
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

349

Manuscript received December 5, 2008

Manuscript revised December 20, 2008

Abstract— Due to the deficiency in their refresh techniques
[12], current crawlers add unnecessary traffic to the already
overloaded Internet. Moreover there exist no certain ways
to verify whether a document has been updated or not. In
this paper, an efficient approach is being proposed for
building an effective incremental web crawler [13]. It
selectively updates its database and/ or local collection of
web pages instead of periodically refreshing the collection
in batch mode thereby improving the “freshness” of the
collection significantly and bringing new pages in more
timely manner. It also detects web pages which frequently
undergo up-dation and dynamically calculates the refresh
time of the page for its next update.
Index Terms - World Wide Web, Search engine, Incremental
Crawler, Hypertext, Browser.

I. INTRODUCTION
The World Wide Web [1, 3, 5] is a global, large repository

of text documents, images, multimedia and many other
items of information, referred to as information resources.
It is estimated that www contains more than 2000 billion
visible pages and five times more lying in the hidden web.
Due to the extremely large number of pages present on Web,
the search engine depends upon crawlers for the collection
of required pages [2]. The general architecture of a crawler
is shown in Fig.1.

Fig.1: Architecture of a Typical Crawler

1. Prof. and Head Computer Engineering Deptt. YMCA Institute of

Engineering Faridabad Haryana India.
2. Lecturere Computer Engineering Deptt. YMCA Institute of

Engineering Faridabad Haryana India.

In order to download a document, the crawler picks up its
seed URL, and depending on the host protocol, downloads
the document from the web server. For instance when a user
accesses an HTML page using its URL, the documents is
transferred to the requesting machine using Hyper Text
Transfer Protocol (HTTP) [4, 5, 7]. The browser parses the
document and makes it available to the user. Roughly, a
crawler starts off by placing an initial set of URLs, in a
queue, where all URLs to be retrieved are kept and
prioritized. From this queue, the crawler extracts a URL,
downloads the page, extracts URLs from the downloaded
pages, and places the new URLs in the queue. This process
is repeated and the collected pages are later used by other
applications, such as a Web search engine.

The algorithm of the typical crawler is given below:
1: Read a URL from the set of seed URLs.
2: Determine the IP address for the host name.
3: Download the Robot.txt file which carries downloading

permissions and also specifies the files to be excluded by
the crawler.

4: Determine the protocol of underlying host like http,
 ftp, gopher etc.
5: Based on the protocol of the host, download the
 document.
6: Identify the document format like doc, html, or pdf
 etc.
7: Check whether the document has already been downloaded or
 not.
8: If the document is fresh one
 Then
 Read it and extract the links or references to the other
 cites from that documents.

 Else Continue;
 9: Convert the URL links into their absolute IP equivalents.
 10: Add the URLs to set of seed URLs.

II. LITRATURE SURVEY
With the exponential growth of the information stored on
www, a high performance crawling strategy based on
following design issues is need to be addressed.

i. Keep the local collection fresh
 Freshness of a collection can vary depending on the
strategy used [6]. Thus, the crawler should use the best
policies to keep pages fresh. This includes adjusting the
revisit frequency for a page based on its estimated change
frequency..

A.K. Sharma1, Ashutosh Dixit2

Self Adjusting Refresh Time Based Architecture for Incremental
Web Crawler

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 350

ii. Improve quality of the local collection
The crawler should increase the quality of the local

collection by replacing less important pages with more
important ones [6]. This updation is necessary for two
reasons- firstly pages are constantly created and removed.
Some of the new pages can be more important than existing
pages in the collection, so the crawler should replace the old
and less important pages with the new and more important
pages. Second, the importance of existing pages changes
over time. When some of the existing pages become less
important than previously ignored pages, the crawler
should replace the existing pages with the previously
ignored pages.

A. INCREMENTAL CRAWLER
 In order to refresh its collection, a traditional crawler

periodically replaces the old documents with the newly
downloaded documents. On the contrary, based upon the
estimate as to how often pages change, an incremental
crawler [18] incrementally refreshes the existing collection
of pages by visiting them frequently. It also replaces less
important pages by new and more important pages.

The architecture of a simple incremental crawler is shown
in Fig.2.

Fig.2: Architecture of Incremental Crawler

Architecture is composed of the following Modules/Data
Structures:

All_Urls: A set of all URLs known

Coll_Urls: A set of URLs in the local collection. (it is
 assumed that this list is full from the
 beginning)

Collection: Documents corresponding to the URLs of
 Coll_Urls list.

Ranking Module: It constantly scans through the All_Urls
and Coll_Urls to make the refinement
decisions.

Update Module: It takes a url from the top of the Coll_Urls
and decides whether the document
corresponding to that URL has been
refreshed or not.

Crawl Module: Add URLs to All_Urls and updates the
 Collection.

Based on some previous history or estimate the ranking
module picks a URL from All_Urls list and assigns rank to
it. The ranked URLs are placed on the list called Coll_Urls.
The update module picks the URLs from Coll_Urls list in
the order of their rank and crawl/ updates the corresponding
document. Links contained in the fresh downloaded
documents are added in to the All_Urls list and so on.

B. MANAGEMENT OF VOLATILE INFORMATION
When the information contained in a document changes
very frequently, the crawler downloads the document as
often as possible and updates it into its database so that
fresh information could be maintained for the potential
users. If the number of such documents is large, the
crawling process becomes hopelessly slow and inefficient
because it puts a tremendous pressure on the internet traffic.

In order to reduce the traffic on the web and increase the
efficiency of the crawler a novel approach for managing the
volatile information was introduced [19]. The technique
introduces volatile information tags in HTML documents to
store the changing information also called as volatile
information. While storing the document at server side the
Vol# Tags are extracted from the document along with their
associated volatile information. The Tags and the
Information are stored separately in a file having same
name but with different extension (.TVI) [10]. The TVI
(Table of variable information) file is updated every time
the changes are made to the hypertext document. This file
containing the changed contents of a document is
substantially smaller in size as compared to the whole
document. PARCAHYD [8, 9] downloads the TVI files to
incrementally refresh its collection of pages.

A critical look at the available literature indicates that for
the purpose of refreshing the document, at present, the
frequency of visit by the existing crawler for a particular
domain is fixed. Whereas, the frequency is important
because the frequency of the visit to a site is directly
proportional to the relevance of the site depending upon
whether it houses more of dynamic pages or static pages, i.e.
higher the frequency, higher the traffic.

In this paper an alternate approach for optimizing the
frequency of visits to sites is being proposed. The proposed
approach adjusts the frequency of visit by dynamically
assigning a priority to a site. A mechanism for computing
the dynamic priority for any site has been developed.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 351

III. PROPOSED WORK
Based upon up-dation activity, documents can be
categorized as follows.

(i). A static web page, which is not updated regularly.

(ii). Dynamically generated web pages e.g. database driven
web page.

(iii). Very frequently updated parts of web pages e.g. News
Website, Share Market website.

(iv). Updated pages generated when website administrator
updates or modifies its website.

Keeping in view the above categorization, it is proposed
that crawler may visit a site frequently and after every visit
its frequency of future visits may be adjusted according to
the category of the site. The adjusted refresh rate/frequency
can be computed by the following formula:

 tn+1 = tn + Δt …eqn (1)

 Where tn: is current refresh time for any site.
 tn+1: is adjusted refresh time.
 Δt: is change in refresh time calculated
 dynamically.
The value of Δt may be positive or negative, based upon the
degree of success (pc) that the site contains the volatile
documents. The degree of success is computed in terms of
no. of hits by detecting the frequency of changes occurred
in the documents on a site. For example, if the crawler
encounters a document being updated 6 times out of its 10
visits, the degree of success (pc) is assigned as 0.6 to that
site.

A unit step function u(pc) has been employed for the
computation of Δt, which can be defined as follows

Δt = {(1-pc/pg)*u (pc-pg) + (1-pc/pl)*u (pl-pc)} * tn …eqn
(2)

Where: pg, pl are the boundary conditions i.e. upper and

lower threshold values of pc respectively,

 1 if x>0
And u (x) =

 0 otherwise

In the following examples the refresh time has been
computed for three cases by taking three different data sets.

Case 1: consider the data given below:
 tn = 100 units
 Pl = 0.3
 Pg = 0.7
 Pc = say 0.6
Δt for a site S would be computed as given below:

 Δt= {(1-0.6/0.7)*0 + (1-0.6/0.3)*0} * 100 = 0
 The new refresh time

 tn+1 = tn + Δt
 tn+1 = 100 + 0 =100 units
 No Change in refresh time

Case 2: now consider the data given below:
 tn = 100 units
 Pl = 0.3
 Pg = 0.7
 Pc = say 0.85
Δt for a site S would be computed as given below:
Δt= {(1-0.85/0.7)*1+(1-0.85/0.3)*0}*100 = - 150/7 = -

21.42
 The new refresh time

 tn+1 = tn + Δt
 tn+1 = 100 – 21.42 = 78.58 units
 Refresh time is decreased

Case 3: now consider the data given below:
 tn = 78.58 units
 Pl = 0.3
 Pg = 0.7
 Pc = say 0.25
Δt for a site S would be computed as given below
Δt= {(1-0.25/0.7)*0 + (1-0.25/0.3)*1} * 78.58 = 13.09
 The new refresh time

 tn+1 = tn + Δt
 tn+1 = 78.58+13.09 = 91.67 units
 Refresh time is increased

From the examples it may be observed a value of pc greater
than pg results in decrease in refresh time i.e. increase in
refresh rate. Similarly values of pc less than Pl results in
increase in refresh time i.e. decrease in refresh rate. Thus
the refresh rate gets self adjusted periodically.

In order to incorporate the proposed mechanism, the
scheduling policy of the incremental crawler needs to be
modified, so that it self adjust its refresh time periodically.
The modified architecture of the incremental crawler is
discussed in the next section.

A. SELF ADJUSTING REFRESH TIME BASED
ARCHITECTURE FOR INCREMENTAL WEB CRAWLER

The system architecture of the modified incremental
crawler is given in Fig.3.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 352

 Fig.3: Architecture of Self adjusting Refresh Time Based

Incremental Crawler

The architecture is composed of the following
Modules/Data Structures:

URL_IP Queue: A set of seed URL-IP pairs.

Resolved URL_IP Queue: Set of URLs which have been
resolved for their IP addresses.

Data Base: It contains a database of downloaded
documents and their URL-IP pairs. In this work priority
queue is used to store URL_IP pairs.

Refresh Time Controller: This component uses the
proposed formula for computing the next refresh time.
Algorithm for this component is given in next section.

Dispatcher: It reads a URL from database which may be a
priority queue, and loads them in to URL_IP queue.

DNS Resolver : The DNS resolver uses the services of
internet for translating the URLs to their corresponding IP
addresses and stores them in to the resolved URL_IP queue.
The new URLs with the IP addresses are stored in the buffer.
A signal initialize is sent to the Field initializer.

Buffer : It stores the new URLs with their corresponding IP
address.

Fields Initializer: It initializes the URL_fields in URL
record for which object structure is shown in Fig.4.

Fig. 4. URL record

• Doc ID field is the unique identifier for each document.

• RefreshTime field stores the duration of the document
to be refreshed. After initializing by some default value,
this field is dynamically updated by refresh time
calculator module.

• LastCrawlTime field stores the date Time stamp of last
time page was crawled.

• Status field represent whether URL is present in
URL-IP queue or not.
 If Status is ‘1’, the dispatcher does not schedule the

 URL for Crawling,
 If Status is ‘0’, the dispatcher schedules the URL for

 crawling.
• pl & pg are the boundary conditions i.e. upper and lower

threshold values of pc respectively.

• The document pointer field contains the pointer to the
original document.

• FingerPrintKey field stores the finger print key value
of the crawled page.

Mapping Manager: It creates multiple worker threads
called URL Mapper[8]. It extracts URL-IP pairs from the
URL-IP Queue and assembles a set of such pairs called
URL-IP set. Each URL-Mapper is given a set for mapping.
After storing URLs to Rsolved URl_IP queue it sends a
signal something to crawl to Crawler manager.

Crawl Manager : It creates multiple worker threads named
as Crawl Workers. Sets of resolved URLs from Resolved
URL Queue are taken and each worker is given a set. It
sends a signal something to update to refresh time
calculator module after storing the documents and URLs in
to the documents and URL buffer.

Description of each proposed components are discussed
below.

• Fields Initializer: It stores the URL into
URL_Database and initializes the refresh time for that
URL. Its algorithm is given below:

Fields_Initializer ()
 Do
 {
 Read URL from seed url set
 If (URL is present in database)
 Continue;
 Else
 {
 Set Status= 0;
 Set lastCrawlTIme = null;
 Set Refresh Time = AVERAGE_REFRESH_TIME;
 Insert URL record set in database
 }
 }
 Forever

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 353

• Self adjusting refresh time calculator module
(SARTCM): it extracts URLs from Document and
URL buffer and calculates the new refresh time as per
the formula given in eq. (1) and eq. (2). The modified
refresh time is updated in URL record, which is later on
stored in database.

The algorithm for SARTCM is given below.

SARTCM ()
 Do
 {
 Read URL IP pair from Document and URL buffer
 If (lastCrawlTime == null && Status == 0

{
 Set Status= 1
Set refresh time equal to default
Update URL record
Store URL-IP pair it into priority queue
}

Else
{
Calculated the new refresh time as per eqn. (1) and (2)
If (CURRENT_TIME – new refresh time)>= refresh Time)

{
 Set Refresh time = new refresh time

Store URL-IP pair in to priority queue
 }

Else
Continue;

}
}

 Forever
The whole mapping and crawling Process can be defined as
follows:

Mapping manager takes a URL_IP set from the URL_IP
Queue and creates multiple instance of mapper threads
named as URL-Mappers [8]. Set of URL_IP taken from
URL_IP Queue are assigned to each URL_Mapper.
URL-Mapper examines each URL_IP pair and if IP is null,
then URL is sent to DNS Resolver. After the URL has been
resolved for its IP, it is stored in the Resolved URL_IP
Queue. If URL is new then DNS Resolver stores it in the
Buffer and a signal “initialize” is sent to Field initiatizer.
Field initializer initializes the URL fields and stores them in
Document and URL Buffer and sends a signal something to
update to SARTCM.

Downloaded documents are examined for modification of
contents in it and refresh time is self adjusted accordingly
by self adjusting refresh time calculator module. Later these
Documents and URLs are stored in Database.

So, the modified crawler optimizes the frequency of refresh
rate for an incremental crawler there by improving the

quality of collection without incurring much traffic on the
network.

IV. PERFORMANCE ANALYSIS
An estimated and approximate performance analysis can be
done to compare the conventional search strategies with the
proposed one. With the increase in the availability of web
pages on the Internet, the major problem faced by the
present search engines is difficulty in information retrieval.
It is problematic to identify the desired information from
amongst the large set of web pages resulted by the search
engine. With further increase in the size of the Internet, the
problem grows exponentially. The number of web pages
which have gone under up-dation increases [11, 12, 13]
(see Fig. 5); with this increase in web size the incremental
crawler traffic will definitely be more. This results decrease
in the quality (see Fig. 5) [13].

Fig. 5: Effect of growth of web on up-dation of pages and

quality

As none of the previous researcher proposed an idea of
dynamic refresh time, the architecture given in this work
effectively takes into consideration the above-mentioned
issue. Being a Self adjusting refresh time based strategy, the
proposed download mechanism is independent of the size
of the Internet. Since, only those web pages are retrieved
which have undergone up-dation , the system would
continue to give modified pages only irrespective of the
size of the Internet and because the pages are relevant in the
sense that they have gone under up-dation, the traffic on
network is reduced and hence only quality pages are
retrieved (see Fig.6)

Fig. 6: Performance analysis of proposed architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 354

In terms of performance parameters like quantity of web
pages downloaded, their quality and the network traffic, the
Self Adjusting refresh time based Incremental Crawler
definitely holds an edge above the present conventional
crawling strategies, which are based on fixed refresh time.

V. CONCLUSION
With the help of the proposed scheme, various design
choices for an incremental crawler has been identified to
calculate the refresh time of the documents and thus
resolving the problem of the freshness of the pages. To
perform this task a no. of algorithms and a modified
architecture have been proposed that will support the
crawler to remove its deficiencies by dynamically adjusting
the refresh time and thus improving the efficiency, as it
makes the database rich. Only the useful data is provided to
the user, thus network traffic is reduced and data
enrichment is achieved..

REFERENCES
[1] Sergey Brin and Lawrence Page. “The anatomy of a large-scale hyper

textual Web search engine”. Proceedings of the Seventh
International World Wide Web Conference, pages 107—117, April
1998.

[2] Mike Burner, “Crawling towards Eternity: Building an archive of the
World Wide Web”, Web Techniques Magazine, 2(5), May 1997.

[3] L. Page and S. Brin, “The anatomy of a search engine”, Proc. of the
7th International WWW Conference (WWW 98), Brisbane, Australia,
April 14-18, 1998.

[4] Y. Yang, S. Slattery, and R. Ghani, “A study of approaches to
hypertext categorization”, Journal of Intelligent Information Systems.
Kluwer Academic Press, 2001.

[5] S. Chakrabarti, M. van den Berg, and B. Dom, “Distributed hypertext
resource discovery through examples”, Proceedings of the 25th
International Conference on Very Large Databases (VLDB), pages
375-386, 1999.

[6] J. Dean and M. Henzinger, “Finding related pages in the world wide
web”, Proceedings of the 8th International World Wide Web
Conference (WWW8), pages 1467-1479, 1999.

[7] www.w3.org/hypertext/WWW/MarkUp/MarkUp.html -- official
HTML specification.

[8] A. K. Sharma, J. P. Gupta, D. P. Agarwal, “PARCAHYD: A Parallel
Crawler based on Augmented Hyper text Documents”,
communicated to IASTED International Journal of computer
applications, May. 2005.

[9] A. K. Sharma, J. P. Gupta, D. P. Agarwal, “Augment Hypertext
Documents suitable for parallel crawlers”, accepted for presentation
and inclusion in the proceedings of WITSA-2003, a National
workshop on Information Technology Services and Applications,
Feb’2003, New Delhi.

[10] A. K. Sharma, J. P. Gupta, D. P. Agarwal, “ A novel approach
towards management of Volatile Information” Journal of CSI, Vol.
33 No. 1, pp 18-27, Sept’ 2003.

[11] C. Dyreson, H.-L. Lin, Y. Wang, “Managing Versions of Web
Documents in aTransaction-time Web Server” In Proceedings of the
World-Wide Web Conference.

[12] Junghoo Cho and Hector Garcia-Molina. Estimating frequency of
change, 2000.Submitted to VLDB 2000, Research track.

[13] Junghoo Cho, Hector Garcia-Molina. The Evolution of the Web and
Implications for an Incremental Crawler. In Proceedings of the 8th
World-Wide Web Conference, 2003,

