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Summary 
In this paper, we introduce the concept of fuzzy 
regular language and show that if L is a fuzzy regular 
language, then every α −  cut Lα   (α ∈ (0, 1]) is a 
regular language. We also give a characterization of 
fuzzy regular languages. 
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Introduction 
 Consider a finite nonempty set A. A fuzzy automaton 
over A is a 4-tuple M = (Q, f, I, F)   where  Q is a 
finite nonempty set,  f is a fuzzy  subset of Q x A x Q, 
I and F are  fuzzy  subsets  of Q.   
Thus  f  : Q x A x Q →  [0,1], I ,  F : Q →[0,1].    
Let S be a free monoid   with identity element e 
generated by A.   
 If s ∈ S,   then s = a1 a2…an where a i ∈ A. Here n is 
called the length of s and we write | s | = n. 
We extend f to a function f* : Q x S x Q → [0,1] which 
is defined as follows. 
f *(q, e, p) =   1      if q = p 
                      0     otherwise. 
f*(q, sa, p)= ∨  [ f*(q, s, r) ∧ f (r, a, p)]     (s ∈ S, a ∈ 
A) 
                     r ∈ Q 
 
Theorem: For any two elements s, t ∈ S and for all p, 
q ∈ Q, 
                   f*(p, st, q) = ∨  [ f*(p, s, r) ∧ f *(r, t, q)]. 
                                     r ∈ Q 
 
Proof:   Straight forward.  
              Hereafter, we will assume that S is a free 
monoid generated by a finite non empty set A. 
  
Definition: A fuzzy subset L of S is said to be a 

fuzzy regular language if L= L(M) where M is a fuzzy 
automaton over S.  
In what follows, we will assume that L is a fuzzy 
regular language.  
 Since L is a fuzzy regular language, we have L= L 
(M) where M =(Q, f*, I, F) is a fuzzy automaton over 
S. L is a fuzzy subset of S defined as ∀ s ∈ S , L(s) = 
I o fs* o F where o denotes max - min composition 
and fs* : Q x  Q → [0,1] is defined as fs* (p, q) = f* (p, 
s, q) for all p, q ∈ Q. 
 Let α ∈ (0,1] and consider D α ( M ) = (Q, dα, Iα, Fα ) 
where dα : Q x S →  2Q is defined   as dα (q, s) = { p ∈ 
Q| f*(q, s, p) ≥ α }, Iα = { p ∈Q | I ( p) ≥ α } and Fα = {p 
∈ Q | F(p) ≥ α}. 
Define  a relation Rα  as for all s, t ∈ S, s R α t  if and 
only if f*(p, s, q) ≥ α  only when f*(p, t, q) ≥ α for all p, 
q ∈ Q . 
 
Lemma:   Rα  is a congruence relation. 
 
Proof:  Rα  is  reflexive  because f*(p, s, q) ≥ α only when  
 f*(p, s, q)  ≥  α obviously holds  for all  p, q ∈ Q. If s Rα t,  
then f * (p, s, q) ≥ α if and only if  f * (p, t, q) ≥ α for all  
p, q ∈ Q. This means for all p , q ∈ Q, f *(p, t, q)  ≥ α 
 if and only if  f *(p, s, q) ≥ α proving that t Rα s and hence 
  Rα  is  also  symmetric.  
Suppose s Rα t   and  t Rα u.  Then for all  p, q  ∈ Q,  
 f* (p, s, q) ≥ α if and only if f*(p, t, q) ≥ α which can 
happen if and only if f*(p, u, q) ≥ α. Hence s Rα u 
proving that Rα  is transitive. Hence Rα is an 
equivalence relation. 
Assume that s Rα t and w ∈ S. We will prove that  
sw Rα tw and ws Rα wt. 
To prove sw R α  tw, we have to prove that  
for all p, q ∈ Q, f*(p, sw, q) ≥ α  if and only if 
 f*(p, tw, q) ≥ α. Since s Rα  t, we have f*(p, s, q) ≥ α if 
and only if f*(p, t, q) ≥ α. Suppose f*(p, sw, q) ≥ α.  We 
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will prove that f*(p, tw, q) ≥ α. We have  
α  ≤  f*(p, sw, q) = ∨  [ f*(p, s, r) ∧ f* (r, w, q)].   
                           r ∈ Q 
Hence  f*(p, s, r) ∧ f* (r, w, q) ≥ α for some r ∈ Q. This 
means f*(p, s, r) ≥ α from which it follows that f*(p, t, r) 
≥ α since s Rα t.  Also f*(r, w, q) ≥ α.  Now 
f*(p, tw, q) = ∨ [ f*(p, t, z) ∧ f*(z, w, q)] ≥ α. 
                   z ∈ Q 
Similarly, we can prove that if f*(p, tw, q) ≥ α then 
 f* (p, sw, q) ≥ α This proves that sw Rα tw. Using 
exactly a similar argument, we can prove that ws Rα 
wt proving further that Rα is a congruence relation. 
Let E α = {[s]α | s ∈ S } where [s]α denotes the 
equivalence class of s in Rα.  Define a binary 
operation *α on Eα  as [s]α *α  [t]α = [st]α . 
 
Lemma: (Eα,  *α) is a monoid. 
 
Proof:   We  first  have to prove that *α is well defined. 
Suppose u ∈ [s]α and v ∈ [t]α. 
We have to prove that [st]α= [uv]α. i.e., st Rα uv. We 
have s Rα u and t Rα v. Suppose  
f*(p, st, q) ≥ α where p, q  ∈ Q. We have to prove that 
f*(p, uv, q) ≥ α. We have  
α ≤ f*(p, st, q) = ∨  [f*(p, s, r)  ∧  f*(r, t, q)].  
                        r ∈ Q 
Hence f*(p, s, r) ∧ f*(r, t, q) ≥ α for some r ∈ Q which 
means f*(p, s, r) ≥ α and f*(r, t, q) ≥ α.  Since  s Rα u  
and  t Rα v,  we obtain f*(p, u, r) ≥ α and f *(r, v, q) ≥ α 
so that  
f*(p, uv, q) = ∨ { f*( p, u, p1) ∧ f*( p1, v, q ) } ≥ α. 
                  p1 ∈ Q 
Similarly, we can  prove that if  f*( p, uv, q) ≥ α, then 
f*( p, st, q) ≥ α. Hence st Rα uv and [st]α = [uv]α. It is 
easy to see that *α is associative and [e]α is the identity 
element. Hence (Eα,*α) is a monoid. 
 
Theorem:   For every α ∈ (0,1],  the α  - cut  Lα  is a 
regular language. 
 
Proof:     We will prove that Lα = L (Dα (M)). This will 
mean that Lα is the language accepted by a non 
deterministic automaton and hence a regular language. 
Let s ∈  Lα. Then  L(s) ≥ α  i e  I o  fs* o F = ∨ [(fs* o F) (p) 
∧ I(p) ] ≥ α which means (fs* o F) (p) ∧ I (p) ≥ α for some 

p ∈ Q. Hence (fs* o F) (p) ≥ α and I (p) ≥ α so that p ∈ Iα. 
Again α ≤  (fs* o F) (p) = ∨ [ fs* (p, r) ∧  F(r)] and hence 
F(r) ∧ fs* (p, r) ≥ α so that  F(r) ≥ α  implying that r ∈ Fα  
and fs* (p, r) ≥ α  implying  that   f*(p, s, r) ≥ α.  

 Thus r ∈ dα ( p, s). We have thus proved that  
∃ p ∈ Iα such that dα (p, s) ∩ Fα ≠ φ proving that s ∈ L 
(Dα (M)). Thus Lα   ⊆  L (Dα (M)). 
Conversely, let s ∈ L (Dα (M)). Then there exists p ∈ 
Iα such that dα (p, s) ∩ Fα ≠ φ .  
Let q ∈ dα (p, s) ∩ Fα.   
Now p ∈ Iα  means I (p) ≥ α, q ∈ dα (p, s)  means 
 f *(p, s, q) ≥ α. i.e  fs* (p, q) ≥ α. Now q ∈ Fα means 
F(q) ≥ α. Hence fs* (p, q) ∧  F(q)  ≥ α so that  
(fs* o F) (p) =   ∨   [ fs* (p, r) ∧  F(r) ] ≥ α. 
                     r ∈ Q 
Again I(p) ∧ (fs* o F) (p) ≥ α means 
 I o fs* o F = ∨ [I(t)  ∧ (fs* o F) (t)] ≥  α. 
                  t  ∈ Q 
Hence L(s) ≥ α proving that s ∈ L α.  
Thus L(Dα (M)) ⊆ Lα. This together with  
Lα  ⊆ L(Dα (M)) proves that Lα = L (Dα( M ) ). 
 
Theorem: Lα = ∪ [s]α where the union is taken over 
all  equivalence classes of s for which there exists p 
∈ Iα  such  that dα (p, s) ∩ Fα ≠ φ . 
 
Proof: Suppose t ∈ Lα.  Since  Lα = L (Dα (M)),  there 
exists p ∈ Iα such that  
dα (p, t) ∩ Fα ≠ φ .Clearly t ∈ [t]α. Conversely, assume 
that t ∈ ∪ [s]α where the union is taken over all 
equivalence classes of s for which there exists p ∈ Iα 
such that dα (p, s) ∩ Fα ≠ φ.Then t ∈ [s]α  
where dα (p, s) ∩ Fα ≠ φ for some p ∈ Iα. Hence s ∈ 
L(Dα (M)) = Lα which means L(s) ≥ α. 
 Let q ∈ dα (p, s) ∩ Fα. Then f*(p, s, q) ≥ α so that  
f*(p, t, q) ≥ α since s Rα t. Hence q ∈ dα (p, t).  
Also q ∈ Fα  and  hence dα (p, t) ∩ Fα ≠ φ  where p ∈ 
Iα. This means t ∈ L (Dα (M)) = Lα. 
 For every α ∈ (0,1] and x ∈ S ,  define αL (x) = α if 
L (x) ≥ α and 0 otherwise. We note that each αL is a 
fuzzy set. 
 
Result: L =  ∪ α L where ∪ denotes fuzzy union.  
                 α ∈ (0,1] 
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Proof: Let s ∈ S and assume that L (s) = β ∈ (0, 1]. 
Then β L (s) = β so that β ≤ max α L (s) where the 
maximum is taken over all α ∈ (0,1].  
This proves that L (s) = β ≤  ∪ α L (s) 

                  α ∈ [0,1] 
Now take any γ ∈ (0, 1]. If γ ≤ β = L (s), then γ L (s) = 
γ ≤ β. If γ > β = L (s), then γ L (s) = 0 ≤ β. Thus γ L (s) 
≤ β for any γ ∈ (0, 1] so that max α L (s) ≤ β where 
the maximum is taken over all α ∈ (0,1]. Hence   
∪ α L (s) ≤ β  ≤  ∪ α L (s) 
α ∈ (0,1]         α ∈ (0,1] 
Thus ∪ α L (s) = β = L (s).   
       α ∈ (0,1]   
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