
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

361

Manuscript received December 5, 2008
Manuscript revised December 20, 2008

 Crypto Analysis of Newly Compression Function

A.Arul Lawrence Selvakumar C.Suresh Gnanadhas
Assistant Professor/CSE Professor/CSE
The Oxford College of Engineering Veltech College of Engineering
Bangalore, INDIA Chennai, INDIA

Abstract
Cryptographic hash functions are a useful building block for
several cryptographic applications. The most important are
certainly the protection of information authentication and digital
signatures. This overview paper will discuss the definitions,
describe some attacks on hash functions, and will give an
overview of the existing practical constructions

1. Introduction

Hash functions are functions that map an input of arbitrary
length to a string of fixed length, the hashcode. If these
mappings satisfy some additional cryptographic conditions,
they can be used to protect the integrity of information.
Other cryptographic applications where hash functions are
useful are the optimization of digital signature schemes, the
protection of passphrases and the commitment to a string
without revealing it.
Hash functions appeared in cryptographic literature when it
was realized that encryption of information is not sufficient
to protect its authenticity. The simplest example is the
encryption with a block cipher in Electronic Code Book
(ECB) mode, where every block is encrypted
independently. It is clear that an active attacker can easily
modify the order of the ciphertext blocks and hence of the
corresponding plaintext blocks. It will be shown that
cryptographic hash functions allow for efficient
constructions to protect authenticity with or without
secrecy.
In a first part of this overview paper, the definitions of
several types of hash functions will be given, and the basic
attacks on hash functions will be discussed. Then it will be
explained briefly how they can be used to protect the
integrity of information. The protection of software
integrity will be treated as an example. Subsequently a
general model is described and an extensive overview is
given of the proposed schemes. Here a distinction will be
made between hash functions with an without a secret key.
Finally the conclusions will be presented.

2. Definitions

In this section definitions will be given for hash functions
that do not use a secret key (Manipulation Detection Code
orMDC) and for hash functions that use a secret key
(Message Authentication Code or MAC).According to their

properties, the class of MDC’s will be further divided into
one-way hash functions (OWHF) and collision resistant
hash functions (CRHF).

A brief discussion of the existing terminology can avoid
the confusion that is present in the literature. The term hash
functions originate historically from computer science,
where it denotes a function that compresses a string of
arbitrary input to a string of fixed length. Hash functions
are used to allocate as uniformly as possible storage for the
records of a file.

The name hash functions has also been widely adopted for
cryptographic hash functions or cryptographically strong
compression functions, but the result of the hash function
has been given a wide variety of names in cryptographic
literature:

hashcode, hash total, hash result, imprint, (cryptographic)
checksum, compression, compressed encoding, seal,
authenticator, authentication tag, fingerprint, test key,
condensation, Message Integrity Code (MIC), message
digest, etc.

 Cryptographic Hash Function

 MAC
 MDC

 OWHF CRHF

Figure 1: A taxonomy for cryptographic Hash Function

In the following the hash function will be denoted with h,
and its argument, i.e., the information to be protected with
X. The image of X under the hash function h will be
denoted with (X) and the secret key with K.

The general requirements are that the computation of the
hashcode is “easy” if all arguments are known. Moreover it
is assumed that Kerckhoff’s principle2is valid, which
means that in the case of an MDC the description is public,
and in the case of a MAC the only secret information lies
in the key.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

362

2.1 One-way hash function (OWHF)

The first informal definition of a OWHF was apparently
given by R. Merkle [88, 89] and M.O. Rabin [111].

Definition1: A one-way hash function is a function h
satisfying the following conditions:
1. The argument X can be of arbitrary length and
the result h(X) has a fixed length of n bits (with n ≥ 64).
Definition 2: The hash function must be one-way in
the sense that given a Y in the image of h, it is “hard” to
find a message X such that h(X) = Y and given X and h(X)
it is “hard” to find a message X0= X such that h(X

0
) =

h(X).

The first part of the second condition corresponds to the
intuitive concept of one-wayness, namely that it is “hard”
to find a preimage of a given value in the range. In the case
of permutations or injective functions only this concept is
relevant. The second part of this condition, namely that
finding a second preimage should be hard, is a stronger
condition that is relevant for most applications. The
meaning of “hard” still has to be specified. In the case of
“ideal security”, introduced by X. Lai and J. Massey [79],
producing a (second) preimage requires 2noperations.
However, it may be that an attack requires a number of
operations that is smaller than 2n, but is still
computationally infeasible.

2.2 Collision resistant hash function (CRHF)

The first formal definition of a CRHF was apparently given
by I. Damg˚ard [31, 32]. An informal definition was given
by R. Merkle in [89].

Definition 2: A collision resistant hash function is a
function h satisfying the following conditions:

1. The argument X can be of arbitrary length and the result
h(X) has a fixed length of n bits (with n ≥ 128).

2. The hash function must be one-way in the sense that
given a Y in the image of h, it is “hard” to find a message
X such that h(X) = Y and given X and h(X) it is “hard” to
find a message X0= X such that h(X0) = h(X).

3. The hash function must be collision resistant: this means
that it is “hard” to find two distinct messages that hash to
the same result.

Under certain conditions one can argue that the first part of
the one-way property follows from the collision resistant
property. Again several options are available to specify the
word “hard”. In the case of “ideal security” [79], producing

a (second) preimage requires 2noperations and producing a
collision requires O(2n/2) operations. This can explain why
both conditions have been stated separately.

One can however also consider the case where producing a
(second) preimage and a collision requires at least O(2n/2)
operations, and finally the case where one or both attacks
require less than O(2n/2) operations, but the number of
operations is still computationally infeasible (e.g., if a
larger value of n is selected).

2.3 Message Authentication Code (MAC)

Message Authentication Codes have been used for a long
time in the banking community and are thus older than the
open research in cryptology that started in the mid
seventies. However, MAC’s with good cryptographic
properties were only introduced after the start of open
research in the field.

Definition 3: A MAC is a function satisfying the following
conditions:
1. The argument X can be of arbitrary length and the result
h (K, X) has a fixed length of n bits (with n ≥ 32 . . . 64).
2. Given h and X, it is “hard” to determine h(K, X) with a
probability of success “significantly higher”than 1/2n.
Even when a large number of pairs{Xi, h(K, Xi)}are known,
where the Xihave been selected by the opponent, it is
“hard” to determine the key K or to compute h(K, X

0
) for

any X
0
6= Xi.This last attack is called an adaptive chosen

text attack.

Note that this last property implies that the MAC should be
both one-way and collision resistant for someone who does
not know the secret key K. This definition leaves open the
problem whether or not a MAC should be one-way or
collision resistant for someone who knows K. An example
where this property could be useful is the authentication of
multi-destination messages [94].

3. Methods of attack

Three elementary attacks that are independent of the
specific hash function will be described. For a more
extensive overview of attacks on hash functions the reader
is referred to [102, 106].
In case of a random attack the opponent select a random
message and hopes that the modification will remain
undetected. For an ideally secure hash function, his
probability of success equals 1/2n. The feasibility of this
attack depends on the action taken in case of detection of
an erroneous result, on the expected value of a successful
attack and on the number of attacks that can be carried out.
For most applications this implies that n = 32 bits is not

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

363

sufficient. This is certainly true if an MDC is used and
hence the opponent can attack several messages off-line
and in parallel. In that case the hashcode should have a
length of 64 bits or more.

The idea behind the birthday attack [126] is that for a
group of 23 people the probability that at least two people
have a common birthday exceeds 1/2. Intuitively one
would expect that the group should be significantly larger.
This can be exploited to attack a hash function in the
following way: an adversary generates r1 variations on a
bogus message and r2variations on a genuine message. A
second possibility is that he collects a large number of
messages and is able to divide them in two categories. This
is the only way in the case of a MAC, where the opponent
is unable to generate (message, MAC) pairs. The
probability of finding a bogus message and a genuine
message that hash to the same result is given by

1 − exp(−(r1 · r2)/2n) ,
Which is about 63 % when r = r1= r2 = 2

n/2. The involved
comparison problem does not require r2 operations: after
sorting the data, which requires O(r log r) operations,
comparison is easy. If the hash function can be called as a
black box, the new algorithm of J.-J. Quisquater [109],
requires √2π·2

n/2 operations and negligible storage. The
conclusion is that if the hash function has to be collision
resistant, n should be sufficiently large. In view of the fact
that the speed of computers doubles every three years, 128
bits corresponding to 264operations is sufficient for the next
10 years, but it will be only marginally secure within 20
years.

In the case of a MAC, a third attack is relevant, namely an
exhaustive search for the secret key K. It is a known
plaintext attack, where an attacker knows M plaintext-
MAC pairs for a given key and will try to determine the
key by trying all possible keys. In order to determine the
key uniquely, M has to be slightly larger than k/n. The
expected number of trials is equal 2k−1, with k the size of
the key in bits.

4. Applications of cryptographic hash
functions

This section aims to illustrate briefly how cryptographic
hash functions can be used to protect the authenticity of
information and to build digital signature schemes. In a
second part the application to software protection will be
discussed.

4.1 Information authentication and digital
signatures

The protection of the authenticity of information includes
two aspects:
• The protection of the originator of the information, or

in ISO terminology [62] data origin authentication.
• The fact that the information has not been modified or

in ISO terminology [62] the integrity of the
information.

There are two basic methods for protecting the authenticity
of information.
• The first approach is analogous to the approach of a
asymmetric cipher, where the secrecy of large data
quantities is based on the secrecy and authenticity of a
short key. In this case the authentication of the information
will also reply on the secrecy and authenticity of a key. To
achieve this goal the information is compressed with a hash
function and the resulting hashcode is appended to the
information. The presence of this redundancy allows the
receiver to make the distinction between authentic
information and bogus information.

In order to guarantee the origin of the data, a secret key that
can be associated to the origin has to intervene in the
process. In the case of a MAC, the secret key is involved in
the compression process, while in the case of an MDC, the
information and/or the hashcode will subsequently be
encrypted with a secret key.

• The second approach consist of basing the authenticity
(both integrity and origin authentication) of the information
on the authenticity of the hashcode.

Hash functions play also an important role in digital
signature schemes. A digital signature is a cryptographic
technique that produces the electronic equivalent of a
manual signature. This means that a digital signature can
prohibit the forging of a message by anybody else but the
sender. Moreover the receiver is given guarantee of the
message’s authenticity, in the sense that he can
subsequently prove to a third party that the message is
authentic even if its originator revokes it. The concept of a
digital signature was suggested in 1976 by W. Diffie and M.
Hellman [45]: the sender transforms the information with a
secret key, and the receiver can verify the signature by
applying the corresponding public key.
The first practical scheme was the RSA cryptosystem [112].
Other efficient schemes include the scheme of ElGamal
[46], the proposed NIST digital signature standard [51],
and the schemes based on zero-knowledge techniques:
Fiat-Shamir [47], Guillou-Quisquater [108], and Schnorr
[117]. For a more detailed discussion the reader is referred
to [95].

Most digital signature schemes can be optimized in the
following way: the signature scheme is not applied to the
message but to the hashcode of the message. Note that this

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

364

corresponds to the second approach for authentication, i.e.,
replace the message by a short hashcode.

The advantages are that the signature has a fixed short
length and that the computational requirements are
minimized (most signature schemes are rather slow).
Moreover the security level of the signature scheme can be
increased. In other signature schemes, like the zero-
knowledge based schemes and many theoretical
constructions, a OWHF forms an integral part of the
signature scheme.

Now the choice between a OWHF and a CRHF will be
discussed. It is clear from the definition that a CRHF is
stronger than a OWHF, which implies that using a CRHF is
playing safe. On the other hand, it should be noted that
designing a OWHF is easier, and that the storage for the
hashcode can be halved (64 bits instead of 128 bits). A
disadvantage of a OWHF is that the security level degrades
proportional to the number of applications of h: an outsider
who knows s hashcodes has increased his probability to
find an X1with a factor s. This limitation can be overcome
through the use of a parameterized OWHF.

In order to understand when a CRHF is required, the
following attack is considered. Assume that the has h
function is not collision resistant: an attacker will thus be
able to find a collision, i.e., two plain texts X and X0such
that h(X) = h(X0). Subsequently he will protect the
authenticity of X through h(X), and later he can substitute
X0for X. Therefore the use of a CRHF is recommended for
any application where the attacker has complete control
over the argument of the hash function, which implies he
can select X, or he is an insider to the system.

However, one can certainly imagine applications where
this attack is not relevant. If the attacker is an outsider, he
can not choose X, and will be restricted to observe X and
h(X). Subsequently he will try to come up with an X

0
such

that h(X) = h(X
0
). Examples of applications where a

OWHF would be sufficient are the following:

1. The parties involved completely trust each other, which
is trivially the case if there is only one party. One could
think of someone who protects the integrity of his
computer files (which he only can generate) through the
calculation and storage of an MDC.

2. The computation of the h(X) involves a random
component, that can not be controlled by the insider [89]:
X can be randomized before applying h through encryption
of X with a good block cipher using a truly random key,
that is added to the resulting ciphertext [88], or through the
selection of a short random prefix to X [31];h itself can be

randomized through randomly choosing h from a family of
functions indexed by a certain parameter.

One can conclude that the choice between a CRHF and a
OWHF is application dependent.

4.2 Software protection

To illustrate the use of a MAC, MDC, and a digital
signature scheme, it will be explained how these three
techniques can be applied to protect the integrity of
software [92]. The two parties involved in the application
are the software vendor (who is also supposed to be the
author of the software) and the user.

The attacker will try to modify the software: this can be a
computer virus [21], a competitor or even one of the parties
involved. For this application there is clearly no need for
secrecy. The three approaches will be discussed together
with their advantages and disadvantages.

MAC: the software vendor will use his secret key to
compute the MAC for the program and append the MAC to
the program. The main problem here is the distribution of
the secret key to the user through a channel that protects
both its secrecy and its authenticity, which induces a
significant overhead. This secret key has to be protected
carefully by both software vendor and user: if a
compromise at one place occurs, the protection is lost. Both
software vendor and user can modify the program and the
corresponding MAC, and thus in the case of a dispute, a
third party can not make any distinction between them. The
vulnerability of the secret key implies that it is mandatory
that every user shares a different key with the software
vendor. The advantage of this approach is that the secret
storage is independent of the number of programs to be
protected, but depends on the number of users (for the
software vendor) and on the number of different software
vendors (for the user).

MDC: the software vendor will compute the MDC for the
program. The main problem here is the distribution of the
MDC to the user through a channel that protects the
authenticity of the MDC. This is easier than the distribution
of a secret key, but for every update of the program or for
every new program a new transmission of an MDC is
necessary. If the authenticity of the MDC is compromised,
the protection is lost: the software vendor, the user and any
third party can modify the program and the corresponding
MDC. If a dispute occurs, one has to show to a judge that
the value of an MDC is authentic: it is generally not
possible to prove to the judge who actually modified the
authentic channel and the program. The main advantage is
that this approach requires no secret storage. Every
program needs an authentic storage both at the user’s site

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

365

and at the vendor’s site.

Digital signature: the software vendor will append to the
program a digital signature that is computed with his secret
key. The main problem here is the distribution of the
corresponding public key to the user through a channel that
protects its authenticity. The secrecy and authenticity of the
secret key have to be protected carefully by the software
vendor: if it is compromised, anyone can modify programs
and update the corresponding signature.

If the authenticity of the public key is compromised, the
protection is also lost: anyone can replace it with the public
key corresponding to his secret key. The difference with
the previous approaches is the asymmetry: only the
software vendor can generate a signature, but anyone can
verify it. This implies that the vendor can be held liable to a
third party if the program contains a virus. The only way he
can escape is by claiming that his secret key was stolen.
However, if he can not repeat this type of fraud, as he will
loose quickly the trust of his customers. Every vendor has
to store one secret key, while every user needs an authentic
storage for the public key of every vendor.

The selection of a particular solution will depend on one
hand on the number of users, vendors and programs, and
on the other hand on the availability of authentic and/or
secret storage and communication. The digital signature is
clearly the only solution that can protect the users against a
malicious software vendor.

A similar verification process can be executed when the
program is loaded from disk to the Central Processing Unit.
If the disk is not shared, non-repudiation is not required,
but it is still attractive to use a digital signature scheme: the
CPU has to know only the public key corresponding to the
disk. An alternative is to provide for authentic storage of
the MDC of a file that contains the MDC’s of all
programs.In [36] a scheme is described that combines a
digital signature for checking new software with a MAC
for verification at run-time.

5. An overview of MDC proposals

5.1 A general model

Before discussing a small fraction of the large number of
proposals for MDC’s, the general scheme for describing a
hash function will be sketched. All known hash functions
are based on a compression function with fixed size input;
they process every message block in a similar way. This
has been called an “iterated” hash function in [79]. The
information is divided into t blocks X1 through Xt. If the
total number of bits is no multiple of the block length, the
information can be padded to the required length. The hash

function can then be described as follows:
H0 = IV

Hi=f(Xi,Hi-1) i=1,2,….t
h(X)=Ht

The result of the hash function is denoted with h(X) and IV
is the abbreviation for Initial Value. The function f is called
the round function. Two elements in this definition have an
important influence on the security of a hash function: the
choice of the padding rule and the choice of the IV.

 It is recommended that the padding rule is unambiguous
(i.e., there exist no two messages that can be padded to the
same message), and that it appends at the end the length of
the message. The IV should be considered as part of the
description of the hash function. In some cases one can
deviate from this rule, but this will make the hash function
less secure and may lead to trivial collisions or second
preimages.

The research on hash functions has been focussed on the
question: what conditions should be imposed on f to
guarantee that satisfies certain conditions? The two main
results on this problem will be discussed. The first result is
by X. Lai and J. Massey [79] and gives necessary and
sufficient conditions for f in order to obtain an “ideally
secure” hash function h.

Proposition 1 Assume that the padding contains the length
of the input string, and that the message X (without
padding) contains at least 2 blocks. Then finding a second
preimage for h with a fixed IV requires 2noperations if and
only if finding a second preimage for
f with arbitrarily chosen Hi−1 requires 2noperations.

A second result by I. Damg˚ard [33] and independently by
R. Merkle [89] states that it is sufficient for f To be a
collision resistant function.

Proposition 2 Let f be a collision resistant function
mapping l to n − l bits (with n − l > 1). If an unambiguous
padding rule is used, the following construction will yield a
collision resistant hash function:
 H1 = f (0l+1|| x1)
 Hi = f (Hi−1||1|| x1) for i = 2, 3,. . . t .

5.2 Hash function based on a block cipher

Two arguments can be indicated for designers of hash
functions to base their schemes on existing encryption
algorithms. The first argument is the minimization of the
design and implementation effort: hash functions and block
ciphers that are both efficient and secure are hard to design,
and many examples to support this view can be found in
the literature. Moreover, existing software and hardware

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

366

implementations can be reused, which will decrease the
cost. The major advantage however is that the trust in
existing encryption algorithms can be transferred to a hash
function. It is impossible to express such an advantage in
economical terms, but it certainly has an impact on the
selection of a hash function. It is important to note that for
the time being significantly more research has been spent
on the design of secure encryption algorithms compared to
the effort to design hash functions. It is also not obvious at
all that the limited number of design principles for
encryption algorithms are also valid for hash functions.

The main disadvantage of this approach is that dedicated
hash functions are likely to be more efficient. One also has
to take into account that in some countries export
restrictions apply to encryption algorithms but not to hash
functions. Finally note that block ciphers may exhibit some
weaknesses that are only important if they are used in a
hashing mode. A distinction will be made between hash
functions for which the size of the hashcode equals the
block length of the underlying block cipher and hash
functions for which the size of the hashcode is twice this
length. This is motivated by the fact that most proposed
block ciphers have a block length of only 64 bits, and
hence an MDC with a result twice the block length is
necessary to obtain a CRHF. Other proposals are based on
block ciphers with a large key and on a block cipher with a
fixed key. The encryption operation E will be written as Y
= E(K, X). Here X denotes the plaintext, Y the ciphertext
and K the key. The corresponding decryption operation
will be denoted with X = D(K, Y). The size of the
plaintext and ciphertext or the block length will be denoted
with r, while the key size will be denoted with k. In the
case of the well known block cipher DES, r = 64 and k =
56 [48]. It will be assumed that the reader is familiar with
the basic modes of operation of a block cipher as described
in [49, 66, 91]. The rate of a hash function based on a block
cipher is defined as the number of encryptions to process r
plaintext bits.

5.2.1 Size of hashcode equals block length

From Definition 2 it follows that in this case the hash
function can only be collision resistant if the block length r
is at least 128 bits. Many schemes have been proposed in
this class, but the first secure scheme was not proposed
until 1985. Seven years later, the author has suggested a
synthetic approach: we have studied all possible schemes
which use exclusive ors and with an internal memory of
only 1 block. As a result, it was shown that 12 secure
schemes exist, but up to a linear transformation of the
variables, they correspond essentially to 2 schemes: the
1985 scheme by S Matyas, C. Meyer and J. Oseas [85]:

f = E© (s(Hi−1), Xi)

(here s() is a mapping from the ciphertext space to the key
space and E ©(K, X) = E(K, X) © X), and the variant that
was proposed by the author in 1989 [102] and by
Miyaguchi et al. [96] for N-hash and later for any block
cipher [69] f = E ©(s(Hi−1), Xi) © Hi−1. The first scheme is
currently under consideration for ISO standardization as a
one-way hash function [67]. The 12 variants have slightly
different properties related to weaknesses of the underlying
block cipher [106]. One of those variants that is well
known is the Davies-Meyer scheme [38, 125]: f = E©(Xi,
Hi−1) It was also shown by the author that the security
level of these hash functions is limited by min(k, r), even if
the size of some internal variables is equal to max(k, r).

5.2.2 Size of hashcode equals twice block length

This type of functions has been proposed to construct
collision resistant hash functions based on block ciphers
with a block length of 64 bits like DES.
A series of proposals attempted to double the size of the
hashcode by iterating a OWHF (e.g., [73, ?] and [83]); all
succumbed to a ‘divide and conquer’ attack [24, 55, 95].
The scheme by Zheng, Matsumoto and Imai [128] was
broken in [?]. A new scheme that was broken by the author
and independently by I. Damg˚ard and L. Knudsen [35] is
the Algorithmic Research hash function [70].

An interesting proposal was described by R. Merkle [89].
A security “proof” was given under the assumption that
DES has sufficient random behaviour. However the rate of
the most efficient proposal equals about 3.6. The proof for
this proposal only showed a security level of 52.5 bits;
however this has been improved to 56 bits in [106].

5.3 Hash functions based on modular arithmetic

These schemes are designed to use available hardware for
modular arithmetic to produce digital signatures. Their
security is partially based on the hardness of certain
number theoretic problems and they are easily scalable.
The disadvantage is that precautions have to be taken
against attacks that exploit the mathematical structure like
fixed points of modular exponentiation [10] (trivial
examples are 0 and 1), multiplicative attacks and attacks
with small numbers, for which no modular reduction
occurs.

5.3.1 Schemes with a small modulus

A first type of schemes uses only a small modulus (about
32 bits). R. Jueneman proposed a first version in [71, 72],
but several attacks resulted in several new versions [73, 74,
75]. The last scheme was broken by D. Coppersmith in
[25].

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

367

5.3.2 Schemes with a large modulus

A second class of schemes uses a large modulus (the size
of the modulus n is typically 512 bits or more). In this case
the operands are elements of the ring corresponding to an
RSA modulus, i.e., the product of two large primes, or of a
Galois Field GF (p) or GF (2n). For convenience these
schemes will be denoted as schemes with large modulus,
although this terminology applies strictly speaking only to
RSA based schemes. The latter class can be divided into
practical schemes and scheme that are provably secure. In
the case of an RSA modulus, one has to solve the following
practical problem: the person who has generated the
modulus knows its factorization, and hence he has a
potential advantage over the other users of the hash
function. The solution is that the modulus can be generated
by a trusted third party (in that case one can not use the
modulus of the user), or one can design the hash function
in such a way that the advantage is limited. The most
efficient schemes are based on modular squaring.

Moreover some theoretical results suggest that inverting a
modular squaring without knowledge of the factorization of
the modulus is a difficult problem. Again one can study all
possible schemes which use a single squaring and
exclusive ors and with an internal memory of only 1 block.
Several schemes of this type have been evaluated in
previous papers [54, 99, 100]. It can be shown [106] that
the optimal scheme is of the form:

f = (Xi© Hi−1)
2
mod N

Most existing proposals use however the well known
Cipher Block Chaining (CBC) mode:

f = (Xi� Hi−1)
2
mod N .

In order to avoid the vulnerabilities (one can go backwards
easily), additional redundancy is added to the message. The
first proposal was to fix the 64 most significant bits to 0
[38]. It was however shown in [54, 76] that this is not
secure. In a new proposal, that appeared in national and
international standards (the informative annex D of
CCITT-X.509 [18] and the French standard ETEBAC 5
[19]) the redundancy was dispersed. D. Coppersmith
showed however that one can construct two messages such
that their hashcode is a multiple of each other [26, 77]. If
the hash function is combined with a multiplicative
signature scheme like RSA [112], one can exploit this
attack to forge signatures. As a consequence, new methods
for adding redundancy were specified in [58, 77, 64, 68],
but these methods are still under study.

Other schemes based on squaring that are insecure are the
scheme by I. Damg˚ard [33] that was broken by B. den

Boer [40] and the scheme by Y. Zheng, T. Matsumoto and
H. Imai [128], that is vulnerable to the attack described in
[54]. I. Damg˚ard [34] has identified several weaknesses in
an MDC (and a MAC) based on arithmetic in GF (2593) [1].

Stronger schemes have been proposed that require more
operations. Examples are the use of two squaring
operations [54]:

f = ³Hi−1 � (Xi)
2´mod N

and the replacement of the squaring by a higher exponent
(3 or 216+ 1) in the previous schemes. This allows
simplifying the redundancy [16, 54].

One can conclude that it would be desirable to find a secure
redundancy scheme for a hash function based on modular
squaring and to replace the CBC mode by a more secure
mode. If a slower scheme is acceptable, the exponent can
be increased.

This section will be concluded with provably secure
schemes. I. Damg˚ard [31, 32] has suggested constructions
for which finding a a collision is provably equivalent to
factoring an RSA modulus or finding a discrete logarithm
modulo a large prime. The construction of J.K. Gibson [53]
yields a collision resistant function based on the discrete
logarithm modulo a composite. Both the factoring and the
discrete logrithm problem are known to be difficult number
theoretic problems. The disadvantages of these schemes are
that they are very inefficient.

5.4 Schemes based on knapsacks

The knapsack problem is a well known NP-complete
problem. In cryptography, a special case is considered,
namely given a set of n b-bit integers {a1, a2. . . an}, and an
s-bit integer S (with s ≈ b + log2n), find a vector X with
components xiequal to 0 or 1 such that

The first application of this function was the 1978 Merkle-
Hellman public key scheme [87]. Almost all schemes based
on the knapsack problem have been broken [12, 44], which
has given the knapsack a bad reputation. It is an open
problem whether the knapsack problem is only hard in
worst case, while the average instance is easy. If this would
be true the knapsack problem would be useless for
cryptography.

The attractivity of the problem lies in the fact that
implementations in both hardware and software are much
faster than schemes based on number theoretic problems.
In the case of additive knapsacks, several constructions
have been suggested and broken (e.g., the scheme by I.
Damg˚ard [33] was broken by P. Camion and J. Patarin

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

368

[15]). Other results can be found in [56, 61]. It is for the
time being an open problem whether a random knapsack
with n = 1024 and b = 512 is hard to solve.

The first multiplicative knapsack proposed by J. Bosset
[11] was broken by P. Camion [14]. A new scheme by G.
Z´emor is also based on the hardness of finding short
factorizations in certain groups [127]. For the suggested
parameters it can be shown that two messages with the
same hashcode will differ in at least 215 bits. It remains an
open problem whether it is easy to find factorizations of a
‘reasonable size’.

5.5 Dedicated hash functions

In this section some dedicated hash functions will be
discussed, i.e., algorithms that were especially designed for
hashing operations.

MD2 [78] is a hash function that was published by R.
Rivest of RSA Data Security Inc. in 1990. It makes use of a
random 8-bit permutation and although it is software
oriented, it is not too fast in software.The evaluation by the
author [106] suggests that 16 rounds are sufficient, but only
offer a marginal security. No other evaluations of MD2
have been published.

A faster algorithm by the same designer is MD4 [113, 114].
This algorithm uses standard 32-bit logic and arithmetic
operations and is very efficient in software. The number of
rounds, which corresponds to the number of times a single
message bit is processed, is equal to 3. It was however
shown by R. Merkle in an unpublished result and by B. den
Boer and A. Bosselaers [40] that omitting the third
respectively the first round yields a weak scheme, which
suggests that the security offered by MD4 is only marginal
(although the scheme is not broken for the time being).

In consequence of these attacks, R. Rivest realized that the
security level of MD4 was not as large as he intended, and
he proposed in 1991 a strengthened version of MD4,
namely MD5 [115, 116]. An additional argument was that
although MD4 was not a very conservative design, it was
being implemented fast into products. An additional round
was added, and several operations were modified to make
the previous attacks more difficult. It was however shown
by B. den Boer and A. Bosselaers [42] that with respect to
certain criteria MD5 is weaker than MD4.

On January 31, 1992, NIST (National Institute for
Standards and Technology, USA) published in the Federal
Register a proposed Secure Hash Standard (SHS) [52] that
contains the description of the Secure Hash Algorithm
(SHA). This hash function is designed to work with the

Digital Signature Algorithm (DSA) proposed in the Digital
Signature Standard (DSS) [51]. The algorithm is clearly
inspired by MD4, but it is a strengthened version. The two
most remarkable changes are the increase of the size of the
hashcode from 128 to 160 bits and the fact that the message
words are not simply permuted but transformed with a
cyclic code. Another improved version of MD4 called
RIPEMD was developed in the framework of the EEC-
RACE project RIPE. HAVAL was proposed by Y. Zheng,
J. Pieprzyk and J. Seberry at Auscrypt’92 [129]; it is an
extension of MD5. The most important properties are a
variable number of rounds, a variable size of the hashcode
and the use of highly nonlinear Boolean functions. This
concludes the variants on MD4.

N-hash is a hash function designed by S. Miyaguchi, M.
Iwata and K. Ohta [96, 98]. Serious weaknesses have been
identified in this scheme by B. den Boer [41] and E. Biham
and A. Shamir [6]. A new version of N-hash appeared in a
Japanese contribution to ISO [69]. It was shown that this
scheme contains additional weaknesses [9, 106].

FFT-Hash I and II are MDC’s suggested by C.P. Schnorr
[118, 119]. The first version was broken independently by J.
Daemen, A. Bosselaers, R. Govaerts and J. Vandewalle [?]
and by T. Baritaud, H. Gilbert and M. Girault [4]. The
second version was broken three weeks after its publication
by S. Vaudenay [122].

R. Merkle suggested in 1989 a software oriented one-way
hash function that he called Snefru [90]. It is based on large
random substitution tables (2 Kbyte per pass). E. Biham
and A. Shamir showed several weaknesses of Snefru [7]. A
weaker attack was found independently by J. Williams
[124]. As a consequence of theses attacks, it is
recommended to use 6 and preferably 8 passes, possibly
combined with an increased size of the hashcode. However,
these measures increase the size of the substitution tables
and decrease the performance.

The scheme by I. Damg˚ard [33] based on cellular
automata has been broken in [28]. J. Daemen, J.
Vandewalle and R. Govaerts subsequently proposed
Cellhash, a new hash function based on a cellular
automaton [28] and an improved version Subhash [30].
Both schemes are hardware oriented.

6. An overview of MAC proposals

The general model for an iterated MAC is similar as the
model for an MDC. The basic difference is that the round
function f and in some cases the initial value IV
 depend on the secret key K. In contrast with the
variety of MDC proposals, very few algorithms exist. This

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

369

can perhaps be explained by the fact that the existing
standards are still widely accepted. the ANSI standard [3]
specifies that the resulting MAC contains 32 bits. It is clear
that a result of 32 bits can be sufficient if a birthday attack
(cf. section 3) is not feasible and if additional protection is
present against random attacks (cf. section 3), which is
certainly the case in the wholesale banking environment. In
other applications, this can not be guaranteed. Therefore,
certain authors recommend also for a MAC a result of 128
bits [74, 75].
The most widespread method tocompute a MAC are the
Cipher Block Chaining (CBC) and Cipher FeedBack (CFB)
mode of DES [3, 50, 63, 65, 91]. The descriptions and
standards differ because some of them select one of the two
modes, suggest other padding schemes or leave open the
number of output bits that is used for the MAC.

CBC : f = E(K, Hi−1 � Xi)
CFB : f = E(K, Hi−1)� Xi

In the case of CFB it is important to encrypt the final result
once more, to avoid a linear dependence of the MAC on
the last plaintext block. In the case of DES, an attack based
on exhaustive key search (cf. section 3) or differential
attacks [8] can be thwarted by encrypting only the last
block with triple DES; at the same time this can block the
following chosen plaintext attack [41] (it will be described
for the case` of CBC): let H and H0be the CBC-MAC
corresponding to key K and plaintext X and X0respectively.
The attacker appends a block The Message Authentication
Algorithm (MAA) is a dedicated MAC.

It was published in 1983 by D. Davies and D. Clayden in
response to a request of the UK Bankers Automated
Clearing Services (BACS) [37, 39]. In 1987 it became a
part of the ISO 8731 banking standard [63]. The algorithm
is software oriented and has a 32-bit result, which makes it
unsuitable for certain applications.

A new non-iterative MAC based on stream ciphers was
proposed recently by X. Lai, R. Rueppel and J. Woollven
[81]. Further study is necessary to assess its security.
The DSA algorithm (Decimal Shift and Add, not to be
confused with the Digital Signature Algorithm) was
designed in 1980 by Sievi of the German Zentralstelle f¨ur
das Chiffrierwesen, and it is used as a message
authenticator for banking applications in Germany [39].
Weaknesses of this algorithm have been identified in [59,
106]. The scheme by F. Cohen [22] and its improvement
by Y. Huang and F. Cohen [60] proved susceptible to an
adaptive chosen message attack [103]. Attacks were also
developed [5, 106] on the weaker versions of this algorithm
that are implemented in the ASP integrity toolkit [23].
Finally it should be noted that several MAC algorithms
exist that have not been published, such as the S.W.I.F.T

authenticator and Dataseal [?]. This section will be
concluded with a discussion of provably secure and
efficient MAC’s based on universal hash functions [17, 20,
121, ?]. The advantage is that one can prove based on
information theory that an attacker can do no better than
guess the MAC: the security is hence independent of the
computing power of the opponent.

7. Conclusions

Cryptographic hash functions are a useful tool in the
protection of information integrity. Therefore the need
exist for provably secure and efficient constructions. For
the time being only a limited number of provably secure
constructions exist, that are very inefficient. Some
theoretical results are available to support practical
constructions, but most of our knowledge on practical
systems is originating from trial and error procedures.
Therefore it is important that new proposals are evaluated
thoroughly by several independent researchers and that
they are not implemented too quickly. Moreover
implementations should be modular such that upgrading of
the algorithm is feasible. The choice between different
algorithms will also depend on the available hardware.

References
[1] G.B. Agnew, R.C. Mullin and S.A. Vanstone, “Common

application protocols and their security characteristics,
”CALMOS CA34C168 Application Notes, U.S. Patent Number

4,745,568, August 1989
[2] S.G. Akl, “On the security of compressed encodings,”

Advances in Cryptology, Proceedings Crypto’83, D. Chaum,
Ed., Plenum Press, New York, 1984, pp. 209–230.

[3] “American national standard for financial institution message
authentication (wholesale),” X9.9-1986 (Revised), ANSI,
New York.

[4] T. Baritaud, H. Gilbert and M. Girault, “FFT hashing is not
collision-free,” Advances in Cryptology, Proceedings
Eurocrypt’92, LNCS 658, R.A. Rueppel, Ed., Springer-Verlag,
1993, pp. 35–44.

[5] I. Bellefroid and K. Beyen, “Evaluatie van de cryptografische
veiligheid van anti-virus paketten (Evaluation of the security
of anti-virus software – in Dutch),” ESAT Laboratorium,
Katholieke Universiteit Leuven, Thesis grad. eng., 1992.

[6] E. Biham and A. Shamir, “Differential cryptanalysis of Feal
and N-hash,” Advances in Cryptology, Proceedings
Eurocrypt’91, LNCS 547, D.W. Davies, Ed., Springer-Verlag,
1991, pp. 1–16.

[7] E. Biham and A. Shamir, “Differential cryptanalysis of Snefru,
Khafre, REDOC-II, LOKI and Lucifer,”Advances in
Cryptology, Proceedings Crypto’91, LNCS 576, J.
Feigenbaum, Ed., SpringerVerlag, 1992, pp. 156–171.

[8] E. Biham and A. Shamir, “Differential cryptanalysis of the full
16-round DES,” Technion Technical Report # 708, December
1991.

[9] E. Biham, “On the applicability of differential cryptanalysis to
hash functions,” E.I.S.S. Workshop on Cryptographic Hash

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

370

Functions, Oberwolfach (D), March 25-27, 1992.
[10] G.R. Blakley and I. Borosh, “Rivest-Shamir-Adleman

public-key cryptosystems do not always conceal messages,”
Comp. and Maths. with Applications, Vol. 5, 1979, pp. 169–
178.

[11] J. Bosset, “Contre les risques d’alt´eration, un syst`eme de
certification des informations,” 01 Informatique, No. 107,
February 1977.

[12] E.F. Brickell and A.M. Odlyzko, “Cryptanalysis: a survey of
recent results,” in “Contemporary Cryptology: The Science of
Information Integrity,” G.J. Simmons, Ed., IEEE Press, 1991,
pp. 501– 540.

[13] L. Brown, J. Pieprzyk and J. Seberry, “LOKI – a
cryptographic primitive for authentication and secrecy
applications,”Advances in Cryptology, Proceedings
Auscrypt’90, LNCS 453, J. Seberry and J. Pieprzyk, Eds.,
Springer-Verlag, 1990, pp. 229–236.

