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Summary 
Congestion control mechanism is one of the key that keeps 
any network efficient and reliable for the users. Many 
mechanisms were proposed in the literature over theses 
years for the efficient control of congestion that occur in 
the network. Active Queue Management (AQM) is one 
such mechanism which provides better control in the 
recent years. It works at the router for controlling the 
number of packets in the router's buffer by actively 
discarding an arriving packet. Many schemes were 
proposed which give better delay performance and high  
throughput over different traffic conditions. In this paper 
an exhaustive survey is made on the AQM techniques  
that are proposed and the merits and short falls is 
presented 
Key words: 
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1. Introduction 

Congestion in Internet occurs when the link 
bandwidth exceeds the capacity of available routers. This 
results in long delay in data delivery and wasting of 
resources due to lost or dropped packets. The primary role 
of a router is to switch packets from the input links to 
output links through buffer. Apart from forwarding the 
packets, routers are involved for controlling the 
congestion in the network. It is known from [1] that 
routing algorithms focus on two main concepts namely 
queue management and scheduling. Queue management 
algorithms manage the length of packet queues by 
dropping packets whenever necessary whereas scheduling 
algorithms determine which packets to be sent next. These 
algorithms are used primarily to manage the allocations of 
bandwidth among various flows. 

 

New trends in communication, especially the 
deployment of multicast and real time audio/ video 
streaming applications, are likely to increase the 
percentage of non –TCP traffic in the internet [2]. They 
don’t share the available bandwidth fairly with 

applications built on TCP, such as Web browsers, FTP or 
e-mail clients. The Internet community strongly fears that 
the current evolution could lead to congestion collapse and 
starvation of TCP traffic. 

 

TCP can detect packet drops and interpret them as 
indications of congestion in the network. TCP sender will 
react to these packet drops by reducing their sending rates. 
This reduction in sending rate translates into a decrease in 
the incoming packet rate at the router, which effectively 
allows the router to clear up its queue. When the incoming 
packet rate is higher than the router’s outgoing packet rate, 
the queue size will gradually increase and queue becomes 
full at one stage. 

 

The traditional technique for managing queue lengths 
is to set a threshold (in terms of packets) for each queue, 
accepts packets for the queue until the threshold is reached, 
then reject (drop) subsequent incoming packets until the 
queue decreases below the value of threshold. This 
technique is known as “tail drop”, since packet that arrived 
most recently is dropped when the queue is full. Even 
though this method has served the Internet well for years, 
Baren B.et al pointed out two important drawbacks namely, 
Lock-Out and Full Queues. In some situations tail drop 
allows a single connection or a few flows to monopolize 
queue space, preventing other connections from getting 
room in the queue. This “Lock-Out” phenomenon is often 
due to the result of synchronization or other timing effects. 
The tail drop discipline allows queue to maintain a full 
status for long periods of time, since tail drop signals 
congestion only when the queue has become full. It is 
important to reduce the steady- state queue size and this is 
perhaps the queue management’s most important goal. 

 

In   routing the packets there is a need to  tradeoff 
between delay and throughput. If the queue is full or 
almost full, an arriving burst will cause multiple packets to 
be dropped. This can result in global synchronization of 
flows throttling back, a sustained period of lowered link 
utilization, reducing overall throughput. The point of 
buffering in the network is to absorb data bursts and to 
transmit them during the ensuing bursts of silence. This is 
essential to permit the transmission of bursty data. 
Maintaining small queues can result in higher throughput 
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as well as lower end-to-end delay. In short, queue limits 
should not reflect the steady state queues; instead they 
have to reflect the size of the bursts needs to be absorbed. 

 

Besides tail drop, B.Braden et al.. Considered two 
alternative queue disciplines that can be applied when the 
queue becomes full. They are  “random drop on full ”[3] 
or “drop front on full”[4]. Both disciplines solve lock out 
problem but neither of them solves full queues problem. 

 

In Internet, dropped packets serve as a critical 
mechanism of congestion notification to end nodes. The 
solution to the full queues problem is for routers to drop 
packets before a queue becomes full, so that end nodes can 
respond to congestion before buffers overflow. Such 
approach is called as “Active Queue Management 
(AQM)” which is discussed elaborately in RFC2309.By 
dropping packets before buffers overflow, AQM allows 
routers to control packet drops.  

 

By keeping the average queue size small, queue 
management will reduce the delays seen by flows. This is 
particularly important for interactive applications whose 
subjective (and objective) performance is better when the 
end-to-end delay is low. Active queue management can 
prevent lock-out behavior by ensuring that there will 
almost always be a buffer available for an incoming packet.  
It can also prevent a router bias against low bandwidth for 
highly bursty flows.  

 

This paper is organized as follows. In section 2 we 
introduce the concept of AQM and classification of AQM 
schemes based on metrics of congestion measure. In 
section 3 some of the AQM schemes based on queue 
length metrics was discussed. AQM schemes based on 
load metrics were discussed in section 4. In Section 5 
AQM schemes based on both queue length and load 
metrics were discussed. A detailed discussion was carried 
out in section 6 and the paper is concluded with section 7 
 

2.  Active Queue Management 

The essence of Internet congestion control is that a 
sender adjusts its transmission rate according to the 
congestion measure of the underline networks.  There are 
two approaches to accomplish this.  One is a source 
algorithm that dynamically adjusts the transmission rate in 
response to the congestion along its path; the other one is a 
link algorithm that implicitly or explicitly conveys 
information about the current congestion measure of the 
network to sources using that link.  In the current Internet, 
the source algorithm is carried out by TCP, and the link 
algorithm is carried out by active queue management 
(AQM) schemes at routers 

 

According to the metrics used to measure congestion, 
AQM schemes can be classified into three catalogs: 
queue-based, rate based, and schemes based on concurrent 
queue and rate metrics.  In queue-based schemes, 
congestion is observed by average or instantaneous queue 
length and the control aim is to stabilize the queue length.  
The drawback of queue-based schemes is that a backlog is 
inherently necessitated.  Rate- based schemes accurately 
predict the utilization of the link, and determine 
congestion and take actions based on the packet arrival 
rate. Rate-based schemes can provide Early feedback   for   
congestion Other AQM schemes deploy a combination of 
queue length and input rate to measure congestion and 
achieve a tradeoff between queues stability and 
responsiveness 

 
 

 1. RED 10. SHRED 

 2. FRED 11. HRED 

 3. CBT 12. ARED 

 4. SRED 13. RARED 

 5. DSRED 14. QVARED 

 6. MRED 15. PUNSI 

 7. Adaptive RED 16. CHOCKe 

 8. PDRED   17  Stochastic RED

 9. LRED  

1. BLUE 
2. SFB 
3. SFED 
4. FABA 
5. AVQ 
6. SAVQ 
7. EAVQ 
8. YELLOW 
9. LUBA 
10. RAQM 
11. PRC 
12. REAQM 

 

Active Queue Management 

1. REM 
2. SVB 
3. RaQ 

Queue Length Based LoadBased Queue Length & Load 
based 

       
Fig 1.Classification of AQM Schemes 

3.  AQMs Based On Queue Length Merit  

3.1 Random Early Detection (RED) 

An active queue management scheme namely 
Random Early Deduction (RED) [5] alleviates congestion 
by detecting incipient congestion early and delivering 
congestion notification to the end source allowing them to 
reduce the transmission rates before overflow occurs.  
Since RED acts in anticipation of congestion, it does not 
surfer from the “Lockout” and “Full queue” problems 
inherent in the widely deployed drop tail mechanism. By 
keeping the average queue size small, RED reduces the 
delays experienced by most flows. The effectiveness of 
RED depends to a large extent, on the appropriate 
selection of the RED parameters. Self Configuring RED 
was later proposed by Feng [6] that self parameterizes 
itself based on the traffic mix. However adaptive 
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determination of the RED parameters complicates buffer 
management of high speed routers/gateways 

 
 

3.2 Flow RED (FRED) 

RED is vulnerable to unresponsive flows dominating 
a router’s queue. Lin and Morris recognize this 
shortcoming of RED and proposed a scheme, called Flow 
Random Early Detection (FRED)[7], to promote fair 
buffer allocation between flows. FRED attempts to 
provide fair buffer allocation between flows, isolating 
each flow from the effects of misbehaving or non-
responsive flows. FRED’s approach is to impose 
uniformity during times of congestion by constraining all 
flows to occupying loosely equal shares of the queue’s 
capacity (and hence receiving loosely equal shares of the 
outbound link’s capacity). Moreover, flows that repeatedly 
exceed an average fair share of the queue’s capacity are 
tightly constrained to consume no more than their fair 
share. This uniformity comes at a cost, however. Statistics 
must be maintained for every flow that currently has 
packets in the outbound queue of the router. These so-
called “active flows” are allocated an equal share of the 
queue, which is determined by dividing the current queue 
size by the number of active flows. The number of packets 
a flow has enqueued is compared to the product of the 
flow’s share value and a constant multiplier. This 
multiplier allows for non-uniform (bursty) arrival patterns 
among flows. A flow that exceeds the threshold including 
the multiplier is considered unresponsive and is 
constrained to its share (without the multiplier) until it has 
no more packets in the queue. FRED’s major weakness, 
however, is the overhead associated with tracking active 
flows and keeping statistics (packet counts) for each active 
flow. 

 

3.3 Class Based Thresholds(CBT) 

Most multimedia applications choose UDP an 
unreliable transport mechanism as their underlying 
transport mechanism because they are concerned with 
throughput and latency rather than reliable delivery. CBT 
is an active queue management scheme that will maintain 
the positive features of RED, limit the impact of 
unresponsive flows, but still allow UDP flows access to a 
configurable share of the link bandwidth. Moreover, it 
does this without having to maintain per flow state in the 
router. CBT builds upon the drop thresholds of RED and 
the buffer allocations of FRED to provide a queue 
management policy that efficiently meets these goals[8]. 
The approach is to isolate TCP flows from the effects of 
all other flows by constraining the average number of non-

TCP packets that may reside simultaneously in the queue. 
Classes of non-TCP traffic are also isolated from one 
another, specifically isolating continuous media traffic 
from all other traffic. Continuous media streams are 
tagged before they reach the router so that they can be 
classified appropriately. These flows are either self-
identified at the end-system or identified by network 
administrators. Statistics are maintained for these classes 
of traffic and their throughput is constrained during times 
of congestion by limiting the average number of packets 
they can have enqueued. Untagged packets are likewise 
constrained by a different threshold on the average 
number of untagged packets enqueued. These thresholds 
only determine the ratios between the classes when all 
classes are operating at capacity (and maintaining a full 
queue). When one class is operating below capacity, other 
classes can borrow that class’s unused bandwidth. 

 

 In CBT, the classification packets into one of the 
three classes i.e TCP, tagged or untagged is an operation 
that takes constant time. In FRED the packet are classified 
by which flow it is associated with. This classification is 
conceptually O(N) where N is the number of active flows. 
In the case of CBT the number of statistics involved is 
constant, one set for each of the three classes. Whereas in 
the case of FRED there are packet counts, strike counts, 
and a 5-tuple to identify the associated flow for every 
active flow (O(n)). 

 

3.4 Stabilized RED (SRED) 

Like RED, Stabilized Random Early Drop (SRED) 
[9] preemptively discards packets with a load dependent 
probability when buffer in a router in the Internet or an 
intranet seems congested. SRED has an additional feature 
that over a wide range of load levels helps it stabilize its 
buffer occupation at a level independent of the number of 
active connections. SRED does this by estimating of the 
number of active connections or flows.  This estimate is 
obtained without collecting or analyzing state information 
on individual flows.  The same mechanism can be used to 
identify flows that may be misbehaving. In  SRED there is 
no computation of average queue length.  The packet loss 
probability depends only on the instantaneous buffer 
occupation and on the estimated number of active flows.  

 

 T.J.Ott et al showed that, while buffer occupancy 
in SRED is independent of the number of connections 
when the number of connections are less ,it increases only 
slightly if the number of connections increased to 1000.In  
RED the buffer occupancy increases in proportion with 
the number of connections.  For SRED the buffer 
occupancy is almost always at least B/3 where B is the 
buffer occupancy. Next observation in SRED is, for TCP 
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flows, the impact of packet drop is very high when the 
bottleneck buffer occupancy is dominated by a few active 
flows with large windows and is very little when the 
bottleneck buffer occupancy is caused by a large number 
of connections with small windows.  Hence, mechanisms 
like RED, which tries to control buffer occupancy, can be 
benefited by adjusting their drop probabilities, using the 
estimates of the number of active connections. As SRED 
can stabilize over a wide range of load levels, the buffer 
occupancy at a level, which is independent of the number 
of active connections, therefore overcomes the scalability 
issues but suffers from low through put.   

 
 

3.4 Double Slope RED (DSRED) 

 The low through put of the RED is the most 
important problem which needs to be  carefully addressed. 
A new active queue management scheme called “Double 
Slope Random Early deduction (DSRED)” was proposed 
in [10] that use a combination of two different drop 
probability distributions to achieve higher performance 
than RED. It resembles RED in two aspects; first, both of 
them use linear drop functions to give a smooth increase in 
drop action based on average queue length.  Secondly they 
calculate the average queue length using the same 
definition to account for the effect of long-term congestion.  
Therefore DSRED inherits the advantages of RED.  When 
congestion increases, drop will increase with higher rate 
instead of constant rate. This will give an early warning to 
hosts to back off, preventing congestion from getting 
worse. As a consequence, congestion will be relieved and 
throughput will increase. The two segments of the drop 
function can be adjusted by the parameter γ where γ 
represents mode selector for adjusting drop function 
slopes. Therefore the operating mode of DSRED can be 
easily adjusted by a single parameter. i.e., by adjusting γ , 
one can get high drop rate first followed by a low drop 
rate, or vice versa.  This is more effective than RED in 
handling complicated network congestion situations. Bing 
Zheng et al concluded that, under heavy load ,with γ = 
0.96 and max drop= 0.1 DSRED gateway always has lower 
queuing delay, smaller queue size and lower packet drops 
than the RED gate way queue . 

 
 
 
 
 
 
 
 

Table 1 Performance comparison between DSRED and RED (Reprinted 
from Ref10) 

3.5 MRED 

A new concept of active queue management called 
MRED [11] was developed which controls queue by using 
packet loss information and link utilization history 
information with small queue size.  MRED estimate 
average queue size either using a simple EWMA in the 
forwarding path or using a similar mechanism in the 
background.  Therefore MRED has two separate 
algorithms. One is for computing the average queue size to 
determine the degree of burstiness that will be allowed in 
the router queue and the other is the one for calculating the 
packet drop probability to determine how frequently the 
router drops packets at the current level of congestions. 
Since it calculates a drop probability value based on link 
utilization history information, MRED efficiently controls 
the congestion caused by retransmission of dropped packet. 
From Fig 2 it is found that the through put of MRED  is 
slightly better than that of RED as shown below.  

 

 

 

 

 
 
 
 
 

Fig -2 Throughput Vs Buffer size (Reprinted from Ref 11) 

DSRED RED 

Parameter H Load L load H load L load 

Norm 
Thrupt 

0.525 0.372 0.445 0.355 

Avg QD(s) 0.0081 0.0081 0.013 0.0011
8 

Avg 
QS(Pkt) 

2.6 2.7 7.3 6.8 

Avg PD 
(Pkt/s) 

2.5 2.5 13.1 11.25 
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Fig-3  Delay time vs Buffer Size (Reprinted from Ref 11) 

3.6 Adaptive RED 

Floyed et al. proposed another AQM method called 
adaptive RED [12].In this the parameter maxp is adapted 
using an additive increase multiplicative decrease policy to 
keep the average queue length within a target range and is 
adapted not just to keep the average queue size between 
minth and maxth, but to keep the average queue size within 
a target range halfway between minth and maxth. maxp is 
adapted slowly, over time scales greater than a typical 
round trip time and in small steps. As adaptive RED can 
stabilize the queue length at a given target, its performance 
can still be improved if we adapt the drop probability maxp 
in a more methodological manner. Despite significant 
control theory advancement most industrial processes use 
proportional integral derivative (PID) controller. The new 
PDRED AQM [13] solution is composed of two parts (i) a 
new PD controller (ii) The original RED AQM. Jinsheng 
Sun et al. showed that the fluctuation in amplitude of PD-
RED queue length is smaller and the variance of the drop 
probability is much smaller than those of adaptive RED.   

3.7 Loss Ratio Based RED (LRED) 

Another AQM scheme with fast response time was 
introduced by [14] called Loss Ratio based RED 
(LRED).It measures the latest packet loss ratio and uses it 
as a compliment to queue length in order to dynamically 
adjust packet drop probability.  Employing the closed 
form relationship between packet loss ratio and the 
number of TCP flows this scheme is responsive if the 
number of TCP flows varies significantly. An increasing 
packet loss ration is a clear indication that severe 
congestion occurs and that aggressive packet dropping is 

needed. On the other hand a decrease in packet loss ratio 
can serve as a signal that congestion is receding and 
consequently, that packet drop action can change from 
aggressive to moderate. Therefore it is possible to use the 
packet loss ratio to design more adaptive and robust AQM 
scheme.  LRED uses instantaneous queue length to 
calculate the packet drop probability each time packets 
arrive while dynamically adjusting the packet drop 
probability according to the measured packet loss ratio 
over relatively large time scale.  Such a combination 
enables fast response time and high robustness. LRED is 
most suitable for congested networks though its 
performance is comparable to PI & REM in a network of a 
light traffic load.  Another version of AQM, which uses 
the same packet loss ratio, is proposed in AQMS_PLR. 
The arriving packet is marked as the early drop probability 
by the network loss ratio of the early network so that the 
probability can approach the loss ratio of current real 
network 

3.7 Short Lived Flow Friendly RED (SHRED) 

Short-lived flow friendly RED (SHRED) [15] 
targeted at providing better network performance for short 
web traffic. The basic idea is to use a lower drop 
probability for flows with small congestion window and to 
have the drop probability to increase linearly with a flow’s 
increased relative congestion window size. Using an edge 
hint to indicate the congestion window size in each packet 
sent by the flows source or by an edge router, SHRED 
preferentially drops packets from short-lived web flows 
less often than packet from long lived flows. Mark 
Claypool et al.. concluded that  for web only traffic 
SHRED performs slightly better than drop tail for low to 
moderate congestion level whereas RED performs worse 
than drop tail.  RED always performs better than drop tail 
for mixed traffic and SHRED performs significantly better 
than RED and drop tail with mixed traffic and web only 
traffic for moderate to high levels of congestion.   

3.8 Hyperbola RED (HRED) 

A minimal adjustment to the RED algorithm was 
proposed by Hyperbola RED (HRED) that uses the 
hyperbola as the drop probability curve[16]. The control 
law of HRED can regulate the queue size, which can be  
set by the user.   As the reference queue size is set by the 
user, HRED is no longer sensitive to the level of network 
load and it can achieve higher network utilization and 
result in predictable average queuing delays. It retains the 
ability to control the short congestion by absorbing bursts, 
because its still keeps the moving average queue size 
algorithm and maintain a non-full queue. 
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3.9 ARED 

Another adaptive AQM mechanism ARED was 
proposed in [17] which can keep queue around the 
expected value through adjusting maximum drop rate 
adaptively using gradient descent method. Simulation 
results show that ARED can stabilize the average queue 
length and instantaneous queue length around the target 
value with different number of connections while original 
RED algorithm oscillates violent both under heavy and 
light traffic loads. The performance of Adaptive RED is 
further increased by tuning the maxp which in the Refined 
Adaptive RED (RARED) [18] constrained to remain in the 
range[0.01,0.5].The metrics used in RARED for analysis 
are TCP good put and TCP and UDP packet drop rate. 
From Figure 4 and table 2 it is observed that RARED has 
a slightly higher or similar to TCP good put than those 
with RED, ARED, and a slightly lower TCP/UDP packet 
drop rate. From Fig 5 it is clear that RARED maintains 
steady true average queue size than RED,ARED 

 

 

Fig - 4 TCP goodput(left) and TCP/UDP packet drop rate(right) for 25 
long-lived TCP connections with 10% UDP traffic  (Reprinted from Ref 

18) 

3.10 Queue Variation Adaptive RED (QVARED) 

“Queue Variation Adaptive RED” [19] a variant of 
ARED responds to bursty traffic more actively. This is 
based on the variation of a queue per hour. As QVARED 
handles bursty traffic dynamically, dropped packets 

decrease significantly in comparison with RED and ARED. 
Thus end- to- end delay, like Web traffic gets short as a 
result. The study showed that the drop rate of QVARED is 
decreased by 80% and 40% compared to RED and ARED 
respectively. It reduces the bias effect over 18% than that 
of drop- tail method, therefore packets are transmitted 
stably with respect to bursty traffic 

Table -2 TCP/UDP packet drop rate for 25 long-lived TCP 
connections.(Reprinted from Ref 18) 

 

 

Fig – 5 True average queue size of RED, ARED and RARED, for 50 
long-lived TCP connections with 1-4 UDP traffic.(Reprinted from Ref 

18) 
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3.11  PUNSI 

 
Another algorithm, which deals unresponsive flows, 

is the PUNSI algorithm [20]. It prevents unresponsive 
flows from dominating available bandwidth shared with 
responsive flows. This is done by penalizing packets from 
unresponsive flows with a higher probability than those 
from responsive flows. It is motivated by the observation 
that unresponsive flows tend to generate traffic of higher 
rates than responsive flows and that, when a packet is 
dropped due to buffer overflow, fellow packets from the 
same flow seem to be found in the buffer among those 
having joined recently. This algorithm first allocates good 
fair share of bandwidth among all flows passing through a 
router and achieves this without per flow information. 
Queuing algorithms with good fair sharing of bandwidths 
and stateless information are important since they reduce 
the complexity due to large overhead caused by more 
number of flows as against algorithms like Flow Random 
early Drop (FRED) which maintain per flow status. 
CHOKe algorithm [21] penalizes not only high bandwidth 
UDP flows but also TCP ones. Several packet losses in a 
short period worsen TCP performance significantly It 
doesn’t work well if there are only a few packets from 
unresponsive flows in the queue. These two shortcomings 
of CHOKe are overcome by PUNSI algorithm that 
penalized UDP flows more effectively in accordance with 
its burstiness. The authors have shown using Figures 6 and 
7, that PUNSI doesn’t worsen the TCP performance In 
contrast to UDP flow, the TCP loss rate is consistently 
around 1% which means that PUNSI penalizes the bursty 
UDP flows but not TCP flows  

 

Fig -6 Loss Rate of On - Off  CBR traffic with Burst rate of 
10Mbps(Reprinted from Ref 20) 

 

Fig -7 Loss Rate of On - Off  CBR traffic with Burst 
rate of 100Mbps(Reprinted from Ref 20) 

3.11 Stochastic RED 

A scalable algorithm called Stochastic RED [22] was 
introduced later keeping in mind the tremendous growth of 
unresponsive traffic in Internet. A major difficulty in 
distinguishing individual flows without requiring per-flow 
state information at the routers is overcome by Stochastic 
RED. It is called stochastic because it does not really 
distinguish the flows accurately. The arriving traffic is 
divided by the router into a limited number of counting 
bins using a hashing algorithm. On the arrival of each 
packet at the queue, a hash function is used to assign the 
packet to one of the bins based on the flow information.  

 
Stochastic Red dispatches the packets of the different 

flows to the set of bins. With a given hash function, 
packets of the same flow are mapped to the same bin. 
Therefore, when the flow is unresponsive, the bin load 
increases dramatically. Stochastic RED estimates the bin 
loads and uses these loads to penalize flows that map to 
each bin according to the load of the associated bin. Thus 
unresponsive flows experience a larger packet drop 
probability. However, because of the hashing and limited 
number of bins, multiple flows may end up associated 
with the same bin. Thus flows that share a bin with an 
unresponsive flow are punished unnecessarily. To prevent 
this situation, Stochastic RED changes it’s hashing 
function often enough so that the time span for any two 
flows to collide into the same bin is within several seconds. 
In the long run, only misbehaving flows get significantly 
disciplined by Stochastic RED, making them TCP friendly 
and improving the response time of Web transfers. 

 
From the above discussion on various queue length 

based AQMs we observe that the RED has problems such 
as low throughput, large delay/jitter, unfairness to 
connections and inducing instability in the network. 
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Tuning of parameters of RED is the main goal of almost 
all newly developed AQMs. Most of the simulation 
studies assume idealized traffic, which differs significantly 
from real bursty traffic. The queue based AQM schemes 
use average queue length ( or instantaneous queue length) 
as a congestion indicator. However the window size and 
packet marking probability are relative to input traffic load 
directly. Therefore a new congestion indicator and control 
function are needed to provide adaptive control to the 
traffic characteristics such as the amount of traffic, 
fluctuation of traffic load and traffic nature  

4. AQMs Based On Load Merit 

Rate based AQMs determine congestion and take 
actions based on packet arrival rate. The goals of the rate 
based AQMs are to alleviate rate mismatch between 
enqueue and dequeue, and achieve low loss ,low delay and 
high link utilization. Since the queue length is a 
cumulative difference values of rate mismatch between 
enqueue and dequeue, queue merit is insensitive to current 
queue arrival and drain rates. This incurs the conservative 
/aggressive packet marking behavior when the queue 
length is small or large It explains in part the promising 
performance of rate based AQMs compared with queue 
based schemes under dynamic traffic scenarios.  

4.1 BLUE 

The inherent problem with the AQM algorithms is 
that they use queue length as the indicator of the severity 
of congestion. In the light of this observation, a 
fundamentally different AQM, called BLUE, [23] is 
proposed, implemented and evaluated. BLUE uses packet 
loss and link idle events to manage congestion. BLUE 
maintains a single probability, pm, which it uses to mark 
(or drop) packets when they are enqueued. If the queue is 
continually dropping packets due to buffer overflow, 
BLUE increments pm, thus increasing the rate at which it 
sends back the congestion notification. Conversely, if the 
queue becomes empty or if the link is idle, BLUE 
decreases its marking probability. This effectively allows 
BLUE to “learn” the correct rate it needs to send back 
congestion notification. BLUE uses two other parameters, 
which control how quickly the marking probability 
changes over time. The parameter freeze _time determines 
the minimum interval between two successive updates of 
pm. The value of freeze _time should be randomized in 
order to avoid global synchronization. The other 
parameters used δ1 and δ2 determine the amount by which 
pm is incremented when queue overflows or is 
decremented when the link is idle. In BLUE the value of 
δ1  is set slightly larger than δ2 . This is because the link 
under utilization can occur when congestion management 

is either too conservative or too aggressive, but packet loss 
occurs only when the congestion management is too 
conservative. The most important consequence of using 
BLUE is that congestion control can be performed with a 
minimal amount of buffer space. This reduces end-to-end 
delay over the network, which in turn improves the 
effectiveness of the congestion control algorithm.  Using 
both simulation and controlled experiments the authors 
Wu –Chung Feng et.al. showed that, BLUE is performing 
significantly better than RED, both in terms of packet loss 
rates and buffer size requirements 

 

Fig -8 Queue management performance  Throughput Vs Number of 
Connections (Reprinted fromRef -

23)

 

Fig  - 9 Queue management performance -  percent packet loss Vs 
Number of Connections (Reprinted from Ref-23) 
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4.2 Stochastic Fair BLUE 

As an extension to BLUE, a Stochastic Fair Blue [23] 
algorithm based on Bloom filter is proposed that can 
identify and limit the rate of non-responsive flows using 
very small amount of state information. SFB maintains 
NxL accounting bins. The bins are organized in L levels 
with N bins in each level. In addition SFB maintains L 
independent hash functions ,each associated with one level 
of the accounting bins. Each hash function maps a flow, 
vis its connection ID(Source address, Destination address, 
Source port ,Destination port, Protocol) into one of the N 
accounting bins in that level. The accounting bins are used 
to keep track of queue occupancy statistics of packets 
belonging to a particular bin. This is in contrast to 
Stochastic Fair Queueing (SFQ) where the hash functions 
map flows into separate queues. SFQ is similar to SFB 
with one level of bins. The biggest difference is that 
instead of having separate queues SFB uses hash function 
for accounting purposes. Thus the SFB has two 
advantages over SFQ. The first is that it can make better 
use of its buffers. SFB gets some statistical multiplexing 
of buffer space as it is possible for the algorithm to 
overbook buffer space to individual bins in order to keep 
the buffer space fully utilized. Other is that SFB is a FIFO 
queueing discipline. As a result, it is possible to change 
the hash function on the fly without having to worry about 
packet reordering caused by mapping flows into a 
different set of bins. Each bin in SFB maintains a marking 
probability pm , as  in BLUE ,which is updated based on 
bin occupancy. As a packet arrives at the queue , it is 
hashed into one of the N bins in each of the L levels, If the 
number of packets mapped to a bin goes above a certain 
threshold (i.e the size of the bin) pm for the bin is increased 
and if the number of packets drops to zero, pm is decreased. 
The observation which drives SFB is that a non responsive 
flow quickly drives pm to 1 in all of the L bins it is hashed 
into. Responsive flows may share one or two bins with 
non responsive flows, however, unless the number of non 
responsive flow is extremely large compared to the 
number of bins, a responsive flow is likely to be hashed 
into at least one bin that is not polluted with non-
responsive flows and thus has normal pm value. 

 

4.3 SFED 

 
SFED is an easy to implement rate control based 

AQM discipline,[24] which can be coupled with any 
scheduling discipline. It operates by maintaining a token 
bucket for every flow (or aggregates of flow). The token 
filling rates are in proportion to the permitted bandwidths. 
Whenever a packet is enqueued, tokens are removed from 
the corresponding bucket. The decision to enqueue or drop 

a packet of any flow depends on the occupancy of its 
bucket at that time. A sending rate higher than the 
permitted bandwidth results in low bucket occupancy and 
so a larger drop probability thus indicating the onset of 
congestion at the gateway. This ensures the adaptive flow 
to attain a steady state and prevents it from getting 
penalized severely. However non-adaptive flows will 
continue to send at the same rate and thus will suffer more 
losses. The rate at which the tokens are removed from 
bucket of a flow is equal to the rate of incoming   packets 
of that flow, but the rate of addition of tokens in a bucket 
depends on its permitted share of bandwidth and not on 
the rate at which packets of that particular flow are 
dequeued. In this way token bucket controls the bandwidth 
consumed by a flow. This SFED takes O(N) operations for 
enqueue and dequeue . 

 

4.4 FABA 

 
The extension of SFED called FABA [25] is 

proposed which takes O(1) operations for both enqueue 
and dequeue. This extension makes FABA algorithm 
scalable, and hence, practical to implement as compared to 
the SFED algorithm. The observation from Fig-10 and Fig 
11 is that the fairness index is the largest with FABA for 
even very large number of HTTP connections and for FTP 
and Telnet connections also, FABA performs consistently 
better than any other AQM mechanisms. With a traffic 
mix of fragile and non-fragile sources, FABA provides 
bandwidth allocation for fragile flow almost as good as in 
the ideal case. For a small maximum window size every 
algorithm is able to accommodate the bursts of the fragile 
flows without any drops, but with increasing maximum 
window size, packet drops result in drastic reduction of 
the fragile flow throughput. A packet drop is fatal for a 
fragile flow as it is slow in adapting to the state of the 
network. the throughput becomes constant after a while 
since the window size of the fragile source is not able to 
increase beyond a threshold. Therefore no matter how 
large the maximum window size is increased beyond this 
threshold, the throughput does not increase and 
approaches a constant value as shown in Fig 12. This 
constant is much less than its fair share due to less 
adaptive nature of fragile flows 
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Fig- 10 Fairness Coefficient versus number of HTTP connections for 
different AQM mechanisams (Reprinted from Ref 25 ) 

 

Fig-11Fairness Coefficient versus number of FTP connections for 
different AQM mechanisms (Reprinted from Ref 25) 

4.5 Adaptive Virtual Queue (AVQ) 
 

 Another rate based AQM called Adaptive Virtual 
Queue algorithm for active Queue Management  (AVQ) 
which maintains a virtual queue whose capacity is less 
than the actual capacity of the link [26]. When a packet 
arrives in a real queue, virtual queue is also updated to 
reflect the new arrival. Packets in the real queue are 
dropped/marked when the virtual buffer overflows. The 
virtual capacity at each link is then adapted to ensure that 
the total flow entering each link achieves desired 
utilization of the link. There are two parameters that have 
been chosen to implement AVQ. One is desired utilization 
γ and the other is damping factor α. The desired utilization 

determines the robustness to the presence of 
uncontrollable short flows. It 

 

Fig-12 Performance of the fragile flow with increasing receiver window 
constraint (Reprinted from Ref 25) 

allows an ISP to trade off between high levels of 
utilization and small queue length. Both the parameters 
determine the stability of the AVQ algorithm. Srisankar 
S.Kunniyur et al. showed that in the presence of long lived 
FTP flows alone AVQ achieves low loss with high 
utilization. They also showed that AVQ is  responsive to 
changes in network load and is able to maintain a small 
queue length even when network load keeps increasing. 
When short flows are introduced along with FTP flows, 
the AVQ has lower drops compared to REM, PI and RED 
and higher drop than GKVQ. Even though the drop is 
higher than GKVQ, the utilization at the link for AVQ is 
significantly greater than GKVQ algorithm. When 
dropping (instead of marking) is  employed at the routers, 
the AVQ performs better than other AQM schemes in 
terms of utilization and average queue length but the 
fairness can be improved using probabilistic AQM scheme 
like RED on AVQ. Probabilistic AQM scheme is required 
only when the link drops packets and not when the link 
marks packets, because multiple marks within a single 
window does not cause TCP to timeout or to go into slow 
start. However it is difficult to achieve a fast system 
response and high link utilization simultaneously using a 
constant value γ.  
 
 

4.6 Stabilized Adaptive Virtual Queue(SAVQ) 

An adaptive setting method for γ is proposed 
according to the instantaneous queue size and the given 
reference queue value in Stabilized Adaptive Virtual 
Queue Management algorithm (SAVQ) which stabilizes 
the dynamics of queue maintaining a high link utilization 
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[27].The table 3 shows the performance indices of AVQ 
(with γ=1.0, γ=0.98) and SAVQ.  

Table –3  Performance indices of AVQ and SAVQ(Reprinted from Ref 
27) 

            AVQ  

Criterion γ  =1.0 γ=0.98 

  SAVQ 

Average Queue 

Length 

115.4 37.64 43.19 

STD of Average 

Queue Length 

72.52 52.53 38.09 

Utilisation% 99.86 98.22 99.58 

Loss Ratio% 0.339 0.129 0.092 

 
In the case of AVQ with γ=1, the queue jitter is 

remarkable which deteriorates the transient performance 
and increases the average queue length and packet loss 
ratio. The link utilization reduces much using AVQ with 
γ=0.98.The above table shows that the transient response 
of SAVQ algorithm outperforms AVQ and the queue 
length of SAVQ converges fast to the desired length while 
maintaining a satisfactory utilization and packet loss ratio.  

4.7 Stable Enhanced Adaptive Virtual Queue 
(EAVQ) 

An enhancement to AVQ was proposed in rate-based 
Stable Enhanced Adaptive Virtual Queue (EAVQ) 
algorithm[28]. The concepts of the Principal and 
subordinate measures of congestion, as well as desired 
link utilization ratio were introduced into EAVQ. Arrival 
rate at the network link was maintained as a principal 
measure of congestion. The desired link utilization ratio 
was used as a subordinate measure and a rate-based 
adaptive mechanism of which was designed to resolve the 
problems, such as hardness of parameters setting, poor 
ability of anti-disturbance, and a little link capacity loss. 
EAVQ improved the transient performances of the system 
and ensured the entire utilization of link capacity. Qian 
Yanping et al , shown the excellent performances of 
EAVQ in terms of  higher utilization, the lower link loss 
rate, the more stable queue length, and the faster system 
dynamic response than AVQ. Furthermore the 
performances of EAVQ are insensitive to the number of 
TCP connections 

 
 
 
 

4.8 YELLOW 
 
Yellow active queue management algorithm [29] uses 

the mismatch between the input rate and link capacity as 
the primary metric. Therefore the advantages of rate based 
AQMs are inherited. Furthermore, queue size is made as a 
secondary metric. Queue length affects the load factor 
using Queue Control function, which is computed by a 
non-linear hyperbola function of instantaneous queue 
length and reference queue size. Known from other rate 
based schemes Yellow provides an early controlling 
queuing delay maintaining the main load merit. The 
average queue length and Standard deviation of queue 
length of Yellow are little affected by the introduction of 
the UDP flows. 

 

4.9 Link Utilization Based Approach (LUBA) 

Another Link Utilization based Approach is LUBA 
[30]. In this approach, the malicious flows are identified 
which might be causing congestion at the router and 
assign them drop rates in proportion of their abuse of the 
network. If the overload factor U=λ/μ (where λ is the 
aggregate arrival rate at the router and μ is the outgoing 
link capacity of the router), is below the target link 
utilization ,the router is non-congested and packets are not 
marked or dropped. When it is greater, all arriving packets 
are monitored while assigning flow _id to each ingress 
flow at the router. A history table is maintained to monitor 
flows which take more than their fair share of bandwidth 
in a luba interval which is a byte count of total packets 
received by the congested router during an interval in 
which we measure whether a flow is hogging more than its 
fair share. For each incoming packet, if its flow _id is not 
listed  in the history table, its flow _id is inserted in the 
table with drop probability that is assigned to all those 
flows that are not identified as malicious , to limit their 
aggregate share to the residual link capacity that is 
remaining after rate limiting the malicious flows. The 
packet is inserted in FIFO queue if it is not dropped as per 
the dropping probability. If the flow _id is present in the 
history table, the packet is dropped as per the drop 
probability and if the packet does not get dropped, it is 
inserted into the FIFO buffer. All packets in the buffer are 
serviced by the router at the μÛ per second where Û is the 
target link rate. The LUBA interval should not be very 
large as that would result in sluggish system and 
unresponsive behavior in the presence of short-lived flows. 
But it should be large enough to capture active flows. 
When  λ increases,  the  time duration τ to get the Luba 
interval bytes decreases. It implies that during high 
congestion period, history table contains mostly malicious 
flows because during such a short time interval only those 
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flows can regularly figure in history table that are 
consistently sending at a very high rate. Jitter degrades the 
performance of both TCP and UDP flows. With the 
change in arrival rate, queue builds up at the rate 
proportional to log (λ) instead of λ. This has implications 
in FIFO queue buildup and jitter properties of the router. 
The end-to-end jitter introduced due to a series of routers, 
demonstrate that LUBA acts as jitter suppressor. Manoj 
K.Agarwal et al. showed that UDP sources with rate less 
than 1 Mbps do not figure in the drop table. And UDP 
sources with data rate above 1 Mbps are almost always 
present in the history table. In the presence of large 
number of UDP flows, the fairness index is much better 
than other AQMs ( Fig 13). SFB gives results closest to 
LUBA. But SFB is computationally expensive and 
difficult to configure. LUBA is also able to maintain the 
high TCP throughput with increasing load on the 
bottleneck link compared with other algorithms(Fig 14) 

 

 
 Fig -13 Fairness Comparison with other AQMs 
(Reprinted from Ref 30) 

 

Fig -14 TCP throughput with varying load (Reprinted from Ref 30) 

4.10 RAQM 

Another new rate based AQM (RAQM) [31] uses the 
aggregated traffic input rate to calculate packet drop 
probability according to an exponential rule. This RAQM 
works in two modes. Although RAQM needs to measure 
traffic input rate, yet this operation is for the aggregated 
flows and there is no need to differentiate each micro 
flow: Queue independent mode and Queue dependent 
mode. In the queue independent mode it only relies on the 
aggregate traffic input rate to regulate the input rate to the 
expected link utility. In queue dependent mode, it also 
uses the instantaneous queue length to further adjust the 
packet drop probability and to regulate the queue length to 
the expected value. The rational for using the exponential 
rule is that it can achieve stability and leads to faster 
convergence of the packet drop probability to the expected 
value. RAQM also obtains higher Good put at the same 
cost of average queue length and better trade off between 
good put and queuing delay.  

 

4.11 Proportional Rate Control (PRC) 

In the proportional rate based control (PRC) two 
parameters i.e minimum threshold and maximum 
threshold are maintained to effectively control input rate 
under the desired level. virtual queue concept also 
introduced into system to regulate the queue size[32]. The 
attractive features include packet dropping to control the 
arrival rate between minimum and maximum desired rate 
and ECN marking to inform the source to reduce the 
transmission rate quickly when virtual buffer becomes full. 
It combines the advantages of quick responsiveness and 
persistent stability 

 

4.11 Rate based Exponential AQM 

Current AQMs and TCP are designed and tuned to 
work well for wired networks where packet loss is mainly 
due to network congestion. In wireless networks, however 
communication links suffer from transmission bit errors 
and handoff failures. As a result the performance of TCP 
flows is significantly degraded. To mitigate this problem a 
Rate based Exponential AQM (REAQM) is 
proposed[33] .It tries to stabilize the system and achieve 
low delay, low packet loss and high link utilization 
regardless of the dynamic of network conditions. Similar 
to REM REAQM maintains a variable, price, as a 
congestion measure and uses an exponential marking 
probability function. On the other hand, REAQM differs 
from REM in the definition of congestion measure. The 
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AQM Loss 
rate 

Good 
put 

Avg q 
(packets) 

STD q 
(packets) 

Drop 
Tail 

11.8% 1249.2 92.7  

8.7 

 

RED 
 

13.1% 1245.8 42.1 26.0 

REM 13.6% 1237.0 40.1 28.3 

AVQ 14% 1218.0 10.5 11.8 

SVB 13.2% 1249.2 51.4 5.9 

price at queue l at time t is denoted by pl(t).The marking 
probability function of REAQM is  ml(t)=1-Ф–p

l
(t)   where 

Ф  is a constant larger than 1. 
 

Price is updated, periodically or asynchronously 
mainly based on rate mismatch. Rate mismatch is positive 
when the input rate exceeds the link capacity and negative 
otherwise. The price is incremented if the rate mismatch is 
positive and decremented otherwise. Queue length is used 
to compute the coefficient of rate mismatch and adjust the 
scale of rate mismatch. If queue length is small, the effects 
of rate mismatch decrease and REAQM is less aggressive. 
Otherwise, REAQM is more aggressive. The rational 
behind it is that smaller the queue size, the more rate 
mismatch is allowed. This makes the tradeoff between 
system stability and utilization. if the current input rate 
exceeds the link capacity, packet marking probability will 
increase. Otherwise it will decrease. The larger the current 
queue length, the larger the co efficient of rate mismatch 
is; thus the larger the price value increases or decreases as 
well. REAQM decouples packet loss and congestion 
measure. In wireless packets are lost mainly because of bit 
errors and intermittent connectivity. Simulation results 
demonstrate that REAQM is capable of performing well 
for TCP flows over both wired and wireless links. 

 
Although the rate based AQM  schemes can obtain 

good transient performance because of its fast 
responsiveness, large queuing delays jitter may occur by 
the reason of no explicit control mechanism of queue size 
under dynamic network scenarios especially 

5. AQMs Based On Queue Length And  Load 
Merits 

5.1Random Exponential Marking (REM) 

REM [34] is an active queue management mechanism 
that aims to achieve both high utilization and negligible 
loss and delay in a simple and scalable manner. The key 
idea is to decouple congestion measure from performance 
measure such as loss, queue length or delay. While 
congestion measure indicates excess demand for 
bandwidth and must track the number of users, 
performance measure should be stabilized around their 
targets independently of the number of users. Simulation 
results suggest that this goal seems achievable without 
sacrificing the simplicity and scalability of the original 
RED. This property can be exploited to improve the 
performance of TCP over wireless links.  

 

5.2 Stabilized Virtual Buffer (SVB) 

Like REM, Stabilized Virtual Buffer (SVB) [35] 
considers both the packet arrival rate and queue size to 
stabilize them around target value but unlike REM it 
maintains a virtual queue and responds to the traffic 
dynamics faster for better stability, especially in the 
presence of short flows. While the virtual concept queue is 
similar to AVQ, this SVB considers both arrival rate and 
queue length. Unlike AVQ where the service rate of the 
virtual queue is adaptable and packet is dropped/marked 
whenever the virtual queue overflows the physical buffer 
limit, in SVB the service rate is fixed as link capacity of 
the real queue and adapt the limit of the virtual buffer to 
the packet arrival rate. Another difference with respect to 
AVQ is that the incoming packets in SVB are then marked 
with a probability, which is calculated based on both the 
current virtual buffer limit and virtual queue occupancy. 
The performance of SVB is compared with other AQMs 
and the result is given in table 4  with the following 
parameters for various AQMs. 

 
    N      =   200; Number of connections 
    RED     :    Minth  =    20 packets,  
                       Maxth  =    80 packets,  
                       Q-weight  = 0.002, Maxp= 0.5 
 
   REM : Ф=1.005, γ=0.001, α=0.1, T=8ms,  
                       Target  queue length =50packets 
 
  AVQ  :  γ = 1.0 
    SVB  :  b=45 
 

Table 4 Performance comparison of SVB with other AQMs  (Reprinted 
from Ref 35) 
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5.3 Active queue management algorithm   
considering queue and load states 

Jaesung Hong  et.al suggest another AQM that 
predicts the average queue length and controls it   to 
maintain a certain reference value to achieve high link 
utilization and low queueing delay by considering both the 
average queue length and the estimated packet arrival 
rate.[36] The algorithm uses two functions to calculate 
drop probability; One for averaging the queue length and 
the other for estimating the rate of queue change. The 
authors have showed that, with different values of Qmax, 
this algorithm keeps the  average queue length constantly 
at the provided reference value Q ref, regardless of traffic 
loading. It also has smaller deviation, which also gradually 
decreases with the traffic load and buffer size. It assures 
the queueing delay by reducing jitter under dynamic traffic 
load. 

 

5.4 RaQ 

Another mechanism called RaQ [37] uses the input 
rate and current queue length to calculate the packet 
dropping/marking probability. From the point of control 
theory, RaQ can be seen as dual loop feedback control. 
The inner loop is rate feedback and outer loop is queue 
length feedback control. Thus the rate feedback control 
enables RaQ to respond congestion quickly, so that it can 
decrease the packet loss due to buffer overflow, and queue 
length feedback control stabilizes RaQ’s queue length 
around given target. So it can achieve predictable 
queueing delay and lower delay jitter.The simulation 
results show that RaQ is able to maintain queue length 
around the given target under different traffic loads, 
different RTPTs, and different bottleneck link capacities. 
Further simulation testing involving non-TCP traffic types 
and a multiple bottleneck topology have further confirmed 
the robustness of RaQ Comparison showed that the 
superiority of RaQ in low packet loss, achieving faster 
convergence to target queue length  and then    
maintaining the queue length closest to the target . 

 
From the analysis of the literature [38],the AQM 

schemes of this category can be viewed as a PID type 
controller, which essentially belongs to queue  based 
category 
 

6.DISCUSSION 

Even though many mechanisms have been developed 
since 1999,a few of them are considered in this study. The 
goals of AQM are to maintain a stabilized queue, to 
achieve high resources utilization and lower queueing 

delay. The lock out and Full queue problems of tail drop 
mechanism are the issues that are being considered while 
developing any new AQM mechanisms. RED is the most 
widely employed AQM and tuning of parameters of RED 
is the main goal of almost all newly developed AQMs. 
Several AQMS like SRED, DSRED, MRED, Adaptive 
RED, ARED, RARED etc., were developed on this basis. 
The SRED does not calculate the average queue length. If 
further investigations on SRED has shown the way for 
improving the performance of SRED by the addition of 
computation of average queue size, then that would be 
beneficial. Even though the performance of MRED was 
slightly better than RED, it received only less attention. 
AVQ achieves good utilization while keeping queue 
length small. On the other hand CHOKe provides much 
better fairness but fails to keep the utilization as high as 
AVQ. The time varying link utilization factor of SAVQ 
improves the transient response of SAVQ, which 
outperforms AVQ, and the queue length of SAVQ 
converges fast to the desired length. Also the introduction 
ofarrival rate at the network as principal measure of 
congestion and the desired link utilization ratio as the 
subordinate measure of congestion in  EAVQ utilize the 
link capacity hundred percent. Similar to EAVQ, Yellow 
also uses two measures to manage congestion. Very high 
link utilization is achieved keeping load factor as the main 
merit and queue control function as the secondary merit. 
AVQRED essentially combines AVQ and RED and 
enhances the way the virtual capacity is adjusted to adapt 
to dynamics of gateway resources. AVQRED’s link 
utilization ARED, BLUE, GKVQ, AVQ and PI. 
AVQRED ‘s packet loss rate is upto 15% lowered and the 
standard deviation is 28 to 50% lower than the other AQM 
methods except for BLUE. The low drop standard 
deviation implies that the distance between drops is more 
uniform resulting in less consecutive drops. AVQRED’s 
queueing delays are 25% lower than the other AQM 
methods while the delay jitters are about 5 to 15% higher 
than RED. Low delay jitters are not always good because 
it means that short lived and bursty traffic could be 
dropped. Overall performance of AVQRED is 24.2% 
higher than GKVQ and 24.1% higher than AVQ and 25% 
higher than PI. ARED, PI and REM all exhibit good 
network performance, however the differences observed 
are not significant enough to really distinguish these from 
each other. ARED has benefited from discussions in the 
literature on the settings of parameters for RED while 
others received much less attention. If ECN is not 
supported, ARED operating in byte mode was the best 
performing design, providing better response time 
performance than drop tail queuing at offered loads above 
90% of link capacity. However ARED  operating in 
Packet mode with or without ECN was the worst 
performing design, performing worse than drop-tail 
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queueing. ECN support is beneficial to PI and REM .With 
ECN, PI and REM were the best performing designs, 
providing significant improvement over ARED operating 
in byte mode. In the case of REM, the benefit of REM was 
dramatic. Without ECN, response time performance with 
REM was worse than drop-tail queueing at all loads 
considered. Whether or not the improvement in response 
times with AQM is significant, depends heavily on the 
range of round trip times (RTTs) experienced by flows. As 
the variation in flows’ RTT increases, the impact of AQM 
and ECN on response time performance is reduced. 

 
In many cases the simulation scenarios presented by 

the developers of a AQM mechanism concentrate on a few 
general scenarios and are often too simple to capture 
protocol behavior in non-standard situations. Claims about 
a mechanism that are based purely on simulation results 
should be taken with a grain of salt. Traffic conditions in 
the Internet are too complex to be modeled in all aspects in 
a network simulator, making it important to evaluate AQM 
mechanisms also under real–world conditions 

 

6.1 The impact of Unresponsive flows on AQM     
performance 

 
While Unresponsive flows contributing to about 70-

80% of the Internet flows, account for only 10-20% of its 
byte volume. This small volume of Unresponsive flows 
can significantly impact on transient behavior of AQMs. 
Short lived TCP flows can dominate the dynamic of traffic 
increase when congestion is low and long  

lived TCP flows dominate the dynamic of traffic 
decrease .The mean sending rate of unresponsive flows 
reduces the bandwidth available to long lived TCP traffic, 
which in turn makes the AQM more robust, but less 
responsive. Queue averaging is the issue that deals with an 
AQM’s response to variation in Unresponsive traffic. It 
results in a tradeoff between AQM responsiveness, 
robustness and response to the uncontrolled flows. For 
robustness the queue averaging time constant should be 
chosen outside the range (R,R2C⁄N) where R is the round 
trip time is link capacity and N is the number of active 
TCP flows. AQM responsiveness is inversely related to 
the queue averaging time constant. It is also impossible via 
selection of the averaging time constant, to sufficiently 
and simultaneously smooth the variations in queue length 
and loss probability due to variations in Unresponsive 
flows. This is very important as it implies that while 
averaging results in a smooth or stable congestion 
feedback, it also introduces considerable jitter in the 
queueing delay. That trade off should be noted in AQM 
design 

7. CONCLUSION 

  
 In this paper , we presented a survey on recent 

advances in the area of active queue management .The 
implementation of AQM is beneficial in a general network 
environment. Further we classified the mechanisms 
according to the type of metrics they used as congestion 
measure. From the survey we found that the performances 
of rate based AQM schemes are better than that of queue 
based schemes. The queue length of rate based scheme is 
less sensitive to the number of TCP connections than that 
of queue based schemes. Inclusion of more number of 
congestion measures  in the existing rate based schemes 
such as AVQ,EAVQ may result in better performance in 
terms of ,  throughput, packet loss, link utilization. 
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