
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

321

Manuscript received December 5, 2008

Manuscript revised December 20, 2008

Function Point: A Quality Loom for the Effort Assessment of
Software Systems

1. H. Azath and 2. R. S. D. Wahidabanu

1. King College of Technology, Namakkal, Tamil Nadu, INDIA
2. Government College of Engineering, Salem, Tamil Nadu, INDIA.

Summary
Accurate estimation of software development effort is critical in
software engineering. Underestimates lead to time pressures that
may compromise full functional development and thorough
testing of software. In the existing systems, the effort and cost
estimation are more concentrated only on the development of
software systems alone and not on the quality coverage. Hence the
quality assurance for the effort estimation is proposed in this paper.
To assure this quality, the ISO 9126 quality factors are used. For
weighing the factors, the function point metric is used as an
estimation approach. The classification of software system for
which the effort estimation is to be calculated based on the
COCOMO model classes. An exhaustive literature survey reveals
that attention is not paid to the following for estimating the effort:
1. Function point, 2. COCOMO classes of systems, and 3. ISO9126
quality factors. Thus by combining all the three parts, a new effort
estimation method is developed as a research approach.
Key words:
COCOMO systems, effort estimation, function points, software
quality.

I. INTRODUCTION

HE objective of project metrics is twofold. First, these
metrics are used to minimize the development schedule by
making the adjustments necessary to avoid delay and
moderate potential problems and risks. Second, project
metrics are used to assess product quality on an ongoing
basis and, when necessary, modify the technical approach
to improve quality [16].

There are many effort estimation techniques for software
system developments are available. But none of the models
paid attention to the quality assurance coverage. However,
some models concentrate only for the development of
software that may cover few of quality assured factors and
the quality consideration is not available for estimating the
effort.

H. Azath is with the Regional Research Centre, Government College of
Engineering, Zone 6, Anna University-Chennai, SALEM-636 011.
(phone: 9865164505; e-mail: writetoazath@yahoo.com).
R. S. D. Wahidabanu is heading the Department of Electronics and
Communication Engineering, Government College of Engineering, Zone 6,
Anna University-Chennai, SALEM-636 011.

So, this paper is fully focused on assuring the quality in
effort estimation for software system development [1], [12],
[19], [20]. In this paper the forthcoming sections are named
as study variables, research approach and results, results
comparisons, conclusion and future scope.

In the study variables section, the function point metric,
COCOMO classes of systems and the ISO9126 quality
factors are discussed [15]-[16].

The research approach and results section describes the
usages of function point metric, the appliance of COCOMO
classes of systems in the function point analysis and the
weighing mechanism of ISO9126 quality factors. An
example software system used to apply this proposed work
is the CAD software [17]-[18].

In the results comparisons section, the effort (in terms of
person-months) is used to compare the various results of
some available models with the proposed result.

In the conclusion and future scope section, the results
between proposed & existing scenario are compared and
the possible extension of work are also discussed.

II. STUDY VARIABLES

A. Function points
Function-oriented software metrics is used to measure

the functionality delivered by the application as a
normalization value. The most widely used
function-oriented metric is function point (FP). FP is a
programming language independent, making it ideal for
applications using conventional and nonprocedural
languages. Moreover it is based on data that are more likely
to be known early in the evolution of a project, making it
more attractive as an estimation approach.

The accuracy of a software project estimate is depends
on a number of things: (i) the degree to which the planner
has properly estimated the size of the product to be built;
(ii) the ability to translate the size estimate into human
effort, calendar time, and cost expenses; (iii) the degree to
which the project plan reflects the abilities of the software
team; and (iv) the stability of product requirements and the
environment that supports the software engineering effort.

The function point metric (FP), first proposed by
Albrecht [ALB79], can be used effectively as a means for

T

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

322

measuring the functionality delivered by a system. Using
historical data, the FP can then be used to (i) estimate the
cost or effort required to design, code, and test the software;
(ii) predict the number of errors that will be encountered
during testing, and (iii) forecast the number of components
and/or the number of projected source lines in the
implemented system.

Function points are derived using an empirical
relationship based on countable (direct) measures of
software’s information domain and assessments of software
complexity. Information domain values are defined in the
following manner:

Number of external inputs (Els): Each external input
originates from a user or is transmitted from another
application and provides distinct application-oriented data
or control information. Inputs are often used to update
internal logical files (ILFs). Inputs should be distinguished
from inquiries, which are counted separately.

Number of external outputs (EOs): Each external output
is derived within the application and provides information
to the user. In this context external output refers to reports,
screens, error messages, and so on. Individual data items
within a report are not counted separately.

Number of external inquiries (EQs): An external inquiry
is defined as an online input that results in the generation of
some immediate software response in the form of an on-line
output (often retrieved from an ILF).

Number of internal logical files (ILFs): Each internal
logical file is a logical grouping of data that resides within
the application’s boundary and is maintained via external
inputs

Number of external interface files (EIFs): Each external
interface file is a logical grouping of data that resides
external to the application but provides data that may be of
use to the application.

Organizations that use function point methods can

develop criteria for determining whether a particular entry
is simple, average, or complex. Nonetheless, the
determination of complexity is somewhat subjective.

To compute function points (FP), the following
relationship is used:

 FP = count total x [0.65 + 0.01 x Σ (Fi)] (1)

Where count total is the sum of all FP entries as shown in

Fig. 1. The Fi (i = 1 to 14) are value adjustment factors
(VAF). The 0.65 and 0.01 are empirically derived
constants.

The VAF is based on responses to the following

questions:
1) Does the system require reliable backup and recovery?
2) Are specialized data communications required to

transfer information to or from the application?
3) Are there distributed processing functions?
4) Is performance critical?
5) Will the system run in an existing, heavily utilized

operational environment?
6) Does the system require on-line data entry?
7) Does the on-line data entry require the input

transaction to be built over multiple screens or
operations?

8) Are the ILFs updated on-line?
9) Are the inputs, outputs, files, or inquiries complex?
10) Is the internal processing complex?
11) Is the code designed to be reusable?
12) Are conversion and installation included in the design?
13) Is the system designed for multiple installations in

different organizations?
14) Is the application designed to facilitate change and for

ease of use by the user?

Information
Domain Value Count Simple Average Complex

Weighing factor

External Inputs (EIs)

External Outputs (EOs)

External Inquiries (EQs)

Internal Logical Files (ILFs)

External Interface Files (EIFs)

Count total

x

x

x

x

x

3

4

5

7

3

4

5

7

10

4

6

7

10

15

6

=

=

=

=

=

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

323

Fig. 1. Computing Function Points
Each of these questions is answered using a scale that

ranges from 0 (not important or applicable) to 5 (absolutely
essential). The constant values in (1) and the weighing
factors that are applied to information domain counts are
determined empirically.

An estimation model for computer software uses
empirically derived formulas to predict effort as a function
of LOC or FP. The empirical data that support most
estimation models are derived from a limited-sample of
projects. For this reason, no estimation model is appropriate
for all classes of software and in all the development
environments. An estimation model should be calibrated to
reflect local conditions.

Existing FP-oriented models include the following:

E = -91.4 + 0.355 FP Albrecht and Gaffney model (2)
E = -37 + 0.96 FP Kemerer model (3)
E = 0.054 x FP1.353 SMPEEM (4)

SMPEEM: Software Maintenance Project Effort
Estimation Model [23].

Effort Validation

Every project has a defined number of people on the
software team. As time allocation occurs, the project
manager must ensure that not more than the allocated
number of people should be scheduled at any given time.

For example, consider a project that has three assigned
software engineers (e.g., three person-days are available
per day of assigned effort). On a given day, seven
concurrent tasks must be accomplished. Each task requires
0.50 person- days of effort. More effort has been allocated
than there are people to do the work [2] – [6], [10], [13],
[16], [22].

B. The COCOMO Model
The COCOMO (COnstructive COst MOdel) model is the

most complete and thoroughly documented model used in
effort estimation. The model provides detailed formulae for
determining the development time schedule, overall
development effort, effort breakdown by phase and activity,
as well as maintenance effort [16], [22].

The COCOMO model relies on two assumptions. First, it
is linked to the classic waterfall model of software
development. Second, good management practice with no
slack time are assumed. The model is developed in three
versions of different level of detail: basic, intermediate,
and detailed.

The overall modeling process has three classes of
systems:

Embedded. This class of systems is characterized by tight
constraints, changing environment, and unfamiliar
surroundings. Good examples of embedded systems are
real-time software systems (say, in avionics, aerospace,
medicine).

Organic. This category includes all the systems that are
small relative to project size and team size, and have a
stable environment, familiar surroundings, and relaxed
interfaces. These are simple business systems, data
processing systems, and small libraries.

Semidetached. The software systems under this category
are a mix of those of organic and embedded nature. Some
examples of software of this class are operating systems,
database management systems, and inventory management
systems.

C. ISO 9126 Quality Factors
The ISO 9126 standard was developed in an attempt to

identify quality attributes for computer software. The
standard identifies six key quality attributes [16], [21]:

Functionality: The degree to which the software satisfies
the stated needs as indicated by the following
sub-attributes: suitability, accuracy, interoperability,
compliance and security.

Reliability: The amount of time that the software is
available for use as indicated by the following
sub-attributes: maturity, fault tolerance, and recoverability.

Usability: The degree to which the software is easy to use
as indicated by the following sub-attributes:
understandability, learnability, and operability.

Efficiency: The degree to which the software makes
optimal use of system resources as indicated by the
following sub-attributes: time behavior and resource
behavior.

Maintainability: The ease with which repair may be
made to software as indicated by the following
sub-attributes: analyzability, changeability, stability, and
testability.

Portability: The ease with which the software can be
moved from one environment to another as indicted by the
following sub-attributes: adaptability, installability,
conformance and replaceability.

III. RESEARCH APPROACH AND RESULTS

Function Points and the effort in person-months are
computed for the CAD software [17]-[18]. The variable ‘a’
from the Fig. 2 to 7 denotes the classification of the
software system as follows:

As shown in table 1, the starting value of ‘a’ begins from

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

324

organic class and it is ‘0’. The reason is no additional effort
required for simple organic systems. For other two classes it
is incremented by one and two to differentiate the
complexity & constraint level.

TABLE I

VALUES ASSIGNMENT FOR VARIABLE ‘a’

System classification
(Based on COCOMO

model)
Value of ‘a’

Embedded system 2 (tight constraints)
Semidetached 1 (both mixed)
Organic 0 (simple)

The CAD software is classified under the semidetached

system. So the value of a=1 will be used in the following
computations [16].

Factor Value
Backup and recovery 4
Data Communications 2
Distributed processing 0
Performance critical 4
Existing operating environment 3
On-line data entry 4
Input transaction over multiple screens 5
ILFs updated online 3
Information domain values complex 5
Internal processing complex 5

Code designed for reuse 4
Conversion/installation in design 3
Multiple installations 5
Application designed for change 5
Value Adjustment Factor 1.17

FPEstimated = Count total x [0.65 + 0.01 x Σ(Fi)]
FPEstimated = 30 x [1.17] = 35.1 (5)
Equation (5) is obtained from Fig. 2.

The Value Adjustment Factor against the 14 questions is

allotted as above [16]. These values are common for all the
6 quality factors since the CAD software alone is
considered for applying the research approach [18].

In the Function Point figures 2 to 7, the ‘information
domain value’ is taken from the ISO 9126 quality sub
attributes. . Figure 2 to 7 (6 FP figures) are developed for
each of the 6 major quality factors of ISO 9126.

Fig. 2 to 7 refers the function point computations for
each of the 6 quality factors in ISO9126. The count value in
the fig. from 2 to 7 will be either 1 or 0 to indicate the
presence or absence of the attribute respectively.

After calculating the count values, the summation gives
the overall FP estimated value. By substituting this FP
estimated value in any estimation model, the effort in
person-months will be reached. Equation (4) is taken for
applying the research approach [16]. Other equations may
also be used to apply the FP value.

Fig. 2. Computing Function Points for the Functionality

Weighing Factor

External Inputs (EIs)

External Outputs (EOs)

External Inquiries (EQs)

Internal Logical Files (ILFs)

External Interface Files (EIFs)

Count total

x

x

x

x

x

3

4

5

7

3

4

5

7

10

4

6

7

10

15

6

=

=

=

=

=

Information
Domain Value Count Simple Average Complex

Suitability

Accuracy

Interoperability

Compliance

Security

Count total

1

1

0

1

1

x

x

x

x

x

7+a

5+a

3+a

3+a

4+a

10+a

7+a

4+a

4+a

5+a

15+a

10+a

6+a

6+a

7+a

=

=

=

=

=

11

8

0

5

6

30

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

325

Fig. 3. Computing Function Points for the Reliability

FPEstimated = Count total x [0.65 + 0.01 x Σ(Fi)]
FPEstimated = 24 x [1.17] = 28.08 (6)

Equation (6) is obtained from Fig. 3.

Fig. 4. Computing Function Points for the Usability

FPEstimated = Count total x [0.65 + 0.01 x Σ(Fi)]
FPEstimated = 25 x [1.17] = 29.25 (7)

Equation (7) is obtained from Fig. 4.

External Inputs (EIs)

External Outputs (EOs)

External Inquiries (EQs)

Count total

Information
Domain Value

Maturity

Fault Tolerance

Recoverability

Count total

V COUN

Weighing Factor

x

x

x

3

4

3

4

5

4

6

7

6

=

=

=

Count Simple Average Complex

1

1

1

x

x

x

7+a

5+a

4+a

10+a

7+a

5+a

15+a

10+a

7+a

=

=

=

11

8

5

24

IV. CO

Weighing Factor

External Inputs (EIs)

External Outputs (EOs)

External Inquiries (EQs)

Count total

x

x

x

3

4

3

4

5

4

6

7

6

=

=

=

Information
Domain Value

Count Simple Average Complex

Understandability

Learnability

Operability

Count total

1

1

1

x

x

x

7+a

5+a

4+a

10+a

7+a

5+a

15+a

10+a

7+a

=

=

=

11

8

6

25

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

326

Fig. 5. Computing Function Points for the Efficiency

FPEstimated = Count total x [0.65 + 0.01 x Σ(Fi)]
FPEstimated = 17 x [1.17] = 19.89 (8)

Equation (8) is obtained from Fig. 5.

Fig. 6. Computing Function Points for the Maintainability

FPEstimated = Count total x [0.65 + 0.01 x Σ(Fi)]
FPEstimated = 30 x [1.17] = 35.1 (9)

Equation (9) is obtained from Fig. 6.

Information Domain
Value

III. CO
UNT

Weighing Factor

External Inputs (EIs)

External Outputs (EOs)

Count total

x

x

3

4

4

5

6

7

=

=

Count Simple Average Complex

Time Behavior

Resource Behavior

Count total

1

1

x

x

7+a

5+a

10+a

7+a

15+a

10+a

=

=

11

6

17

Information
Domain

C

Weighing Factor

External Inputs (EIs)

External Outputs (EOs)

External Inquiries (EQs)

Internal Logical Files (ILFs)

Count total

x

x

x

x

3

4

7

3

4

5

10

4

6

7

15

6

=

=

=

=

Count Simple Average Complex

Analyzability

Changeability

Stability

Testability

Count total

1

1

1

1

x

x

x

x

7+a

5+a

3+a

4+a

10+a

7+a

4+a

5+a

15+a

10+a

6+a

7+a

=

=

=

=

11

8

5

6

30

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

327

Fig. 7. Computing Function Points for the Portability

FPEstimated = Count total x [0.65 + 0.01 x Σ(Fi)]
FPEstimated = 30 x [1.17] = 35.1 (10)
Equation (10) is obtained from Fig. 7.

Therefore, the total FPEstimated is obtained from the
summation of (5) to (10) is given by,

= 35.10 + 28.08 + 29.25 + 19.89 + 35.10 + 35.10
 = 182.52 FP.

Equation (4)= E = 0.054 x FP1.353

 E = 0.054 x 182.521.353
 E = 0.054 x 1146.97
 E = 61.93 person-months.

IV. COMPARISONS OF RESULTS

The existing results for the CAD software are as follows:
 Based on the FP estimate the estimated effort is 58

person-months.
Based on the LOC estimate the estimated effort is 54

person-months.
Based on the Process-Based estimate the estimated effort

is 46 person-months.
Based on the Use-Case estimate the estimated effort is 68

person-months.
Total estimated effort for the CAD software range from a

low of 46 person-months (derived using a process-based
estimation approach) to a high of 68 person-months
(derived with use-case estimation). The average estimate
(using all four approaches) is 56 person-months.

Based on the proposing estimate the estimated effort is
62 person-months [9].

V. CONCLUSION AND FUTURE SCOPE

Based on the above results, the proposed 62

person-months of effort is nearer value to the average result
of other estimation models. And hence this type of
estimation may be recommended for the software
development.

The unique difference between the proposed and existing

estimation of effort for the software system development is
the level of quality consideration.

That is, existing estimations are using only few quality

factors for effort estimation, but the proposed effort
estimation covers the ISO9126 quality factors, which
automatically reflects in the development of software.

Other metrics may be used to estimate the effort and

substituting other quality factors can be explored as a future
scope [8].

Information Domain
Value

External Inputs (EIs)

External Outputs (EOs)

External Inquiries (EQs)

Internal Logical Files (ILFs)

Count total

x

x

x

x

3

4

7

3

4

5

10

4

6

7

15

6

=

=

=

=

Count Simple Average Complex

Adaptability

Installability

Conformance

Replacability

Count total

1

1

1

1

x

x

x

x

7+a

5+a

3+a

4+a

10+a

7+a

4+a

5+a

15+a

10+a

6+a

7+a

=

=

=

=

11

8

5

6

30

Weighing Factor

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

328

REFERENCES

[1] Tridas Mukhopadhyay and Sunder Kekre, “Software Effort Models
for Early Estimation of Process Control Applications”, IEEE Trans.
software Eng., vol. 18, no. 10, pp. 915–924, Oct 1992.

[2] Charles R. Symons, “Function Point Analysis: Difficulties and
Improvements”, IEEE Trans. software Eng., vol. 14, no. 1, pp. 2-11,
Jan 1988.

[3] Allan J. Albrecht and John E. Gaffney, “Software Function, Source
Lines of Code, and Development Effort Prediction: A Software
Science Validation”, IEEE Trans. software Eng., vol. SE-9, no. 6, pp.
639-648, Nov 1983.

[4] D. R. Jeffery, G.C. Low and M. Barnes, “A Comparison of Function
Point Counting Techniques”, IEEE Trans. software Eng., vol. 19, no.
5, pp. 529-532, May 1993.

[5] Raimo Rask, Petteri Laamanen and KalleLyytinen, “Simulation and
Comparison of Albrecht’s Function Point and DeMarco’s Function
Bang Metrics in a CASE Environment”, IEEE Trans. software Eng.,
vol. 19, no. 7, pp. 661-671, July 1993.

[6] Graham C. Low and D. Ross Jeffery, “Function Points in the
Estimation and Evaluation of the Software Process”, IEEE Trans.
software Eng., vol. 16, no. 1, pp. 64-71, Jan 1990.

[7] Magne Jorgensen and Martin Shepperd, “A Systematic Review of
Software Development Cost Estimation Studies”, IEEE Trans.
software Eng., vol. 33, no. 1, pp. 33-53, Jan 2007.

[8] Lionel C. Briand and Jurgen Wust, “Modeling Development Effort in
Object-Oriented Systems Using Design Properties”, IEEE Trans.
software Eng., vol. 27, no. 11, pp. 963-986, Nov 2001.

[9] June Verner and Graham Tate, “Estimating Size and Effort in
Fourth-Generation Development”, IEEE Software, pp. 15-22, July
1988.

[10] Rajiv D. Banker, Robert J. Kauffman, Charles Wright and Dani
Zweig, “Automating Output Size and Reuse Metrics in a
Repository-Based Computer-Aided Software Engineering (CASE)
Environment”, IEEE Trans. software Eng., vol. 20, no. 3, pp.
169-187, March 1994.

[11] Nader B.Ebrahimi, “How to Improve the Calibration of Cost
Models”, IEEE Trans. software Eng., vol. 25, no. 1, pp. 136-140,
Jan/Feb 1999.

[12] Chris F. Kemerer and Benjamin S. Porter, “Improving the Reliability
of Function Point Measurement: An Empirical Study”, IEEE Trans.
software Eng., vol. 18, no. 11, pp. 1011-1024, Nov 1992.

[13] Alain Abran and Pierre N. Robillard, “Function Points Analysis: An
Empirical Study of Its Measurement Processes”, IEEE Trans.
software Eng., vol. 22, no. 12, pp. 895-910, Dec 1996.

[14] Hoang Pham and Xuemei Zhang, “A Software Cost Model with
Warranty and Risk Costs”, IEEE Trans. software Eng., vol. 48, no. 1,
pp. 71-75, Jan 1999.

[15] Randy K. Smith, Joanne E. Hale and Allen S. Parrish, “An Empirical
Study Using Task Assignment Patterns to Improve the Accuracy of
Software Effort Estimation”, IEEE Trans. software Eng., vol. 27, no.
3, pp. 264-271, March 2001.

[16] Roger S. Pressman, “Software Engineering: A Practitioner’s
Approach”, Mc Graw Hill International Edn., 6th Edn., 2005, pp. 464,
472, 653-710.

[17] RTI Project no. 7007.011, “The Economic Impacts of Inadequate
Infrastructure for Software Testing”, for National Institute of
Standards and Technology, pp. 1-309, May 2002.

[18] Martin Horwood, “CAD Data Quality”, for Infosys Technologies, pp.
14-16, May/June 2005.

[19] “IEEE Editorial Style Manual”, pp. 1-18, 4th edition.
[20] “Preparation of Papers for IEEE Transactions and Journals”, pp. 1-6,

May 2007.
[21] Norman E. Fenton and Shari Lawrence Pfleeger, “Software Metrics:

A Rigorous Practical Approach”, Thomson Asia Pvt. Ltd., Singapore,
2nd Edn., 2005, pp. 28, 343-344, 551-556.

[22] Hans Van Vliet, “Software Engineering: Principles and Practice”,
John Wiley & Sons Ltd., 2nd Edn., 2004, pp. 158-160, 172-176.

[23] Yunsik Ahn, Jungseok Suh, Seungryeol, Kim and Hyunsoo Kim,
“The Software maintenance project effort estimation model based on
function points”, Journal of Software Maintenance and Evolution,
2006.

[24] Benediktsson, O., D. Dalcher, and K. Reed, “COCOMO-Based
Effort Estimation for Iterative and Incremental Software
Development”, Software Quality Journal., 2003, 11(4): pp. 265-281.

[25] Carmel, E., “Time-to-Completion Factors in Packaged Software
Development”, Information and Software Technology, 1995, 37(9):
pp. 515-520.

[26] Boehm, B., et al., “The COCOMO 2.0 Software Cost Estimation
Model: A Status Report”, American Programmer, 1996, 9(7): pp.
2-17.

[27] Boehm, B., C. Abts, and S. Chulani, “Software Development Cost
Estimation Approaches – A Survey”, Annals of Software
Engineering, 2000, 10: pp. 177-205.

[28] Carson, C., “Using the TQC Problem-Solving Process to Develop an
Improved Estimation Technique”, Texas Instruments Technical
Journal, 1996, 13(6): pp. 101-106.

[29] Chrysler, E., “Some Basic Determinants of Computer Programming
Productivity”, Communications of the ACM, 1978, 21(6): pp.
472-483.

[30] Edwards, J.S. and T.T. Moores, “A Conflict between the Use of
Estimating and Planning Tools in the Management of Information
Systems”, European Journal of Information Systems, 1994.

[31] Cuelenaere, A.M.E., M.J.I.M. Genuchten, and F.J. Heemstra,
“Calibrating a Software Cost Estimation Model: Why and How”
Information and Software Technology, 1987, 29(10): pp. 558-567.

H. Azath received the M.Tech degree in
information technology from Punjabi University,
Patiala, Punjab, India in 2004 and B.E. degree in
computer science and engineering from
Government College of Engineering, Tirunelveli,
Tamil Nadu, India in 2001.

He is an ASSISTANT PROFESSOR & HEAD
of Information Technology department of King
College of Technology, Namakkal, Tamil Nadu,
India.

R. S. D. Wahidabanu received the Ph.D
degree in application of neural networks from
Anna University, Chennai, Tamil Nadu, India
in 1998 and M.E degree in applied electronics
in 1985 and B.E. degree in electronics and
communication engineering in 1981 from
Government College of Technology,
Coimbatore, Tamil Nadu, India.

The areas of interest are Software Engineering & Operating
Systems. He became a Member of ISTE in 2005.

She is a PROFESSOR & HEAD of Electronics and Communication
Engineering Department of Government College of Engineering,
Salem, Tamil Nadu, India.

Dr. Wahidabanu became members of MISTE, MIE, MSSI, MCSI, in

2001 and MISOC in 2008.

