis.
The SRED does not calculate the average queue length. If
further investigations on SRED has shown the way for
improving the performance of SRED by the addition of
computation of average queue size, then that would be
beneficial. Even though the performance of MRED was
slightly better than RED, it received only less attention.
AVQ achieves good utilization while keeping queue
length small. On the other hand CHOKe provides much
better fairness but fails to keep the utilization as high as
AVQ. The time varying link utilization factor of SAVQ
improves the transient response of SAVQ, which
outperforms AVQ, and the queue length of SAVQ
converges fast to the desired length. Also the introduction
ofarrival rate at the network as principal measure of
congestion and the desired link utilization ratio as the
subordinate measure of congestion in EAVQ utilize the
link capacity hundred percent. Similar to EAVQ, Yellow
also uses two measures to manage congestion. Very high
link utilization is achieved keeping load factor as the main
merit and queue control function as the secondary merit.
AVQRED essentially combines AVQ and RED and
enhances the way the virtual capacity is adjusted to adapt
to dynamics of gateway resources. AVQRED’s link
utilization ARED, BLUE, GKVQ, AVQ and PI.
AVQRED ‘s packet loss rate is upto 15% lowered and the
standard deviation is 28 to 50% lower than the other AQM
methods except for BLUE. The low drop standard
deviation implies that the distance between drops is more
uniform resulting in less consecutive drops. AVQRED’s
queueing delays are 25% lower than the other AQM
methods while the delay jitters are about 5 to 15% higher
than RED. Low delay jitters are not always good because
it means that short lived and bursty traffic could be
dropped. Overall performance of AVQRED is 24.2%
higher than GKVQ and 24.1% higher than AVQ and 25%
higher than PI. ARED, PI and REM all exhibit good
network performance, however the differences observed
are not significant enough to really distinguish these from
each other. ARED has benefited from discussions in the
literature on the settings of parameters for RED while
others received much less attention. If ECN is not
supported, ARED operating in byte mode was the best
performing design, providing better response time
performance than drop tail queuing at offered loads above
90% of link capacity. However ARED operating in
Packet mode with or without ECN was the worst
performing design, performing worse than drop-tail

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

144

queueing. ECN support is beneficial to PI and REM .With
ECN, PI and REM were the best performing designs,
providing significant improvement over ARED operating
in byte mode. In the case of REM, the benefit of REM was
dramatic. Without ECN, response time performance with
REM was worse than drop-tail queueing at all loads
considered. Whether or not the improvement in response
times with AQM is significant, depends heavily on the
range of round trip times (RTTs) experienced by flows. As
the variation in flows’ RTT increases, the impact of AQM
and ECN on response time performance is reduced.

In many cases the simulation scenarios presented by

the developers of a AQM mechanism concentrate on a few
general scenarios and are often too simple to capture
protocol behavior in non-standard situations. Claims about
a mechanism that are based purely on simulation results
should be taken with a grain of salt. Traffic conditions in
the Internet are too complex to be modeled in all aspects in
a network simulator, making it important to evaluate AQM
mechanisms also under real–world conditions

6.1 The impact of Unresponsive flows on AQM
performance

While Unresponsive flows contributing to about 70-

80% of the Internet flows, account for only 10-20% of its
byte volume. This small volume of Unresponsive flows
can significantly impact on transient behavior of AQMs.
Short lived TCP flows can dominate the dynamic of traffic
increase when congestion is low and long

lived TCP flows dominate the dynamic of traffic
decrease .The mean sending rate of unresponsive flows
reduces the bandwidth available to long lived TCP traffic,
which in turn makes the AQM more robust, but less
responsive. Queue averaging is the issue that deals with an
AQM’s response to variation in Unresponsive traffic. It
results in a tradeoff between AQM responsiveness,
robustness and response to the uncontrolled flows. For
robustness the queue averaging time constant should be
chosen outside the range (R,R2C⁄N) where R is the round
trip time is link capacity and N is the number of active
TCP flows. AQM responsiveness is inversely related to
the queue averaging time constant. It is also impossible via
selection of the averaging time constant, to sufficiently
and simultaneously smooth the variations in queue length
and loss probability due to variations in Unresponsive
flows. This is very important as it implies that while
averaging results in a smooth or stable congestion
feedback, it also introduces considerable jitter in the
queueing delay. That trade off should be noted in AQM
design

7. CONCLUSION

 In this paper , we presented a survey on recent

advances in the area of active queue management .The
implementation of AQM is beneficial in a general network
environment. Further we classified the mechanisms
according to the type of metrics they used as congestion
measure. From the survey we found that the performances
of rate based AQM schemes are better than that of queue
based schemes. The queue length of rate based scheme is
less sensitive to the number of TCP connections than that
of queue based schemes. Inclusion of more number of
congestion measures in the existing rate based schemes
such as AVQ,EAVQ may result in better performance in
terms of , throughput, packet loss, link utilization.

References
[1] Braen,B., Clark,D.,et.al “Recommendations on queue

management and congestion avoidance in the Internet”
IETF RFC (Information)2309.April 1998

[2] Joerg Widmer., Robert Denda., Martin Mauve Prakitsche
Informatik IV.,”A Survey of TCP Friendly Congestion
Control”., IEEE Transactions on Network, May/June 2001

[3] E.Hashem,”Analysis of Random drop for gateway
congestion Control”report LCS, TR-465,Laboratory for
Computer Science, MIT ,Cambridge ,MA,1989,p 103

[4] T.V. Lakshman, A. Neidhardt, T. Ott, The Drop From Front
Strategy in TCP Over ATM and Its Interworking with Other
Control Features, Proc. Infocom 96, pp. 242- 1250

[5] S.Floyd,V.Jacobson,”Random Early Detection Gateways for
congestion Avoidance” ,IEEE/ACM Transaction on
Networking ,August 1993

[6] W.Feng, D.D Kandlur,D.Saha, K.G.Shin,”A Self
Configuring RED Gateway”, Proceedings of IEEE
INFOCOMM, 1999,Vol 3 pp 1320-1328

[7] D.Lin., R.Morris.,”Dynamics of Random early Detection”,
Proceedings of ACM SIGCOMM,Octobet 1997

[8] Mark Parris, Kevin Jeffay ,F. Donelson Smith “Lightweight
Active Router-Queue Management for Multimedia
Networking” Multimedia Computing and Networking 1999,
Proceedings, SPIE Proceedings Series, Volume 3654, San
Jose, CA, January 1999, pages 162-174.

[9] T.J.Ott,T.V.Lakshman,and L.Wong, “SRED: Stablised
RED”in IEEE INFOCOMM ,March 99

[10] Bing Zheng ,Mogammed Atiquzzaman,” DSRED: An
aaaactive Queue Management Scheme for Next Generation
Networks” Proceedings of 25th IEEE conference on Local
Computer Networks LCN 2000,November 2000

[11] Jahoon Koo., Byunghun Song., Kwangsue Chung.,
Hyukjoon Lee., Hyunkook Kahng.,” MRED: A New

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

145

Approach To Random Early Detection” 15th International
Conference on Information Networking, February 2001

[12] S.Floyd., R.Gummadi,S.Shenkar and ICSI,”Adaptive RED:
An algorithm for Increasing the robustness of RED’s active
Queue Management”, Berkely,CA[online]
http:www.icir.org/floyd/red.html

[13] Jinsheng Sun. King-Tim Ko.,Guanrong Chen., Sammy
Chan.,Moshe sukerman.,”PD –RED : To Improve
Performance of RED”,IEEE COMMUNICATIONS
LETTER August 2003

[14] Chonggang Wang ., Bin Liu., Y.Thomas Hou., Kazem
Sohraby., Yu Lin.,“LRED: A Robust Active Queue
Management Scheme Based On Packet Loss Ration“ 23rd
Annual Joint conference of IEEE Computer and
Communication Societies INFOCOM,March 2004

[15] Mark Claypool., Robert Kinicki., Mathew Hartling.,”
Active Queue Management for Web Traffic”IEEE
International Conference on Performance, Computing and
Communication 2004

[16] Liujia Hu., Ajay D.Kshemkalyani., “HRED:A simple and
Efficient Active Queue Management Algorithm” 13th
International Conference on Computer Communications and
Networking ICCCN 2004,October 2004

[17] Yue-Dong Xu., Zhen-Yu Wang., Hua Wang.,“ARED:A
Novel Adaptive Congestion Controller” IEEE International
Conference on Machine Learning and Cybernetics,August
2005.

[18] Tae-Hoon Kim., Kee-Hyun Lee” Refined Adaptive RED in
TCP/IP Networks” ,IEEE ICASE ,October 2006

[19] Jeong-Hwan Seol,Ki Young Lee., Yoon Sik Hong
“ Performance Improvement of Adaptive AQM Using the
Variation of Queue Length” IEEE Region 10 Conference
TENCON, November 2006

[20] Tetsuji Yamaguchi.,Yutaka Takahashi ., “ A queue
Management algorithm for fair bandwidth allocation”,
Computer Communications ,April 2007

[21] Pan,R., Parbhakar,B., and Psounis,K.,”CHOKe, a Stateless
Active Queue Management Scheme for Approximating Fair
Bandwidth Allocation”, IEEE INFOCOMM,Feb 2000

[22] Shan Chen, Zhen Zhou ., Brahim Bensaou., “Stochastic
RED and its applications” ICC 2007

[23] Wu –Chung Feng., Kang G.Shin., Dilip D.Kandlur.,
Debanjan Saha .,“The BLUE Active Queue Management
Algorithms“ IEEE ACM Transactions on Networking,
August 2002

[24]]A.Kamra, S.Kapila,V.Khurana, V.Yadhav,
H.Saran,”SFED: a rate control based active queue
management discipline,IBM India research laboratory
Research Report ,available online
fromhttp://www.cse.iitd.ernet.in/srajeev/publications.htm

[25] Abinav Kamra., Huzur Saran., Sandeep Sen., Rajeev Shorey
“ Fair Adaptive Bandwidth allocation: a rate control based

active queue management discipline” ,Computer
Networks ,July 2003

[26] Srisankar S.Kunniyur., R.Srikant “ An Adaptive Virtual
Queue (AVQ) for Active Queue Management”., IEEE/ACM
Transactions on Networking, April 2004

[27] Cheng-Nian long., Bin Zhao., Xin-Ping Guan., “SAVQ :
stabilized Adaptive Virtual Queue Management
Algorithm” ., IEEE Communications Letters ., January 2005

[28] Qian Yanping, Li Qi, Lin Xiangze, Ji Wei,” A Stable
Enhanced Adaptive Virtual Queue Management Algorithm
for TCP networks” May30 to June 1,2007, IEEE
International Conference on Control and Automation

[29] Chengnian Long., Bin Zhao., Xinping Guan., Jun Yang.,”
The Yellow active queue management algorithm”,
Computer Networks, November 2004

[30] Manoj K.Agarwal., Rajeev Gupta., Vivekanad Kargaonkar.,
“ Link Utilsation Based AQM and its Performance”, IEEE
Communications Society ,Globecom 2004,December 2004

[31] Chonggang Wang., Bo Li., Thomous Hou., Kazem Sohraby.,
Keping Long.,” A stable rate-based algorithm for active
queue management” Computer Communications, January
2005

[32] Chin-Ling Chen., Jia-Chun Yu.,”A Proportional Rate-based
Control Scheme for Active Queue Management” IEEE
International Conference on Electro Information
Technology, May 2005

[33] Jun Wang., Min Song., Houjun Yang “ Rate- Based Active
Queue Management for Congestion Control over Wired and
Wireless Links”.,(Invited Paper) IEEE 2006

[34] Athuraliya., D.E Lapsley., S.H Low” Random Exponential
Marking for internet congestion control” IEEE Transactions
on Network, June 2001

[35] Xidong Deng., Sungwon Yi., George Kesidis., Chita R.Das.,
“ Stabilised Virtual Buffer (SVB)-An Active Queue
Management Scheme for Internet Quality of Service”,IEEE
Globecom November 2002.

[36] Jaesung Hong., Changhee Joo., Saewoong Bahk .,” Active
queue management algorithm considering queue and load
states” , Computer Communications, November 2006

[37] Jinsheng Sun., Moshe Zukerman ., “ RaQ: a robust active
queue management scheme based on rate and queue length”,
Computer Communications, February 2007

