
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

146

Manuscript received December 5, 2008

Manuscript revised December 20, 2008

Context Repository Architecture for Smart Collaborative
Environment

S M Faisal †, Mohammad Rezwanul Huq †, A. S. M. Ashique Mahmood †

† Islamic University of Technology (IUT), Board Bazar, Gazipur 1704, Bangladesh

Summary

Due to the advancement of technology, smart sensors and smart
objects are becoming popular now-a-days. These smart sensors
and objects have some computation power so that depending on
the change of the environment they can take actions accordingly.
Since the use of portable devices like PDA, cellular phone is
increasing; users also would like to interact with the environment
through these. Moreover, for performing complex operations, we
need to have context middleware that can analyze the contexts
and provide necessary services to users. Therefore, it is obvious
that for all of these cases, a repository of contexts is badly needed
to store the generated contexts as well as to retrieve those
contexts whenever necessary. In this paper, we propose novel
context repository architecture for smart collaborative
environment where we have a bunch of sensors deployed, smart
objects, handheld devices as well as our backend middleware.
We design our context repository architecture considering all of
these issues. Our context repository architecture contains solution
for the repository in smart sensors, smart objects, handheld
devices as well as backend middleware. We design our
repository architecture in such a way so that it will be lightweight
for smart sensors, objects and handheld devices since these
elements will perform simple operations. In the backend
middleware, we store all the generated contexts to support
complex reasoning and analysis which will be carried out for
performing complex operations. Furthermore, our context
repository also provides some extended functionalities which can
be used by the middleware to provide context-aware services to
users. Depending on our design, we will try to implement our
prototype in future which will demonstrate the viability of our
architecture surely.

Key words:
Context, Repository, Smart sensors, Smart Objects,
Collaborative Environment.

1. Introduction

There exists numerous low-level context and high-level
context in Ubiquitous Environment. Context Repository is
a persistent storage of the contexts and support query to
applications. The overall context repository can be
composed of multiple levels of repository for each type of
entities like smart sensors, smart objects, handheld devices
as well as the central middleware. Centralized Repository
is placed at backend server which has enough

computational power and large capability of storage. On
the other hand, for smart sensors, objects and handheld
devices, we need a repository with small computational
power and storage space. The repository must be light
weight and the contexts should be stored in a distributed
space because of the characteristics of handheld devices,
sensors and objects in SCO environment.

Figure 1 shows a typical example of smart collaborative
object (SCO) environment. There are some passive sensors
connected to active sensors. These active sensors can co-
operate with each other. The term ‘co-operate’ means that
they can communicate with each other by means of
sharing information. These smart co-operative sensors can
also communicate with other smart objects and handheld
devices. Again, smart object and handheld devices can
communicate with each other. The contexts generated
from users’ activities will be stored in the backend server
as well as some important contexts will be stored in smart
objects and handheld devices. These contexts contain
useful information regarding users or these are frequently
shared contexts.

1.1 Major Challenges

The design and development of a context repository for
smart collaborative object environment faces a number of
challenges. These challenges are:

1. Low power and limited memory of handheld devices:

The main goal of smart collaborative object
environment is to provide services to the users in a
context-sensitive way. It is very much expected that
user will have handheld devices like PDA, mobile
phones those have limited power resource and memory.
Therefore, the context storage should be light weight so
that the most essential information and context should
be stored in users’ handheld devices.

2. Location-centric: The entities in SCO environment are
mobile in nature. This mobility adds location as a new
dimension to applications that does not typically play a
role in stationary scenarios. Consider a system that can
answer questions such as “find the drugstores within 2
miles of my current location”. Such a system must track

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

147

the location of the current user and be able to access
information based on relative locations and distances.

3. Machine learning: Whether the system obtains its
context information from sensors, user input, PIM
(personal information management) applications, or
some combination of these, it must perform a good deal
of processing over the data in order to be able to
accurately assess the state of the environment and the
intensions of the user. Thus, context-aware applications
impose demanding requirements for machine learning
techniques.

4. Context reasoning: This is very much necessary to get
high level context from low level context for effective
context-sensitive information in SCO environment. The
provision of context reasoning will be extremely
efficient in order to be able to interact with the user in a
useful and unobtrusive manner.

5. Diversity of contexts: In SCO environment, there
should be a lot of heterogeneous devices. Those devices
will produce a number of contexts which will be
different in nature. For designing and developing a
successful context repository in SCO environment we
need to identify some common framework to store that
context information. This common framework should
be understandable by all the devices and agents
interacting in the system.

6. Objects are distributed: Smart collaborative objects will
be distributed over a particular region. Users will be
also roaming around over that region. Therefore
centralized storage system will be in no use in this
environment. We must have to design the context
repository in distributed manner to satisfy the queries
issued by the distributed objects and users.

1.2 Our Objectives

Our main concern is to build a context repository for the
SCO environment. In the course of building this context
repository we need to meet the following objectives too.
These are listed below.

1. Providing a means for context storing in smart objects

and smart sensors using tuple space.
2. Ontology driven, lightweight context storing

mechanism in users’ handheld devices with agent based
communication.

3. Build a central context repository in backend server to
support complex reasoning and querying.

The rest of the paper is organized as follows. In section 2,
we have discussed the possible existing approaches for
context modeling and representation. In section 3, we have
reviewed the existing methods for ontology-based
database. In section 4, we propose our context repository
architecture for smart collaborative environment. Finally,
we conclude in section 5 with some hints of our future
work.

2. Context Modeling and Representation

Context Modeling is one of the most important jobs in
designing an application for a smart space. The most
relevant modeling approaches classified by the scheme of
data structures which are used to ex-change contextual
information have been described below.
1. Key-value Models: The simplest data structure that

represents the context information by a value provided
via an environment variable to an application.

Figure 1: Smart Collaborative Environment

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

148

2. Markup scheme Models: All markup based models use
a hierarchical data structure consisting of markup tags
with attributes and content.

3. Graphical Models: Context is modeled by using a very
well know modeling tool Unified Modeling Language
due to its generic structure. Various approaches exist
where contextual aspects are modeled in by using
UML, e.g. Bauer in [1].

4. Object oriented Models: It uses the power of object-
orientation (e.g., encapsulation, reusability, inheritance)
to represent different context types (such as
temperature, location, etc.) and encapsulate the details
of context processing and representation on an object
level.

5. Logic based Models: This model defines context as
fact, expression together with rules on which new
concluding expressions or facts can be derived from a
set of existing facts and expressions. Contextual
information adding, updating and deleting are done
from logic based system in terms of facts or inferred
from rules in the system.

Ontology based Models: Ontologies represent a
description of the concepts and relationships. Therefore,
ontologies are a very promising instrument for modeling
contextual information due to their high and formal
expressiveness and the possibilities for applying ontology
reasoning techniques. Various context-aware frameworks
use ontologies as underlying context models.
In our solution, we have used ontology based models for
context modeling purpose. Therefore, we need some
means to represent this ontology-based model. Next, we
provide the illustration for ontology based context
representation.

Languages like XML that define structure of a document,
but lacks semantic model, are not enough for describing
ontologies- intuitively an XML document may be clear,
but computers lack the intuition. In recent years ontology
languages based on Web technologies have been
introduced. DAML+OIL [2], which is based on RDF
Schema [3], is one such language. It provides a basic
infrastructure that allows machines to make simple
inferences. Recently, DAML+OIL language was adopted
by World Wide Web Consortium (W3C), which is
developing a Web Ontology Language (OWL) [4] based
on DAML+OIL. Like DAML+OIL, OWL is based on
RDF Schema [3], but both of these languages provide
additional vocabulary—for example relations between
classes, cardinality, equality, richer typing of properties,
characteristics of properties, and enumerated classes—
along with a formal semantic to facilitate greater machine
readability. The OWL language has a quite strong industry
support, and therefore it is expected to become a dominant
ontology language for the Semantic Web. OWL is built on

the top of RDF & RDFS. It is much more expressive than
RDF & RDFS with hierarchies and relationships between
re-sources. It has many predefined classes and properties
for ontologies that can be reused. It supports a wide variety
of development tools.

3. Ontology based Database

Ontology is a data model that represents a domain and is
used to reason about the objects in that domain and the
relations between them. Ontologies are used in artificial
intelligence, the semantic web, software engineering and
information architecture as a form of knowledge
representation about the world or some part of it. It is a
data model used for implementing semantic web that is a
vision of web pages that are understandable by computers,
so that they can search websites and perform actions in a
standardized way. Semantic web provides a common
framework that allows data to be shared and reused across
appli-cation, enterprise, and community boundaries. The
motivation of using ontology driven approach for context
repository is three folds.

 Knowledge sharing: Ontology provides a common

framework for information sharing. We used to define
standard vocabularies at the time of ontology modelling.
These set of standard vocabularies could be easily
understood by different smart collaborative objects
present in the environment. Therefore, the sharing of
knowledge could be served in a meaningful way.

 Knowledge reuse: we can build large-scale context
ontology by reusing knowledge of several domain
specific ontologies. We need not to start from scratch to
build up the large-scale context ontology. Objects in the
environment can also reuse the knowledge as it is
providing a common framework to define contexts.

 Logic inference: Systems built on the top of SCO
environment need inference mechanism. Generating
high level context from low level context is very much
important for smart collaborative object environment.
This inferring mechanism helps the proper execution of
the system that gives necessary context-sensitive
information to the user thus providing necessary
services to users.

The database that stores data and the ontologies describing
their meanings in the same database is known as
Ontology-based database (OBDBs). Figure 2 shows
different schemes used so far. Ontology-based data
represents ontology individuals. As for example, instance
of ontology classes. To ensure a high performance of
queries on top of OBDBs efficient representation of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

149

ontology-based data is needed. Two main representation
schemes have been proposed. They are:

 Single table approach
 Dual schemes approach

In the single table approach [5-8], the description of
classes, properties and their instances are stored in a single
table called vertical table [5]. Dual scheme approach
consists in storing separately ontologies and instance data
in two different structures, called ontology and data,
respectively [9-11]. In the dual scheme approach, instances
and their properties values are also stored separately.
Another new technique of storing data has been proposed
named as table per class representation approach [12]. This
schema consists of all the class applicable properties that
are used at least by one instance of the class.

4. Our Proposed Architecture

For building a successful context repository, we must have
to provide a means to interchange contextual information
among smart sensors, smart objects. Furthermore, we have
to ensure that some user-oriented context will be stored in
users’ handheld devices as well as each and every context
will be stored in the backend server. In the coming portion,
we will talk about our solution involving distributed tuple
space for smart objects and sensors, ontology-based

lightweight database for users’ handhelds and context re-
pository for backend server.

4.1 Distributed Tuple Space for Smart Sensors and
Smart Objects

Distributed tuplespace (Figure 3) provides a platform for
storing and exchanging sensory data and con-textual
information. It distributes the originally centralized
tuplespace structure among different nodes. In our
approach, we will distribute tuplespace among smart
objects.

Here are some more details on distributed tuplespace.

 Tuple spaces are a realization of the associative

memory aka the blackboard architecture for storage
[13].

 A data structure shared by all the objects cooperating
with each other.

 Each node contributes a portion of its local memory to
the shared data space.

 Operations on shared data space reflect to all local
spaces.

4.2 Ontology-based Lightweight Database for users’
handhelds

The main component of our ontology driven context
repository is entity. User, meeting room, class room,

Figure 3: Different Schemes for Ontology based Database

Figure 2. Distributed Tuplespace for Smart sensors and smart objects

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

150

restaurant etc. is examples of different kinds of entities. In
our definition of an entity computer or any other
computational devices are not an entity itself rather it
belongs to the environmental context of that particular
entity. The contextual information for a particular entity
can be roughly subdivided into the following categories.

 Environmental context: This part captures the entity’s

surroundings like things, services, agents,
environmental condition, users and information
accessed by users.

 Spatio-temporal context: This type of context is
concerned with attributes like time, location and
movement.

 Task context: This describes what the entity is doing, it
can describe the entity’s goals, activities etc.

This contextual information can be efficiently managed by
ontology. Ontology provides a common framework for
understanding this information. Here we give an example
of ontology with related concepts for an entity (Figure 4).

Each entity in our smart collaborative object environment
will communicate with each other by means of its agent.
The goal of agents is to reduce user work and information
overload.

Three fundamental roles of agents (Figure 5) are essential
to smart collaborative environments: information
finder/filter, information interpreter, and decision maker.

1. An information finder and filter helps users to find out

the requested information and filter out unnecessary
information according to a specified user task. The
agent will provide a reasonable number of choices to
users or suggest an alternative option if the requested
information items are not available.

2. An information interpreter can access and convey
information from one side to the other. In distributed
network environments, heterogeneous data models and
systems can not communicate directly.

3. A decision maker can make decision autonomously
based on its own knowledge and user-defined rules. An
agent can collect and analyze information according to
specific events, such as the migration and linkages of
objects and components, and then make an optimal
decision based on the rational rules defined by users or
other agents.

Agent for a particular entity is responsible for knowledge
sharing with other agents of the smart collaborative object
environment. Actually the agent retrieves contextual
information from the ontology based database of each
entity. As our primary concern is to make the database a

Entity

Environmental Context Spatio-Temporal Context Task Context

CompEntity

Service

Other Entities

Time & Location Activities

Environmental Condition

Entity Profile

Is a

Is a Is a

Is PartOf

Has Profile

Entity

Environmental Context Spatio-Temporal Context Task Context

CompEntity

Service

Other Entities

Time & Location Activities

Environmental Condition

Entity Profile

Is a

Is a Is a

Is PartOf

Has Profile

Figure 4: Concepts of ontology for an Entity

Entity Agent

Information finder & filter

Decision maker

Information interpreter
Is PartOf

Is PartOfIs PartOf

Entity Agent

Information finder & filter

Decision maker

Information interpreter
Is PartOf

Is PartOfIs PartOf

Figure 5: Block diagram of an Entity Agent

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

151

lighter one, we will use one of the light-weight database
techniques like SQLite [14], HSQLDB [15], Mini SQL
[16]. This light-weight database holds the ontology and
ontology-based data for a particular entity. By means of
agent of that entity, this data can be shared with other
agents thus leads to the collaboration among different
entities (Figure 6).

4.3 Context Repository in Backend Server

In the backend server, context will be collected in a timely
manner from smart sensors, smart objects as well as users’
handheld devices. Some principle features of backend
server includes
 - Support complex reasoning (e.g. Bayesian reasoning).
 - Support prediction of user and object behavior.

Figure 7 depicts the context repository architecture in
backend server. Context linker links data from different
sources to the relevant information entity (e.g. Context
location linker, user linker, device linker). Context merger
integrates context from different sources, also identifies
which parts of context is changed. Agent using context
will subscribe the notification schedule to context
middleware and will re-ceive notifications when relevant

part of context is changed. While receiving new context,
Agent sends it to reasoning engine to specify the tasks
needed to automatically perform for users to adapt new
context. Tasks will be sent to appropriate application
agents’ services.

4.3.1 Interface with Sensors and Other
Components in the System

Figure 8 depicts the interface among context repository in
backend server and other components in the system like
smart sensors, objects and different reasoning engine. Our
backend repository collects con-texts through Data
Acquisition Manager. It is the interface between repository
and the smart sensors, ob-jects. In our repository, contexts,
rules and codes for different reasoning engine will be
stored. Depend-ing on the use of reasoning engine, the
code for that particular reasoning engine will be
dynamically instantiated. Moreover, rules are stored too
for rule based reasoning mechanism. CRC (Contexts,
Rules and Codes) Provider acts as an interface between
repository and different reasoning mechanism used for a
particular type of application. Our repository in backend
server thus satisfies all the requirements for SCO
environment.

Entity

Environmental Context Spatio-Temporal Context Task Context

Entity Profile

Is PartOf

Has Profile

Entity Agent

Information finder & filter

Decision maker

Information interpreter
Is PartOf

Is PartOfIs PartOf

Light-weight Database

Entity

Environmental Context Spatio-Temporal Context Task Context

Entity Profile

Is PartOf

Has Profile

Entity

Environmental Context Spatio-Temporal Context Task Context

Entity Profile

Is PartOf

Has Profile

Entity Agent

Information finder & filter

Decision maker

Information interpreter
Is PartOf

Is PartOfIs PartOf

Light-weight Database

Figure 6: Interaction among Entity, Database and Agent

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

152

5 Conclusion

Though our proposed context repository scheme is still in
an abstract level of thinking, it can satisfy the requirements
for SCO environment. We are going to use one of the
light-weight databases that will take out a huge overhead
of computational power and memory. Moreover, each
entity will hold the on-tology for itself that introduce the
provision of distributed modular ontologies [17, 18].
Ontology pro-vides a data model that can serve as a
common framework for context storing thus make
knowledge shar-ing and reuse effective. Logic inference is
very much possible by using the Semantic Web Rule Lan-
guage (SWRL) [19] and a rule engine like Java Expert
System Shell (JESS) [20]. Our next step is to further
investigate the strengths and weaknesses of the proposed
architecture for context storing and once finalize the
architecture then, to implement the context repository for
SCO environment.

References
[1] 1. BAUER, J. Identification and Modeling of Contexts

for Different Information Scenarios in Air Traffic,
Mar. 2003. Diplomarbeit.

[2] J. Hendler and D. L. McGuinness. The DARPA Agent
Markup Language. IEEE Intelligent Systems,
15(6):67–73, 2000.

[3] D. Brickley and R.V. Guha. RDF Vocabulary
Description Language 1.0: RDF Schema. 2003. W3C
Working Draft, work in progress, available at:
http://www.w3.org/TR/2004/REC-rdf-schema-
20040210/.

[4] WAPFORUM. User Agent Profile (UAProf).
http://www.wapforum.org.

[5] R. Agrawal, A. Somani, and Y. Xu. “Storage and
querying of e-commerce data” In Proc. VLDB’01,
pages 149–158, 2001.

[6] B.McBride. “Jena: Implementing the RDF model and
syntax specification.” In Proc. of the 2nd Intern.
Workshop on the Semantic Web, 2001.

Figure 7: Context Repository Architecture in Backend Server

D
at

a
A

cq
ui

si
tio

n
M

an
ag

er

C
R

C
 P

ro
vi

de
r

C
O
N
T
E
X
T
S

R
U
L
E
S

C
O
D
E
S

Context Repository

Reasoning
EngineD

at
a

A
cq

ui
si

tio
n

M
an

ag
er

C
R

C
 P

ro
vi

de
r

C
O
N
T
E
X
T
S

R
U
L
E
S

C
O
D
E
S

Context Repository

Reasoning
Engine

Figure 8: Interface among Context Repository in the Backend Server and Other Components

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

153

[7] S. Harris and N. Gibbins. “3store: Efficient bulk RDF
storage.” In Proc. of the 1st Intern. Workshop on Practical
and Scalable Semantic Systems (PSSS’03), 2003.

[8] L.Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. “Rstar: an
RDF storage and query system for enterprise resource
management.” thirteenth ACM international
conference on Information and knowledge
management, 2004:484 – 491.

[9] S. Alexaki, V. Christophides, G. Karvounarakis, D.
Plexousakis, and K. Tolle. “On storing voluminous rdf
descriptions: The case of web portal catalogs.” In Proc.
ofWebDB’01 (co-located with ACM SIGMOD’01),
2001.

[10] J. Broekstra, A. Kampman, and F.V. Harmelen.
“Sesame: A generic architecture for storing and
querying rdf and RDF schema.” In Proc. of the First
Inter. Semantic Web Conf., pages 54–68, 2002.

[11] Z. Pan and J. Heflin. “Dldb: Extending relational
databases to support semantic web queries.”
ISWC’2003, 2003.

[12] H. Dehainsala, G. Pierra, L. Bellatreche, “OntoDB :
An ontology based database for data intensive
applications”, DASFAA 2007.

[13] Wikipedia: http://en.wikipedia.org/wiki/Tuple_space.
[14] SQLite: http://www.sqlite.org/
[15] HSQL: http://hsqldb.org/
[16] Mini SQL 2.0:

http://www.hughes.com.au/library/msql/manual_20/
[17] Y.Qu, Z.Gao, “Interpreting Distributed Ontologies”,

WWW 2004, USA.
[18] Jie Bao, V.Honavar,”Adapt OWL as a Modular

Ontology language (a position paper)”
[19] SWRL: A Semantic Web Rule Language Combining

OWL and RuleML,
http://www.w3.org/Submission/SWRL/

[20] Jess: The rule engine for the Java platform,
http://herzberg.ca.sandia.gov/jess/

S M Faisal received his
Bachelor of Science degree from
Islamic University of Technology (IUT),
Bangladesh on September 2005. He
joined as Lecturer at the same university
in the Computer Science & Information
Technology (CIT) department in
December 2005 and is still working at
the same university. His research

interest includes Collaborative Environment, Data Mining,
Artificial Intelligence and Information Security. He is a member
of the Institution of Engineers, Bangladesh (IEB).

Mohammad Rezwanul Huq received
his Master of Computer Engineering
degree from Kyung Hee University,
Korea on February 2008. Currently, he
is serving as Lecturer, CIT Dept. in
Islamic University of Technology (IUT),
Bangladesh. Earlier he completed his
B.Sc. in CIT from Islamic University of
Technology (IUT), Bangladesh on
September 2004. Later, he joined as
Lecturer at the same university in

Computer Science & IT department from December 2004 and
still serves at the same university. His research interest includes
Collaborative Environment, Ubiquitous Computing, Semantic
Web and Data Mining. He is a member of the Institution of
Engineers, Bangladesh (IEB). He also served as a program
committee member for the 2008 Semantic Web and Web
Services Conference held in Las Vegas, USA on July 2008.

A. S. M. Ashique Mahmood received
his Bachelor of Science degree from
Islamic University of Technology
(IUT), Bangladesh on September 2006.
He is working as a lecturer in the Dept.
of Computer science and Information
Technology(CIT) at Islamic University
of Technology (IUT) since his joining
in December 2006. He worked in the
development project of Banglapedia
(digital version), the encyclopedia of

Bangladesh. He is mainly focused in areas such as Parallel &
Distributed Computing, Collaborative Environment, Artificial
Intelligence and Databases.

