
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

219

Manuscript received December 5, 2008

Manuscript revised December 20, 2008

Reliability Bounds Prediction of COTS Component Based
Software Application

Tirthankar Gayen† and R. B Misra††,

Reliability Engineering Centre
IIT Kharagpur-721302, India.

Summary
In this paper a unique methodology based on the execution
scenario analysis of the COTS component based software
application has been formulated to help the developers and
integrators to regain some control over their COTS component
based software application systems by predicting the upper and
lower bound on the reliability of their application systems. At the
component level the CFG (control flow graph) of the component
and at the application level the CDG (component dependency
graph) of the application are explored to identify all possible
execution scenarios. The maximum and minimum reliability
values are obtained by evaluating and comparing the reliability
values obtained from various execution scenarios.

Key words:
Software, Reliability, CDG, CFG, COTS

1. Introduction

The use of third party software components, such as
COTS (commercial-off-the-shelf) products, has become
more and more common in the building and maintenance
of large software systems. Corporate downsizing
decreased government budgets, minimum spiraling costs
of building and maintaining large software systems, have
necessitated the reuse of existing software components
which can potentially reduce the time-to-market.
Programmers are expensive. Instead of paying an entire
team of developers to create a component from the ground
up it is cheaper to simply pay a few developers to integrate
a pre-existing component into a new application. That is
why today very few large-scale software systems are built
from the scratch. They generally comprise of commercial-
off-the-shelf (COTS) components, legacy software, and
custom-built components.
 COTS components are defined by Vigder and Dean
as “components which are bought from a third-party
vendor and integrated into a system” [1]. A COTS
component could be as “small” as a routine that computes
the square root of a number or as “large” as an entire

library of functions created by people outside of the
software development organization that will actually use
it. Though employing COTS components in the building
and maintenance of a large system can provide some
benefits, yet COTS component usage presents some
unique problems as follows [21] :-

1. COTS component source code is often unavailable.
2. Updates and evolution of a COTS component are

provided by the vendor. New functionality of an
updated component could be detrimental to specific
applications that use it. In fact, the functionality in the
original component could also be problematic.

3. The vendor often fails to provide a correct or complete
description of the COTS component’s behavior. This
can result in the buyer of the component having to
guess how the component is meant to be used or how it
is supposed to behave. Worse yet, the buyer could end
up using the component in a manner the vendor did not
intend. Unanticipated uses could compromise the
reliability of both the COTS component and the
application into which it is integrated.

4. Maintenance can become an issue because the vendor
may not correct defects or add enhancements as the
buyer needs them. Developers in the organization that
purchased the component may be forced to make
modifications themselves, which can be quite difficult
if the component’s source code is unavailable or if the
component’s specification is poor. On the contrary,
integrating COTS components into an application is
prone to error, can require a significant amount of
coding, and can be problematic to test properly.

 The reliability of components affects the reliability
of the system. Since today COTS (Commercials-Off-The-
Shelf) play an increasingly important role in the software
development. Due to financial and time-to-market
considerations, the software development organizations
have become increasingly reliant on software provided by
third parties for functionality that is needed for the
creation and maintenance of their applications. One of the
most difficult problems for successful COTS component
based system development is its evaluation especially

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

220

when the documentation and source code is not available.
There are several questions which arise like:

i) How to estimate the reliability of COTS when there is

no data available from the vendor?
ii) How to estimate the reliability of COTS when it is

embedded in a larger system?
iii) How to revise the reliability estimates once COTS has

been upgraded?
 Therefore, it is the intention to develop a
methodology to help the developers and integrators to
regain control over their COTS component based software
application systems by predicting the upper and lower
bound on the reliability of their application systems.

2. Problem Definition

Sherif et. al’s [28] approach for Scenario-Based
Reliability Analysis considers the transition probability
whose accurate evaluation may not be very easy since the
transition from one component to another may depend on
several factors like user input data or other conditions
which may depend on several instance characteristics.
Dolbec et. al‘s model for Component Based Software
Reliability demonstrates that the Shooman's execution
path model can be transformed into a component based
model. Their model defines the reliability of a system as a
function of the reliability of the components and
components usage ratios. The new definition of system
unreliability is derived as

 Qs ≈ ф1D1 + ф2D2 + … + фmDm .
 where m represents the number of

components that are used during system
execution

 ф m represents the usage ratio of
component m in N tests

 Dm represents the probability of failure of
component m.

 m or
Qs ≈ ∑ фkDk (1.1)

 k=1

 Equation 1.1 can also be expressed as follows:-

 m
Qs ≈ ∑фk(1 – Ck) (1.2)
 k=1

 where Ck represents the component reliabilities.

Software system reliability, Rs is equal to:
 m
Rs = 1- Qs ≈ 1 - ∑фk Dk (1.3)
 k=1

Component Usage Ratio – It represents the ratio of total
component execution time over the total software system
execution time. The value of the component usage ratio is

0 < фk < 1. The total of all components usage ratios is
equal to 1.

 m

 ∑ фk = 1
 k=1

фk = tk/ts = total component execution time(tk)/ total
system execution time (ts)

Since the execution time is machine dependent

and will vary with varying system load; determining
component execution time is more difficult because it is
necessary to track when each component is executed and
for how long. Moreover, it is execution path independent,
loops and other execution instance characteristics are not
taken into consideration. Therefore, considering all these
situations the current aim of the research is to formulate a
methodology to eradicate these problems and to help the
developers and integrators to regain some control over
their COTS component based software application
systems by being able to predict the reliability of their
application systems.

3. Upper bound prediction

In this approach before designing a component based
software application, the developer evaluates the reliability
of the individual component like COTS (especially when
the source code is not available) obtained from the third
party using John D. McGregor et. al’ s [26] method for
Measuring Component Reliability. At first the inter-
component analysis is done by drawing the CDG
(Component Dependency Graph) for the given component
based software application.

Fig.1 The CDG of a four component application

Here C1, C2, C3 and C4 represent components. The loops
in CDG represent the repeated execution of the component
(like during a recursive call) (C2 has a loop in fig 1.) and
a cycle represents the repeated execution of the sequence

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

221

of components included within the cycle. (For example a
loop within the application.) (C1 - C2 - C1 represents a
cycle in Fig. 1.) From the CDG the possible execution
scenarios are separated out as follows:-

Fig.2 The various execution scenarios

Using Dolbec et. al ‘s model for Component Based
Software Reliability the Component Usage Ratio (which
represents the ratio of total component execution time over
the total software system execution time) is evaluated.
фk= tk/ts = total component execution time(tk)/total

system execution time (ts)
where the value of the component usage ratio is 0 < фk < 1
and total of all components usage ratios is equal to 1. i.e
 m
 ∑ фk = 1

 k=1
Since the execution time of a program is machine
dependent and will vary with varying system load. Hence,
it is resorted to calculate the execution time in terms of the
number of CPU clock cycles as the execution time is
directly proportional to the number of CPU clock cycles.

 For this the intra - component analysis is done.
Consider a COTS component, assuming that the source
code is not available. What is available is either binary
object files (.OBJ) or binary executables (.EXE or .COM
file in windows.) The binary programs are converted to
equivalent assembly language programs using some
disassembler tools like Windows Disassembler, Bubble
Chamber which takes windows .exe or .com files as input
to produce equivalent assembly language code. Below is
an example of a sample Windows executable (.EXE) file
during execution.

 Press.exe is a simple windows binary
executable file which when executed
displays a window with the message “Press
Me!” and finally closes the window on
mouse click.

Corresponding assembly language code generated by
Windows Dissassembler for Press.exe

The control flow graph, CFG is drawn from the assembly
language program. Then the CFG is analyzed to find all
possible execution scenarios. Consider the example

 An example CFG

The above CFG can be broken into two execution
scenarios as follows:-

Here S1, S2, S3, S4, S5, S6, S7
represents statements and the
arrows represents the flow of
control.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

222

 Scenario 1 Scenario 2

The definite loops and definite cycles are numbered to
represent the number of repetitions. Here the statements
S1, S2, S3, S4, S5, S6 and S7 may have different
execution times. Referring to the machine instruction set
manual according to the assembly language specifications
one can evaluate the number of CPU clock cycles required
to execute various instructions. Thereby evaluating the
number of CPU clock cycles needed to execute the
program. Again, there can be a problem with the loops
which can be definite, indefinite or conditional. With
definite loops the evaluation is easy but not with indefinite
conditional loops. All these problems are handled in the
following algorithm which directly gives the upper bound
of reliability of a COTS component based software
application.

Algorithm GayenCOTS()
 {

i) Do the intra-component analysis to find those
components which have indefinite loops from their
CFG.

ii) Do the inter-component analysis to find those
sequences of components which are in indefinite
cycles from their CDG.

iii) Among all the components found from step (i) &
(ii) during intra and inter-component analysis
respectively find the components having
maximum reliability.

 iv) If all the components either have indefinite loops
or are in indefinite cycles then the upper bound is
the reliability of the component having maximum
reliability, hence terminate.

 Else {
v) Compare the reliability value of the

components obtained in step (iii) with the
reliability values of other components in the
application not found in steps (i) & (ii).

vi)If the reliability of the component found in
step (iii) is greater after comparison in step
(v) then one can immediately conclude that
the upper bound on reliability of the
application is the reliability of the
component found in step (iii), hence
terminate.

The proof is as follows:-
According to Dolbec et. al’s model for component-based
software reliability the component usage ratio
ΦCi = total component execution time /total system

execution time
 = T(Ci) / T(Sk)
The reliability of the execution scenario k is
R(Sk) = ∑ ΦCi * R(Ci)
 Ұ Ci € Sk
 where R(Ci) is the reliability of the component Ci ,
 Skcorresponds to the execution scenario k,
 R(Sk) is the reliability of the execution

scenario k
or
R (Sk) = ∑ (T(Ci) / T(Sk) * R(Ci))

 Ұ Ci € Sk
or it can be written as
R (Sk) = T(C1) / T(Sk) * R(C1) + T(C2) / T(Sk) * R(C2) + ..
 where C1,C2, … € Sk
It is known that the component usage ratio T(Ci) / T(Sk) of
a component increases with the increased use of a
component Ci .Therefore, from the equation
R(Sk) = T(C1) / T(Sk) * R(C1) + T(C2) / T(Sk) * R(C2) +....
 it can be said that if the component Ci takes infinitely
huge amount of time to execute or is used for infinitely
large number of times, so that, under limiting situation, the
component usage ratio T(Ci) / T(Sk) for the component Ci
tends to 1 and the component usage ratio of all other
components tends to zero. Hence, the conclusion drawn in
steps (vi) is proved.

vii) Find out the minimum execution time for the
components having indefinite loops or in
indefinite cycles found in steps (i) & (ii).

The evaluation of minimum execution time for the
components having indefinite loops or in indefinite
cycles

 For an indefinite conditional loop, if the condition
checking is done at the beginning of the loop the
instructions inside the loop are skipped and the next
statement after the loop ends is considered. This is because
of the interest in evaluating the minimum execution time
of the components having indefinite loops. It is also
because of the same reason that the user interface and

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

223

other delays are neglected. For a conditional loop, if the
condition checking is done at the end of the loop then the
instructions inside the loop is executed at least once (or the
loop is executed at least once). It is because at least one
pass through the loop will take place. Hence, executing the
sequence of instructions in the loop only once will serve
the purpose. Since more number of passes through the
loop will increase the execution time of the component
and as a result will subsequently increase the component
usage ratio.
 The execution times are added according to the
sequence of statements in the execution scenarios to obtain
the total execution time of each scenario of the CFG for a
particular component. The execution times of all the
scenarios for a particular component are compared to
obtain the minimum execution time.

viii) Find the execution times for other components in

various execution scenarios of the CFG of the
component. (not having indefinite loops or in
indefinite cycles).

 This is done by adding the execution times of all the
sequence of statements in the execution scenarios to obtain
the total execution time of each scenario of the CFG for a
particular component.
 Therefore, mathematically the total execution time of
scenario k for a component j is
Tj(CFGSk) = ∑ T(Si) ,
 Si€ CFGSk
where T(Si) represents the execution time of statement-Si

CFGSk represents execution scenario k
Tj(CFGSk) represents the time to execute the
execution scenario k for component j.

ix) Do inter-component analysis by considering various

execution scenarios of the CDG (Component
Dependency Graph) of the component based
application to calculate the execution time of each
execution scenario by adding the execution time of
each component present in the execution scenario
with the component interfacing time in terms of the
number of CPU clock cycles (which is readily
available to the developer considering the compiler
specifications of his source code).

 From the various execution scenarios of the CDG
(Component Dependency Graph) of the application the
execution time to execute the execution scenario k is

T(Sk) = ∑ Ti(CFGSm) + T(interface),
 Ұ CFGSm € Sk
where Sk represents the execution scenario k,
 T(Sk) represents the time to execute the execution

scenario k,

 T(interface) represents the interfacing time,
 Ti(CFGSm) represents the time to execute the

execution scenario m of the CFG of component Ci.

x) By varying the values of Ti(CFGSm) for various

execution scenarios of the CFG of all components Ci €
Sk with its corresponding value of T(Sk) the different
reliability values R(Sk) for a particular execution
scenario k of the CDG are obtained using the formula
below.

The reliability of the execution scenario k is evaluated
using the formula

R(Sk) = ∑ ΦCi * R(Ci)
 ҰCi € Sk

 where R(Ci) is the reliability of the component Ci,
 Sk corresponds to the execution scenario k of the

application,
 R(Sk) is the reliability of the execution scenario

k of the application
or
R(Sk) = ∑Ti(CFGSm) / T(Sk) * R(Ci)) + T(interface)/T(Sk)
 Ұ Ci € Sk
 where R(Ci) is the reliability of the component Ci ,

Tj(CFGSm) represents the time to execute the
execution scenario m of the CFG of
component Ci,
T(Sk) represents the time to execute the
execution scenario k.
T(interface) represents the interfacing time.

(Assuming that the system developer does correct
interfacing of the components. It can be considered that
the interfacing part as a component having reliability
equal to 1.)

xi) In this way obtain multiple reliability values for all the

scenarios of the CDG of the application.
xii) By comparing the values of the reliabilities of all the

scenarios of the CDG of the application obtain the
maximum value which corresponds to the upper
bound on the reliability of the application.

 }
 }

 Thus, the estimate of the upper bound on the reliability
of the COTS component based application is evaluated.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

224

4. Comparison of Dolbec’s method with
algorithm GayenCOTS

Consider an example in which Dolbec’s estimation did not
give proper results.
 The Component Dependency Graph (CDG) of the
software application is as follows:-

Fig. 3

The reliability values of the components are available to us
using John D. McGregor et. al’ s [26] method for
Measuring Component Reliability Referring to the
machine instruction set manual according to the assembly
language specifications the number of CPU clock cycles
required to execute various instructions .are evaluated.
The maximum and minimum execution time of the
individual components are obtained during intra-
component analysis (described in Gayen, Misra 2007)[34].

The various execution scenarios corresponding to the
CDG (Fig.3) are as follows:-

Scenario 1 Scenario 2

Fig. 4 The various execution scenarios

From scenario1 the reliability value = 0.9306
From scenario 2 the reliability value = 0.591624

Therefore, the maximum reliability value possible is
0.9306

According, to algorithm GayenCOTS the upper bound for
scenario1
= (0.99*453 + 0.94*385)/838 = 0.9670
According, to algorithm GayenCOTS the upper bound for
scenario2
= (0.88*107 + 0.81 * 1128 + 0.83 * 53)/1288
= 0.8166
Hence, according to GayenCOTS the upper bound of the
application is 0.9670

According, to Dolbec the upper bound is
= (0.99*453 + 0.94*385 + 0.88* 107 + 0.81*1128 +
0.83*53)/2126
= 0.8759

Hence, it is seen that the Dolbec’s estimation gave a lower
value (i.e 0.8759) of upper bound than the original
maximum reliability value possible (i.e 0.9306) in this
case.
 Whereas, the algorithm GayenCOTS gave a higher
value(i.e 0.9670) (close to the original value) of upper
bound than the original maximum reliability value
possible (i.e 0.9306) in this case.
 Therefore, algorithm only GayenCOTS gave the
correct value of upper bound in this case.
 Hence, it is verified that under all situations
algorithm GayenCOTS is better than that of Dolbec. It is
because algorithm GayenCOTS will give upper bound
under all situations but Dolbec’s method would fail (as in
this case).

S.No Component Reliability
value

Max.
time

Min.
time

1. A 0.99 453 104

2. B 0.94 385 102
3. C 0.88 107 22
4. D 0.81 1128 516
5 E 0.83 53 17

s

t

C

D

E

s

A

B

t
s

A

B

t

C

D

E

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

225

5. Lower bound prediction

 For a given COTS component based software
application system the lower bound can be evaluated by:-

 * Dividing the system into various execution scenarios

and evaluating separately the minimum reliability
of each execution scenario.

 * Then comparing the minimum reliabilities obtained
from all the execution scenarios to get the
minimum.

 But the problem is in evaluating the reliability of the
components which are either in indefinite loops or in
indefinite cycles.
 The problem can be handled in the following
ways:-

1) If the application is time bound then the
maximum possible number of repetitions through
the loop or cycles can be found by considering
the execution time of the application.

2) In reality, all the applications may not be time
bound, they may be user dependent and may
continue to execute for an indefinite period of
time. For example the Web server.

 But in accordance with the definition of reliability
“Reliability is defined to be the probability that a
component or a system will perform a required function
for a given period of time when used under stated
operating conditions.”
 Hence, it is evident that reliability is time bound. Or
in other words even if the application may execute for an
indefinite period of time, the reliability value is evaluated
only for a specified given period of time.

Consider an execution scenario containing a single loop

The given specified period of time for the
application is Tappl.
Let n be the maximum number of possible
repetitions through the loop.
The value of n is calculated as
n= floor((Tappl – (T1+ T4 + T5))/(T2+ T3))
 where T1, T2, T3, T4, T5 are the execution
times of component 1,2,3,4,5 respectively and
floor(x) = largest integer less than or equal to x

 Here, the interfacing time of the component in
included in the component execution time. Also, the user
interface delays and other delays are neglected as only the
maximum number of possible repetitions through the loop

is taken into consideration. Once the value of n is obtained
then the reliability is predicted using the formula
R= R1*(R2*R3)n*R4*R5 which will be the minimum
reliability for this execution scenario.
In case of multiple loops

Evaluate the maximum
number of repetitions
possible in each loop n
which in this case are n1,
n2, n3, n4 for the
corresponding loops as
shown in the diagram. The
value of n1 can be
evaluated by assuming that
all the components other
than what is enclosed in the
loop is executed only once.

Therefore,
 n1= floor((Tappl – (T1+ T4 +T5))/(T2+ T3))
where, T1, T2, T3, T4, T5 are the execution times of
component 1,2,3,4,5 respectively.
 Assuming an ideal developer with perfect interfacing
capabilities the interfacing reliability is assumed to be 1.
Similarly
n2= floor((Tappl – (T1+ T2 + T3 +T5))/T4)
n3=floor((Tappl – (T1 +T5))/ (T2 + T3 + T4))
n4= floor((Tappl) /(T1+ T2 + T3 + T4 +T5))
 where, T1, T2, T3, T4, T5 are the execution times of

component 1,2,3,4,5 respectively and
 floor(x) = largest integer less than or equal to x

The reliability value obtained considering maximum
repetition of loop 1 is Rn1= R1*(R2*R3)n1*R4*R5
 The reliability value obtained considering maximum
repetition of loop 2 is Rn2= R1*R2*R3*(R4)n2*R5
 The reliability value obtained considering maximum
repetition of loop 3 is Rn3= R1*(R2*R3*R4)n3*R5
 The reliability value obtained considering maximum
repetition of loop 4 is Rn4= (R1*R2*R3*R4*R5)n4
The minimum reliability value is obtained by comparing
the reliability values of obtained i.e Rn1, Rn2, Rn3, Rn4 to
obtain the minimum.
 or
 Rmin = min (Rn1,Rn2,Rn3,Rn4)
 This value gives the minimum possible reliability
value for this execution scenario.

1

2

3

4

5

n1

n2

n3

n4

1

2

3

4

5

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

226

 In a similar manner the reliability values of the
other execution scenarios are obtained.
 The lower bound on the reliability of the application is
obtained by comparing the minimum reliability values of
various execution scenarios to obtain the minimum.
 or
 Rlower = min(Rs1,Rs2, Rs3, Rs4)
 This gives the lower bound on the reliability of
COTS component based software application.

6. Implementation of the approaches on a

real application

A software which evaluates b!/5 - a2/ √(a-b) in

the form of an executable file (i.e ‘exp.exe’) is executed as
shown below:-

Fig. 5

The assembly language code (obtained using disassembler
tools like Windows Disassembler) along with its CFG and
CPU clock cycles are given as follows:-

 Code CPU clock cycles CFG

 Let us consider this example where the reliability values
of the components are available to us using John D.
McGregor et. al’ s [26] method for Measuring Component
Reliability Referring to the machine instruction set manual
according to the assembly language specifications the
number of CPU clock cycles required to execute various
instructions .are evaluated. The maximum and minimum
execution time of the individual components are obtained
during intra-component analysis (described in Gayen,
Misra 2007)[34].

According to the algorithm GayenCOTS the Upper Bound
for scenario1
= (0.99*453 + 0.92*107 + 0.82*1128 + 0.98*53)/1741
= 0.875249856

According to the algorithm GayenCOTS the Upper Bound
for scenario2
= (0.99*453 + 0.92*107 + 0.82*1128)/1688
= 0.87196

 Hence, the upper bound according to GayenCOTS is
0.875249856

According to Dolbec the Upper Bound

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

227

= (0.99*453 + 0.86*385 + 0.92*107 + 0.82*1128 +
0.98*53)/2126
= 0.872488

The Lower Bound for scenario1
= 0.731918

The Lower Bound for scenario 2
= 0.7468

Hence, the lower bound of the application is 0.731918

Therefore, the reliability bound of the application
0.731918 to 0.875249856.

7. Conclusion

 The increasing use of third-party COTS
components can in theory lead to reduced costs and faster
development cycles, but these advantages can come at a
steep price. With their applications dependent on the
behavior of components from third parties, developers and
integrators have suffered a loss of control. Thus, the goal
has been to help developers and integrators regain some
control of their COTS-based software application systems
by predicting the upper and lower bound on the reliability
on their COTS-based software application systems. As by
knowing the upper and lower bound, one can easily predict
the range of reliability values an application can have.
 The algorithm for the prediction of upper bound was an
improvement over Dolbec et. al‘s [27] model for
Component Based Software Reliability. The drawback of
his model was that it was execution path independent and
component interfacing time is not taken into consideration.
Therefore, it was unable to predict the upper bound on
reliability, as the upper bound on reliability obtained using
Dolbec et. al ‘s [27] model for the example considered is
much less than the value obtained in the proposed
approach. It is valid under any processing
environment be it batch or parallel processing in a
uniprocessor or a multiprocessor system. Since, here one
is mainly concerned with the component usage ratio and
not with the clock time for the execution of the component.
Here, it is assumed that the developer is an ideal developer
who codes correctly (as the reliability of the interfacing
code is considered to be unity) interfacing the COTS
components without any error (which may later on cause
failure of the application system) to produce the product
which may not always be in reality.
 The lower bound on the reliability of the
application was predicted using the scenario based
reliability analysis gives the minimum reliability the

application can have. The approach is valid only for
sequential processing system. Since, today parallel
processing is in vogue. Efforts are in progress to
incorporate this feature so that it becomes more versatile.
 With this research, an innovative approach has been
developed to predict the upper and lower bound on the
reliability of the COTS component based software
application. A unique methodology based on the execution
scenario analysis of the COTS component based software
application has been formulated.

References

[1] M. Vigder, J. Dean, “An architectural approach to

building systems from COTS software components,”
Technical Report 4022 1, National Research Council,
1997.

[2] Allen, Robert and David Garlan. A Formal Basis for
Architectural Connection, ACM Transactions on
Software Engineering and Methodology, 1997.

[3] Cho, Il-Hyung and McGregor, John D. “Component
Specification and Testing Interoperation of
Components”, IASTED 3rd International Conference
on Software Engineering and Applications, Oct.1999.

[4] Hissam, Scott, Gabriel A. Moreno, Judith Staffod, Kurt
C.Wallnau. “Packaging Predictable Assembly with
Prediction-Enabled Component Technology,”
Computer Society-1071-9458/05-2005.

[5] Mason, D. “Probabilistic Analysis for Component
Reliability Composition,” Proceedings of the 5th
ICSE Workshop on Component-Based Software
Engineering, Orlando, Florida, May 2002).

[6] Musa, John. Software Reliability Engineering, New
York, NY, McGraw-Hill, 1998.

[7] Stafford, Judith A. and McGregor, John D., “Issues in
Predicting the Reliability of Components,”
Proceedings of the 5th ICSE Workshop on
Component-Based Software Engineering, Orlando,
Florida, May 2002.

[8] Szyperski, Clemens. Component Software:Beyond
Object-Oriented Programming, Addison-Wesley,
1998.

[9] S. Gokhale et al., “Reliability simulation of
component-based software systems,” in Proc. 9th Int.
Symp. Software Reliability Engineering (ISSRE’98),
Paderborn, Germany, 1998, pp. 192–201.

[10] S. Krishnamurthy and A. P. Mathur, “On the
estimation of reliability of a software system using
reliabilities of its components,” in Proc. 8th Int. Symp.
Software Reliability Engineering (ISSRE’97),
Albuquerque, New Mexico, Nov. 1997, pp. 146–155.

[11] D. Mason and D. Woit, “Problems with software
reliability composition,” in 9th Int. Symp. Software

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

228

Reliability Engineering (ISSRE’98), Paderborn,
Germany, 1998, Fast Abstracts, pp. 41–42.

[12] B. Meyer et al., “Building trusted components to the
industry,” IEEE Comput., pp. 104–105, May 1998.

[13] J. Voas, “Error propagation analysis for COTS
systems,” IEEE Comput. Control Eng. J., vol. 8, no.
6, pp. 269–272, Dec. 1997.

[14] J.Voas, “Certifying off-the-shelf software
components,” IEEE Comput., pp. 53–59, June 1998.

[15] J.Poore et al., “Planning and certifying software
system reliability,” IEEE Software, pp. 88–99, Jan.
1993.

[16] D. Hamlet et al., “Theory of software reliability
based on components,” in 23rd Int. Conf. Software
Engineering, Toronto, Canada, May 2001.

[17] Petar Popic, Dejan Desovski, Walid Abdelmoez,
BojanCukic-Error Propagation in the Reliability
Analysis of Component Based Systems-Proceedings
of the 16th IEEE International Symposium on
Software Reliability Engg. –IEEE Computer
Society- 2005.

[18] Eric Dubois, Xavier Franch- International Workshop
on models and Processes for the Evaluation of
COTS components (MPEC’04) - ACM SIGSOFT
Software Engg. Notes, Sept., 2004, vol.29 no.5 pp.
759-760- IEEE Society Press.

 [19] Ralf H. Reussner, Heinz W. Schmidt, Iman H.
Poernomo- Reliability Prediction for Component-
Based Software Architectures-The Journal of
Systems and software 66(2003) pp 241-252.

[20] William W. Everett- Software Component Reliability
Analysis-IEEE 1999 pp. 204-211.

[21] Jennifer M. Haddox, Gregory M. Kapfhammer,
Christoph C. Michael- An Approach for
Understanding and Testing Third Party Software
Components-2002, Proceedings Annual Reliability
and Maintainability Symposium, pp. 293-299.

[22] Vibhu Saujanya Sharma, Kishor S. Trivedi Reliability
and Performance of Component Based Software
Systems with Restarts, Retries, Reboots and Repairs,
17th International Symposium on Software Reliability
Engineering (ISSRE'06) IEEE 2006.

[23] B.Littlewood. Software reliability model for modular
program structure. IEEE Transactions on Reliability,
28(3):241-246, 1979.

[24] D. Mason and D. Woit. Software system reliability
from component reliability. In Proc. of 1998
Workshop on Software Reliability Engineering
(SRE’98), Ottawa, Ontario, July 1998.

[25] L.Krishnamurthy and A. Mathur. The estimation of
system reliability using reliabilities of its components
and their interfaces. Proceedings 8th Intl. Symposium
on Software Reliability Engineering, Albuquerque,
NM, USA, Nov. 1997.

[26] John D. McGregor, Judith A. Stafford, Il-Hyung Cho,
Measuring Component Reliability

[27] Jean Dolbec and Terry Shepard, A Component Based
Software Reliability Model August 15, 1995.

[28] Sherif Yacoub, Bojan Cukic, and Hany H. Ammar, A
Scenario-Based Reliability Analysis Approach for
Component-Based Software- IEEE Transactions on
Reliability, Vol. 53,No.4,2004, pp. 465 – 480.

[29] William W. Everett, Software Component Reliability
Analysis, SPRE Inc.- IEEE 1999

[30] Saileshwar Krishnamurthy Aditya P. Mathur, On the
Estimation of Reliability of a Software System Using
Reliabilities of its Components- IEEE 1997, pp 146-
155.

[31] M.L. Shooman, "Software Engineering: Design,
Reliability and Management", McGraw Hill 1983,
ISBN 0-07-057021-3

[32] R. C. Cheung. A User-Oriented Software Reliability
Model. IEEE Transactions On Software Engineering,
pp. 565-570, March 1980.

[33] Wen-Li Wang Ye Wu Mei-Hwa Chen- An
Architecture-Based Software Reliability Model- In
Proceedings of the 1999 Pacific Rim International
Symposium on Dependable Computing, 16-17
December, pp. 143-150,Hong Kong, China. IEEE,
1999.

[34] Tirthankar Gayen, R. B Misra, “Prediction of Upper
Bound on the Reliability of COTS Component Based
Software Application”, Proceedings of the
International Conference on Quality and Reliability,
pp. 157-163, Chiang Mai, Thailand, Nov. 2007.

Biographical notes:-

Tirthankar Gayen, a B.E, M.Tech, Ph.D Scholar (IIT)
working as a Senior Research Fellow at Reliability
Engineering Centre, IIT Kharagpur. He has published
papers in many international conferences. His area of
interest includes software reliability, neural network,
natural language processing, etc.

R. B Misra, a B.E, M.Tech, Ph.D, Professor, Reliability
Engineering Centre, IIT Kharagpur, he is a Senior
Member of IEEE, and Fellow at Institution of Engineers
(India). He has published papers in many papers in
international conferences and journals. His area of interest
includes power system reliability, reliability design and
testing, software reliability, system safety, etc.

