
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 

 

361

Manuscript received  December 5, 2008 
Manuscript revised  December 20, 2008 

 Crypto Analysis of Newly Compression Function 
 

A.Arul Lawrence Selvakumar    C.Suresh Gnanadhas 
Assistant Professor/CSE     Professor/CSE  
The Oxford College of Engineering    Veltech College of Engineering 
Bangalore, INDIA     Chennai, INDIA 
  

 
Abstract 
Cryptographic hash functions are a useful building block for 
several cryptographic applications. The most important are 
certainly the protection of information authentication and digital 
signatures. This overview paper will discuss the definitions, 
describe some attacks on hash functions, and will give an 
overview of the existing practical constructions 
 
1. Introduction 
 
Hash functions are functions that map an input of arbitrary 
length to a string of fixed length, the hashcode. If these 
mappings satisfy some additional cryptographic conditions, 
they can be used to protect the integrity of information. 
Other cryptographic applications where hash functions are 
useful are the optimization of digital signature schemes, the 
protection of passphrases and the commitment to a string 
without revealing it. 
Hash functions appeared in cryptographic literature when it 
was realized that encryption of information is not sufficient 
to protect its authenticity. The simplest example is the 
encryption with a block cipher in Electronic Code Book 
(ECB) mode, where every block is encrypted 
independently. It is clear that an active attacker can easily 
modify the order of the ciphertext blocks and hence of the 
corresponding plaintext blocks. It will be shown that 
cryptographic hash functions allow for efficient 
constructions to protect authenticity with or without 
secrecy. 
In a first part of this overview paper, the definitions of 
several types of hash functions will be given, and the basic 
attacks on hash functions will be discussed. Then it will be 
explained briefly how they can be used to protect the 
integrity of information. The protection of software 
integrity will be treated as an example. Subsequently a 
general model is described and an extensive overview is 
given of the proposed schemes. Here a distinction will be 
made between hash functions with an without a secret key. 
Finally the conclusions will be presented. 
 
2. Definitions 
 
In this section definitions will be given for hash functions 
that do not use a secret key (Manipulation Detection Code 
orMDC) and for hash functions that use a secret key 
(Message Authentication Code or MAC).According to their 

properties, the class of MDC’s will be further divided into 
one-way hash functions (OWHF) and collision resistant 
hash functions (CRHF). 
 
A brief discussion of the existing terminology can avoid 
the confusion that is present in the literature. The term hash 
functions originate historically from computer science, 
where it denotes a function that compresses a string of 
arbitrary input to a string of fixed length. Hash functions 
are used to allocate as uniformly as possible storage for the 
records of a file. 
 
The name hash functions has also been widely adopted for 
cryptographic hash functions or cryptographically strong 
compression functions, but the result of the hash function 
has been given a wide variety of names in cryptographic 
literature:  
 
hashcode, hash total, hash result, imprint, (cryptographic) 
checksum, compression, compressed encoding, seal, 
authenticator, authentication tag, fingerprint, test key, 
condensation, Message Integrity Code (MIC), message 
digest, etc.  
 
                  Cryptographic Hash Function 
 
       MAC              
                                            MDC 
 
 
 
                        OWHF                CRHF  
 

Figure 1: A taxonomy for cryptographic Hash Function 
 
In the following the hash function will be denoted with h, 
and its argument, i.e., the information to be protected with 
X. The image of X under the hash function h will be 
denoted with (X) and the secret key with K.  
 
The general requirements are that the computation of the 
hashcode is “easy” if all arguments are known. Moreover it 
is assumed that Kerckhoff’s principle2is valid, which 
means that in the case of an MDC the description is public, 
and in the case of a MAC the only secret information lies 
in the key. 
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2.1 One-way hash function (OWHF) 
 
The first informal definition of a OWHF was apparently 
given by R. Merkle [88, 89] and M.O. Rabin [111]. 
 
Definition1: A one-way hash function is a function h 
satisfying the following conditions: 
1. The argument X can be of arbitrary length and 
the result h(X) has a fixed length of n bits (with n ≥ 64). 
Definition 2:   The  hash  function  must  be  one-way  in 
the sense  that  given a  Y  in the image of  h, it is “hard” to 
find a message X such that h(X) = Y and given X  and h(X) 
it is “hard” to find a message X0= X such that  h(X

0
) = 

h(X). 
 
The first part of the second condition corresponds to the 
intuitive concept of one-wayness, namely that it is “hard” 
to find a preimage of a given value in the range. In the case 
of permutations or injective functions only this concept is 
relevant. The second part of this condition, namely that 
finding a second preimage should be hard, is a stronger 
condition that is relevant for most applications. The 
meaning of “hard” still has to be specified. In the case of 
“ideal security”, introduced by X. Lai and J. Massey [79], 
producing a (second) preimage requires 2noperations. 
However, it may be that an attack requires a number of 
operations that is smaller than 2n, but is still 
computationally infeasible. 
 
2.2 Collision resistant hash function (CRHF) 
 
The first formal definition of a CRHF was apparently given 
by I. Damg˚ard [31, 32]. An informal definition was given 
by R. Merkle in [89]. 
 
Definition 2:   A collision resistant hash function is a 
function h satisfying the following conditions: 
 
1. The argument X can be of arbitrary length and the result 
h(X) has a fixed length of n bits (with n ≥ 128). 
 
2. The hash function must be one-way in the sense that 
given a Y in the image of h, it is “hard” to find a  message 
X such that h(X) = Y and given X and h(X) it is “hard” to 
find a message X0= X such that h(X0) = h(X). 
 
3. The hash function must be collision resistant: this means 
that it is “hard” to find two distinct messages that hash to 
the same result. 
 
Under certain conditions one can argue that the first part of 
the one-way property follows from the collision resistant 
property. Again several options are available to specify the 
word “hard”. In the case of “ideal security” [79], producing 

a (second) preimage requires 2noperations and producing a 
collision requires O(2n/2) operations. This can explain why 
both conditions have been stated separately.  
 
One can however also consider the case where producing a 
(second) preimage and a collision requires at least O(2n/2) 
operations, and finally the case where one or both attacks 
require less than O(2n/2) operations, but the number of 
operations is still computationally infeasible (e.g., if a 
larger value of n is selected). 
 
2.3 Message Authentication Code (MAC) 
 
Message Authentication Codes have been used for a long 
time in the banking community and are thus older than the 
open research in cryptology that started in the mid 
seventies. However, MAC’s with good cryptographic 
properties were only introduced after the start of open 
research in the field. 
 
Definition 3: A MAC is a function satisfying the following 
conditions: 
1. The argument X can be of arbitrary length and the result 
h (K, X) has a  fixed  length  of  n  bits  (with  n ≥ 32 . . . 64). 
2. Given h and X, it is “hard” to determine h(K, X) with a 
probability of success “significantly higher”than 1/2n. 
Even when a large number of pairs{Xi, h(K, Xi)}are known, 
where the Xihave been selected by the opponent, it is 
“hard” to determine the key K or to compute h(K, X

0
) for 

any X
0
6= Xi.This last attack is called an adaptive chosen 

text attack. 
 
Note that this last property implies that the MAC should be 
both one-way and collision resistant for someone who does 
not know the secret key K. This definition leaves open the 
problem whether or not a MAC should be one-way or 
collision resistant for someone who knows K. An example 
where this property could be useful is the authentication of 
multi-destination messages [94]. 
 
3. Methods of attack 
 
Three elementary attacks that are independent of the 
specific hash function will be described. For a more 
extensive overview of attacks on hash functions the reader 
is referred to [102, 106]. 
In case of a random attack the opponent select a random 
message and hopes that the modification will remain 
undetected. For an ideally secure hash function, his 
probability of success equals 1/2n. The feasibility of this 
attack depends on the action taken in case of detection of 
an erroneous result, on the expected value of a successful 
attack and on the number of attacks that can be carried out. 
For most applications this implies that n = 32 bits is not 
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sufficient. This is certainly true if an MDC is used and 
hence the opponent can attack several messages off-line 
and in parallel. In that case the hashcode should have a 
length of 64 bits or more. 
 
The idea behind the birthday attack [126] is that for a 
group of 23 people the probability that at least two people 
have a common birthday exceeds 1/2. Intuitively one 
would expect that the group should be significantly larger. 
This can be exploited to attack a hash function in the 
following way: an adversary generates r1 variations on a 
bogus message and r2variations on a genuine message. A 
second possibility is that he collects a large number of 
messages and is able to divide them in two categories. This 
is the only way in the case of a MAC, where the opponent 
is unable to generate (message, MAC) pairs. The 
probability of finding a bogus message and a genuine 
message that hash to the same result is given by  

1 − exp(−(r1 · r2)/2n) , 
Which is about 63 % when r = r1= r2 = 2

n/2. The involved 
comparison problem does not require r2    operations: after 
sorting the data, which requires O(r log r) operations, 
comparison is easy. If the hash function can be called as a 
black box, the new algorithm of J.-J. Quisquater [109], 
requires √2π·2

n/2 operations and negligible storage. The 
conclusion is that if the hash function has to be collision 
resistant, n should be sufficiently large. In view of the fact 
that the speed of computers doubles every three years, 128 
bits corresponding to 264operations is sufficient for the next 
10 years, but it will be only marginally secure within 20 
years.  
 
In the case of a MAC, a third attack is relevant, namely an 
exhaustive search for the secret key K. It is a known 
plaintext attack, where an attacker knows M plaintext-
MAC pairs for a given key and will try to determine the 
key by trying all possible keys. In order to determine the 
key uniquely, M has to be slightly larger than k/n. The 
expected number of trials is equal 2k−1, with k the size of 
the key in bits. 
 
4. Applications of cryptographic hash 
functions 
 
This section aims to illustrate briefly how cryptographic 
hash functions can be used to protect the authenticity of 
information and to build digital signature schemes. In a 
second part the application to software protection will be 
discussed. 
 
4.1 Information authentication and digital 
signatures 
 

The protection of the authenticity of information includes 
two aspects: 
• The protection of the originator of the information, or 

in ISO terminology [62] data origin authentication.   
• The fact that the information has not been modified or 

in ISO terminology [62] the integrity of the 
information. 

There are two basic methods for protecting the authenticity 
of information. 
• The first approach is analogous to the approach of a 
asymmetric cipher, where the secrecy of large data 
quantities is based on the secrecy and authenticity of a 
short key. In this case the authentication of the information 
will also reply on the secrecy and authenticity of a key. To 
achieve this goal the information is compressed with a hash 
function and the resulting hashcode is appended to the 
information. The presence of this redundancy allows the 
receiver to make the distinction between authentic 
information and bogus information. 
 
In order to guarantee the origin of the data, a secret key that 
can be associated to the origin has to intervene in the 
process. In the case of a MAC, the secret key is involved in 
the compression process, while in the case of an MDC, the 
information and/or the hashcode will subsequently be 
encrypted with a secret key.  
 
• The second approach consist of basing the authenticity 
(both integrity and origin authentication) of the information 
on the authenticity of the hashcode. 
 
Hash functions play also an important role in digital 
signature schemes. A digital signature is a cryptographic 
technique that produces the electronic equivalent of a 
manual signature. This means that a digital signature can 
prohibit the forging of a message by anybody else but the 
sender. Moreover the receiver is given guarantee of the 
message’s authenticity, in the sense that he can 
subsequently prove to a third party that the message is 
authentic even if its originator revokes it. The concept of a 
digital signature was suggested in 1976 by W. Diffie and M. 
Hellman [45]: the sender transforms the information with a 
secret key, and the receiver can verify the signature by 
applying the corresponding public key. 
The first practical scheme was the RSA cryptosystem [112]. 
Other efficient schemes include the scheme of ElGamal 
[46], the proposed NIST digital signature standard [51], 
and the schemes based on zero-knowledge techniques: 
Fiat-Shamir [47], Guillou-Quisquater [108], and Schnorr 
[117]. For a more detailed discussion the reader is referred 
to [95]. 
 
Most digital signature schemes can be optimized in the 
following way: the signature scheme is not applied to the 
message but to the hashcode of the message. Note that this 
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corresponds to the second approach for authentication, i.e., 
replace the message by a short hashcode. 
 
The advantages are that the signature has a fixed short 
length and that the computational requirements are 
minimized (most signature schemes are rather slow). 
Moreover the security level of the signature scheme can be 
increased. In other signature schemes, like the zero-
knowledge based schemes and many theoretical 
constructions, a OWHF forms an integral part of the 
signature scheme. 
 
Now the choice between a OWHF and a CRHF will be 
discussed. It is clear from the definition that a CRHF is 
stronger than a OWHF, which implies that using a CRHF is 
playing safe. On the other hand, it should be noted that 
designing a OWHF is easier, and that the storage for the 
hashcode can be halved (64 bits instead of 128 bits). A 
disadvantage of a OWHF is that the security level degrades 
proportional to the number of applications of h: an outsider 
who knows s hashcodes has increased his probability to 
find an X1with a factor s. This limitation can be overcome 
through the use of a parameterized OWHF. 
 
In order to understand when a CRHF is required, the 
following attack is considered. Assume that the has h 
function is not collision resistant: an attacker will thus be 
able to find a collision, i.e., two plain texts X and X0such 
that h(X) = h(X0). Subsequently he will protect the 
authenticity of X through h(X), and later he can substitute 
X0for X. Therefore the use of a CRHF is recommended for 
any application where the attacker has complete control 
over the argument of the hash function, which implies he 
can select X, or he is an insider to the system. 
 
However, one can certainly imagine applications where 
this attack is not relevant. If the attacker is an outsider, he 
can not choose X, and will be restricted to observe X and 
h(X). Subsequently he will try to come up with an X

0
such 

that h(X) = h(X
0
). Examples of applications where a 

OWHF would be sufficient are the following: 
 
1. The parties involved completely trust each other, which 
is trivially the case if there is only one party. One could 
think of someone who protects the integrity of his 
computer files (which he only can generate) through the 
calculation and storage of an MDC. 
 
2. The computation of the h(X) involves a random 
component, that can not be controlled by the insider [89]: 
X can be randomized before applying h through encryption 
of X with a good block cipher using a truly random key, 
that is added to the resulting ciphertext [88], or through the 
selection of a short random prefix to X [31];h itself can be 

randomized through randomly choosing h from a family of 
functions indexed by a certain parameter. 
 
One can conclude that the choice between a CRHF and a 
OWHF is application dependent. 
  
4.2 Software protection 
 
To illustrate the use of a MAC, MDC, and a digital 
signature scheme, it will be explained how these three 
techniques can be applied to protect the integrity of 
software [92]. The two parties involved in the application 
are the software vendor (who is also supposed to be the 
author of the software) and the user.  
 
The attacker will try to modify the software: this can be a 
computer virus [21], a competitor or even one of the parties 
involved. For this application there is clearly no need for 
secrecy. The three approaches will be discussed together 
with their advantages and disadvantages. 
 
MAC: the software vendor will use his secret key to 
compute the MAC for the program and append the MAC to 
the program. The main problem here is the distribution of 
the secret key to the user through a channel that protects 
both its secrecy and its authenticity, which induces a 
significant overhead. This secret key has to be protected 
carefully by both software vendor and user: if a 
compromise at one place occurs, the protection is lost. Both 
software vendor and user can modify the program and the 
corresponding MAC, and thus in the case of a dispute, a 
third party can not make any distinction between them. The 
vulnerability of the secret key implies that it is mandatory 
that every user shares a different key with the software 
vendor. The advantage of this approach is that the secret 
storage is independent of the number of programs to be 
protected, but depends on the number of users (for the 
software vendor) and on the number of different software 
vendors (for the user). 
 
MDC: the software vendor will compute the MDC for the 
program. The main problem here is the distribution of the 
MDC to the user through a channel that protects the 
authenticity of the MDC. This is easier than the distribution 
of a secret key, but for every update of the program or for 
every new program a new transmission of an MDC is 
necessary. If the authenticity of the MDC is compromised, 
the protection is lost: the software vendor, the user and any 
third party can modify the program and the corresponding 
MDC. If a dispute occurs, one has to show to a judge that 
the value of an MDC is authentic: it is generally not 
possible to prove to the judge who actually modified the 
authentic channel and the program. The main advantage is 
that this approach requires no secret storage. Every 
program needs an authentic storage both at the user’s site 
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and at the vendor’s site. 
 
Digital signature: the software vendor will append to the 
program a digital signature that is computed with his secret 
key. The main problem here is the distribution of the 
corresponding public key to the user through a channel that 
protects its authenticity. The secrecy and authenticity of the 
secret key have to be protected carefully by the software 
vendor: if it is compromised, anyone can modify programs 
and update the corresponding signature. 
 
If the authenticity of the public key is compromised, the 
protection is also lost: anyone can replace it with the public 
key corresponding to his secret key. The difference with 
the previous approaches is the asymmetry: only the 
software vendor can generate a signature, but anyone can 
verify it. This implies that the vendor can be held liable to a 
third party if the program contains a virus. The only way he 
can escape is by claiming that his secret key was stolen. 
However, if he can not repeat this type of fraud, as he will 
loose quickly the trust of his customers. Every vendor has 
to store one secret key, while every user needs an authentic 
storage for the public key of every vendor. 
 
The selection of a particular solution will depend on one 
hand on the number of users, vendors and programs, and 
on the other hand on the availability of authentic and/or 
secret storage and communication. The digital signature is 
clearly the only solution that can protect the users against a 
malicious software vendor. 
 
A similar verification process can be executed when the 
program is loaded from disk to the Central Processing Unit. 
If the disk is not shared, non-repudiation is not required, 
but it is still attractive to use a digital signature scheme: the 
CPU has to know only the public key corresponding to the 
disk. An alternative is to provide for authentic storage of 
the MDC of a file that contains the MDC’s of all 
programs.In [36] a scheme is described that combines a 
digital signature for checking new software with a MAC 
for verification at run-time. 
 
5. An overview of MDC proposals 
 
5.1 A general model 
 
Before discussing a small fraction of the large number of 
proposals for MDC’s, the general scheme for describing a 
hash function will be sketched. All known hash functions 
are based on a compression function with fixed size input; 
they process every message block in a similar way. This 
has been called an “iterated” hash function in [79]. The 
information is divided into t blocks X1 through Xt. If the 
total number of bits is no multiple of the block length, the 
information can be padded to the required length. The hash 

function can then be described as follows: 
H0   = IV 

Hi=f(Xi,Hi-1)       i=1,2,….t 
h(X)=Ht 

The result of the hash function is denoted with h(X) and IV 
is the abbreviation for Initial Value. The function f is called 
the round function. Two elements in this definition have an 
important influence on the security of a hash function: the 
choice of the padding rule and the choice of the IV. 
 
 It is recommended that the padding rule is unambiguous 
(i.e., there exist no two messages that can be padded to the 
same message), and that it appends at the end the length of 
the message. The IV should be considered as part of the 
description of the hash function. In some cases one can 
deviate from this rule, but this will make the hash function 
less secure and may lead to trivial collisions or second 
preimages. 
 
The research on hash functions has been focussed on the 
question: what conditions should be imposed on f to 
guarantee that satisfies certain conditions? The two main 
results on this problem will be discussed. The first result is 
by X. Lai and J. Massey [79] and gives necessary and 
sufficient conditions for f in order to obtain an “ideally 
secure” hash function h. 
 
Proposition 1 Assume that the padding contains the length 
of the input string, and that the message X (without 
padding) contains at least 2 blocks. Then finding a second 
preimage for h with a fixed IV requires 2noperations if and 
only if finding a second preimage for 
f with arbitrarily chosen Hi−1 requires 2noperations. 
 
A second result by I. Damg˚ard [33] and independently by 
R. Merkle [89] states that it is sufficient for f To be a 
collision resistant function. 
 
Proposition 2  Let f be a collision resistant function 
mapping l to n − l  bits (with n − l > 1). If an unambiguous 
padding rule is used, the following construction will yield a 
collision resistant hash function: 
             H1 = f (0l+1|| x1) 
             Hi = f (Hi−1||1|| x1) for i = 2, 3,. . . t . 
 
5.2 Hash function based on a block cipher  
 
Two arguments can be indicated for designers of hash 
functions to base their schemes on existing encryption 
algorithms. The first argument is the minimization of the 
design and implementation effort: hash functions and block 
ciphers that are both efficient and secure are hard to design, 
and many examples to support this view can be found in 
the literature. Moreover, existing software and hardware 
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implementations can be reused, which will decrease the 
cost. The major advantage however is that the trust in 
existing encryption algorithms can be transferred to a hash 
function. It is impossible to express such an advantage in 
economical terms, but it certainly has an impact on the 
selection of a hash function. It is important to note that for 
the time being significantly more research has been spent 
on the design of secure encryption algorithms compared to 
the effort to design hash functions. It is also not obvious at 
all that the limited number of design principles for 
encryption algorithms are also valid for hash functions. 
 
The main disadvantage of this approach is that dedicated 
hash functions are likely to be more efficient. One also has 
to take into account that in some countries export 
restrictions apply to encryption algorithms but not to hash 
functions. Finally note that block ciphers may exhibit some 
weaknesses that are only important if they are used in a 
hashing mode. A distinction will be made between hash 
functions for which the size of the hashcode equals the 
block length of the underlying block cipher and hash 
functions for which the size of the hashcode is twice this 
length. This is motivated by the fact that most proposed 
block ciphers have a block length of only 64 bits, and 
hence an MDC with a result twice the block length is 
necessary to obtain a CRHF. Other proposals are based on 
block ciphers with a large key and on a block cipher with a 
fixed key. The encryption operation E will be written as Y 
= E(K, X). Here X denotes the plaintext, Y the ciphertext 
and K the key.  The corresponding decryption operation 
will be denoted with X = D(K, Y ). The size of the 
plaintext and ciphertext or the block length will be denoted 
with r, while the key size will be denoted with k. In the 
case of the well known block cipher DES, r = 64 and k = 
56 [48]. It will be assumed that the reader is familiar with 
the basic modes of operation of a block cipher as described 
in [49, 66, 91]. The rate of a hash function based on a block 
cipher is defined as the number of encryptions to process r 
plaintext bits. 
 
5.2.1 Size of hashcode equals block length 
 
From Definition 2 it follows that in this case the hash 
function can only be collision resistant if the block length r 
is at least 128 bits. Many schemes have been proposed in 
this class, but the first secure scheme was not proposed 
until 1985. Seven years later, the author has suggested a 
synthetic approach: we have studied all possible schemes 
which use exclusive ors and with an internal memory of 
only 1 block. As a result, it was shown that 12 secure 
schemes exist, but up to a linear transformation of the 
variables, they correspond essentially to 2 schemes: the 
1985 scheme by S Matyas, C. Meyer and J. Oseas [85]: 
 

f = E© (s(Hi−1), Xi) 

(here s() is a mapping from the ciphertext space to the key 
space and E ©(K, X) = E(K, X) © X), and the variant that 
was proposed by the author in 1989 [102] and by 
Miyaguchi et al. [96] for N-hash and later for any block 
cipher [69] f = E ©(s(Hi−1), Xi) © Hi−1. The first scheme is 
currently under consideration for ISO standardization as a 
one-way hash function [67]. The 12 variants have slightly 
different properties related to weaknesses of the underlying 
block cipher [106]. One of those variants that is well 
known is the Davies-Meyer scheme [38, 125]: f = E©(Xi, 
Hi−1) It was also shown by the author that the security 
level of these hash functions is limited by min(k, r), even if 
the size of some internal variables is equal to max(k, r). 
 
5.2.2 Size of hashcode equals twice block length 
 
This type of functions has been proposed to construct 
collision resistant hash functions based on block ciphers 
with a block length of 64 bits like DES. 
A series of proposals attempted to double the size of the 
hashcode by iterating a OWHF (e.g., [73, ?] and [83]); all 
succumbed to a ‘divide and conquer’ attack [24, 55, 95]. 
The scheme by Zheng, Matsumoto and Imai [128] was 
broken in [?]. A new scheme that was broken by the author 
and independently by I. Damg˚ard and L. Knudsen [35] is 
the Algorithmic Research hash function [70]. 
 
An interesting proposal was described by R. Merkle [89]. 
A security “proof” was given under the assumption that 
DES has sufficient random behaviour. However the rate of 
the most efficient proposal equals about 3.6. The proof for 
this proposal only showed a security level of 52.5 bits; 
however this has been improved to 56 bits in [106]. 
 
5.3 Hash functions based on modular arithmetic 
 
These schemes are designed to use available hardware for 
modular arithmetic to produce digital signatures. Their 
security is partially based on the hardness of certain 
number theoretic problems and they are easily scalable. 
The disadvantage is that precautions have to be taken 
against attacks that exploit the mathematical structure like 
fixed points of modular exponentiation [10] (trivial 
examples are 0 and 1), multiplicative attacks and attacks 
with small numbers, for which no modular reduction 
occurs. 
 
5.3.1 Schemes with a small modulus 
 
A first type of schemes uses only a small modulus (about 
32 bits). R. Jueneman proposed a first version in [71, 72], 
but several attacks resulted in several new versions [73, 74, 
75]. The last scheme was broken by D. Coppersmith in 
[25]. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 

 

367

5.3.2 Schemes with a large modulus 
 
A second class of schemes uses a large modulus (the size 
of the modulus n is typically 512 bits or more). In this case 
the operands are elements of the ring corresponding to an 
RSA modulus, i.e., the product of two large primes, or of a 
Galois Field GF (p) or GF (2n). For convenience these 
schemes will be denoted as schemes with large modulus, 
although this terminology applies strictly speaking only to 
RSA based schemes. The latter class can be divided into 
practical schemes and scheme that are provably secure. In 
the case of an RSA modulus, one has to solve the following 
practical problem: the person who has generated the 
modulus knows its factorization, and hence he has a 
potential advantage over the other users of the hash 
function. The solution is that the modulus can be generated 
by a trusted third party (in that case one can not use the 
modulus of the user), or one can design the hash function 
in such a way that the advantage is limited. The most 
efficient schemes are based on modular squaring.  
 
Moreover some theoretical results suggest that inverting a 
modular squaring without knowledge of the factorization of 
the modulus is a difficult problem. Again one can study all 
possible schemes which use a single squaring and 
exclusive ors and with an internal memory of only 1 block. 
Several schemes of this type have been evaluated in 
previous papers [54, 99, 100]. It can be shown [106] that 
the optimal scheme is of the form:  
 

f = (Xi© Hi−1)
2
mod N 

Most existing proposals use however the well known 
Cipher Block Chaining (CBC) mode: 
 

f = (Xi� Hi−1 )
2
mod N . 

 
In order to avoid the vulnerabilities (one can go backwards 
easily), additional redundancy is added to the message. The 
first proposal was to fix the 64 most significant bits to 0 
[38]. It was however shown in [54, 76] that this is not 
secure. In a new proposal, that appeared in national and 
international standards (the informative annex D of 
CCITT-X.509 [18] and the French standard ETEBAC 5 
[19]) the redundancy was dispersed. D. Coppersmith 
showed however that one can construct two messages such 
that their hashcode is a multiple of each other [26, 77]. If 
the hash function is combined with a multiplicative 
signature scheme like RSA [112], one can exploit this 
attack to forge signatures. As a consequence, new methods 
for adding redundancy were specified in [58, 77, 64, 68], 
but these methods are still under study. 
 
Other schemes based on squaring that are insecure are the 
scheme by I. Damg˚ard [33] that was broken by B. den 

Boer [40] and the scheme by Y. Zheng, T. Matsumoto and 
H. Imai [128], that is vulnerable to the attack described in 
[54]. I. Damg˚ard [34] has identified several weaknesses in 
an MDC (and a MAC) based on arithmetic in GF (2593) [1]. 
 
Stronger schemes have been proposed that require more 
operations. Examples are the use of two squaring 
operations [54]: 

f = ³Hi−1 � (Xi)
2´mod N 

 
and the replacement of the squaring by a higher exponent 
(3 or 216+ 1) in the previous schemes. This allows 
simplifying the redundancy [16, 54].  
 
One can conclude that it would be desirable to find a secure 
redundancy scheme for a hash function based on modular 
squaring and to replace the CBC mode by a more secure 
mode. If a slower scheme is acceptable, the exponent can 
be increased. 
 
This section will be concluded with provably secure 
schemes. I. Damg˚ard [31, 32] has suggested constructions 
for which finding a a collision is provably equivalent to 
factoring an RSA modulus or finding a discrete logarithm 
modulo a large prime. The construction of J.K. Gibson [53] 
yields a collision resistant function based on the discrete 
logarithm modulo a composite. Both the factoring and the 
discrete logrithm problem are known to be difficult number 
theoretic problems. The disadvantages of these schemes are 
that they are very inefficient. 
 
5.4 Schemes based on knapsacks 
 
The knapsack problem is a well known NP-complete 
problem. In cryptography, a special case is considered, 
namely given a set of n b-bit integers {a1, a2. . . an}, and an 
s-bit integer S  (with s ≈ b + log2n), find a vector X with 
components xiequal to 0 or 1 such that 
 
The first application of this function was the 1978 Merkle-
Hellman public key scheme [87]. Almost all schemes based 
on the knapsack problem have been broken [12, 44], which 
has given the knapsack a bad reputation. It is an open 
problem whether the knapsack problem is only hard in 
worst case, while the average instance is easy. If this would 
be true the knapsack problem would be useless for 
cryptography. 
 
The attractivity of the problem lies in the fact that 
implementations in both hardware and software are much 
faster than schemes based on number theoretic problems. 
In the case of additive knapsacks, several constructions 
have been suggested and broken (e.g., the scheme by I. 
Damg˚ard [33] was broken by P. Camion and J. Patarin 
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[15]). Other results can be found in [56, 61]. It is for the 
time being an open problem whether a random knapsack 
with n = 1024 and b = 512 is hard to solve. 
 
The first multiplicative knapsack proposed by J. Bosset 
[11] was broken by P. Camion [14]. A new scheme by G. 
Z´emor is also based on the hardness of finding short 
factorizations in certain groups [127]. For the suggested 
parameters it can be shown that two messages with the 
same hashcode will differ in at least 215 bits. It remains an 
open problem whether it is easy to find factorizations of a 
‘reasonable size’. 
 
5.5 Dedicated hash functions 
 
In this section some dedicated hash functions will be 
discussed, i.e., algorithms that were especially designed for 
hashing operations. 
 
MD2 [78] is a hash function that was published by R. 
Rivest of RSA Data Security Inc. in 1990. It makes use of a 
random 8-bit permutation and although it is software 
oriented, it is not too fast in software.The evaluation by the 
author [106] suggests that 16 rounds are sufficient, but only 
offer a marginal security. No other evaluations of MD2 
have been published. 
 
A faster algorithm by the same designer is MD4 [113, 114]. 
This algorithm uses standard 32-bit logic and arithmetic 
operations and is very efficient in software. The number of 
rounds, which corresponds to the number of times a single 
message bit is processed, is equal to 3. It was however 
shown by R. Merkle in an unpublished result and by B. den 
Boer and A. Bosselaers [40] that omitting the third 
respectively the first round yields a weak scheme, which 
suggests that the security offered by MD4 is only marginal 
(although the scheme is not broken for the time being). 
 
In consequence of these attacks, R. Rivest realized that the 
security level of MD4 was not as large as he intended, and 
he proposed in 1991 a strengthened version of MD4, 
namely MD5 [115, 116]. An additional argument was that 
although MD4 was not a very conservative design, it was 
being implemented fast into products. An additional round 
was added, and several operations were modified to make 
the previous attacks more difficult. It was however shown 
by B. den Boer and A. Bosselaers [42] that with respect to 
certain criteria MD5 is weaker than MD4. 
 
On January 31, 1992, NIST (National Institute for 
Standards and Technology, USA) published in the Federal 
Register a proposed Secure Hash Standard (SHS) [52] that 
contains the description of the Secure Hash Algorithm 
(SHA). This hash function is designed to work with the 

Digital Signature Algorithm (DSA) proposed in the Digital 
Signature Standard (DSS) [51]. The algorithm is clearly 
inspired by MD4, but it is a strengthened version. The two 
most remarkable changes are the increase of the size of the 
hashcode from 128 to 160 bits and the fact that the message 
words are not simply permuted but transformed with a 
cyclic code. Another improved version of MD4 called 
RIPEMD was developed in the framework of the EEC-
RACE project RIPE. HAVAL was proposed by Y. Zheng, 
J. Pieprzyk and J. Seberry at Auscrypt’92 [129]; it is an 
extension of MD5. The most important properties are a 
variable number of rounds, a variable size of the hashcode 
and the use of highly nonlinear Boolean functions. This 
concludes the variants on MD4. 
 
N-hash is a hash function designed by S. Miyaguchi, M. 
Iwata and K. Ohta [96, 98]. Serious weaknesses have been 
identified in this scheme by B. den Boer [41] and E. Biham 
and A. Shamir [6]. A new version of N-hash appeared in a 
Japanese contribution to ISO [69]. It was shown that this 
scheme contains additional weaknesses [9, 106]. 
 
FFT-Hash I and II are MDC’s suggested by C.P. Schnorr 
[118, 119]. The first version was broken independently by J. 
Daemen, A. Bosselaers, R. Govaerts and J. Vandewalle [?] 
and by T. Baritaud, H. Gilbert and M. Girault [4]. The 
second version was broken three weeks after its publication 
by S. Vaudenay [122]. 
 
 
R. Merkle suggested in 1989 a software oriented one-way 
hash function that he called Snefru [90]. It is based on large 
random substitution tables (2 Kbyte per pass). E. Biham 
and A. Shamir showed several weaknesses of Snefru [7]. A 
weaker attack was found independently by J. Williams 
[124]. As a consequence of theses attacks, it is 
recommended to use 6 and preferably 8 passes, possibly 
combined with an increased size of the hashcode. However, 
these measures increase the size of the substitution tables 
and decrease the performance. 
 
The scheme by I. Damg˚ard [33] based on cellular 
automata has been broken in [28]. J. Daemen, J. 
Vandewalle and R. Govaerts subsequently proposed 
Cellhash, a new hash function based on a cellular 
automaton [28] and an improved version Subhash [30]. 
Both schemes are hardware oriented. 
 
6. An overview of MAC proposals 
 
The general model for an iterated MAC is similar as the 
model for an MDC. The basic difference is that the round 
function f and in some cases the initial value IV
 depend on the secret key K. In contrast with the 
variety of MDC proposals, very few algorithms exist. This 
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can perhaps be explained by the fact that the existing 
standards are still widely accepted. the ANSI standard [3] 
specifies that the resulting MAC contains 32 bits. It is clear 
that a result of 32 bits can be sufficient if a birthday attack 
(cf. section 3) is not feasible and if additional protection is 
present against random attacks (cf. section 3), which is 
certainly the case in the wholesale banking environment. In 
other applications, this can not be guaranteed. Therefore, 
certain authors recommend also for a MAC a result of 128 
bits [74, 75]. 
The most widespread method tocompute a MAC are the 
Cipher Block Chaining (CBC) and Cipher FeedBack (CFB) 
mode of DES [3, 50, 63, 65, 91]. The descriptions and 
standards differ because some of them select one of the two 
modes, suggest other padding schemes or leave open the 
number of output bits that is used for the MAC. 

CBC : f = E(K, Hi−1 � Xi) 
CFB : f = E(K, Hi−1)� Xi 

 
In the case of CFB it is important to encrypt the final result 
once more, to avoid a linear dependence of the MAC on 
the last plaintext block. In the case of DES, an attack based 
on exhaustive key search (cf. section 3) or differential 
attacks [8] can be thwarted by encrypting only the last 
block with triple DES; at the same time this can block the 
following chosen plaintext attack [41]  (it will be described 
for the case` of CBC): let H and H0be the CBC-MAC 
corresponding to key K and plaintext X and X0respectively. 
The attacker appends a block The Message Authentication 
Algorithm (MAA) is a dedicated MAC. 
 
It was published in 1983 by D. Davies and D. Clayden in 
response to a request of the UK Bankers Automated 
Clearing Services (BACS) [37, 39]. In 1987 it became a 
part of the ISO 8731 banking standard [63]. The algorithm 
is software oriented and has a 32-bit result, which makes it 
unsuitable for certain applications. 
 
A new non-iterative MAC based on stream ciphers was 
proposed recently by X. Lai, R. Rueppel and J. Woollven 
[81]. Further study is necessary to assess its security. 
The DSA algorithm (Decimal Shift and Add, not to be 
confused with the Digital Signature Algorithm) was 
designed in 1980 by Sievi of the German Zentralstelle f¨ur 
das Chiffrierwesen, and it is used as a message 
authenticator for banking applications in Germany [39]. 
Weaknesses of this algorithm have been identified in [59, 
106]. The scheme by F. Cohen [22] and its improvement 
by Y. Huang and F. Cohen [60] proved susceptible to an 
adaptive chosen message attack [103]. Attacks were also 
developed [5, 106] on the weaker versions of this algorithm 
that are implemented in the ASP integrity toolkit [23]. 
Finally it should be noted that several MAC algorithms 
exist that have not been published, such as the S.W.I.F.T 

authenticator and Dataseal [?].  This section will be 
concluded with a discussion of provably secure and 
efficient MAC’s based on universal hash functions [17, 20, 
121, ?]. The advantage is that one can prove based on 
information theory that an attacker can do no better than 
guess the MAC: the security is hence independent of the 
computing power of the opponent. 
 
7. Conclusions 
 
Cryptographic hash functions are a useful tool in the 
protection of information integrity. Therefore the need 
exist for provably secure and efficient constructions. For 
the time being only a limited number of provably secure 
constructions exist, that are very inefficient. Some 
theoretical results are available to support practical 
constructions, but most of our knowledge on practical 
systems is originating from trial and error procedures. 
Therefore it is important that new proposals are evaluated 
thoroughly by several independent researchers and that 
they are not implemented too quickly. Moreover 
implementations should be modular such that upgrading of 
the algorithm is feasible. The choice between different 
algorithms will also depend on the available hardware. 
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