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Summary 
We have described an algorithm (AFT) for decomposing ERDs 
into various modules / clusters, forming various tables equivalent 
to number of clusters generated and forecasting based on 
available raw data and generated clusters. Unlike earlier efforts, 
our algorithm clusters not only the entities but also the 
relationships involved.  While designing this tool we have 
thought of its usability to all team members, application domain 
and extensibility to today’s distributed systems as well. As of 
now this algorithm is fully automatic, works only on data 
available in the form of entities, relationships, tuples, fields, 
feature vector etc.  It identifies suitable entity and relationship 
clusters without any further human (subjective) intervention.  
 
The next phase of this algorithm (AFT) will involve human 
intervention also. One of the corporate companies have given 
one important feedback. They have one separate department in 
their organization made up of very knowledgeable and 
experienced team members only. Their aim is to learn customer 
thoroughly and think from customer’s business point of view. 
This will give a value added services to customer. To achieve the 
same we may add, compare / contrast “expert’s opinion” also. 
 
We have discussed how our algorithm AFT, fulfills a 
comprehensive set of criteria for a good decomposition of ERDs. 
Our algorithm produces a more cohesive set of clusters while 
keeping inter-cluster coupling small. Our solution also offers a 
higher degree of modularity than that offered by other 
algorithms’ solutions. While our algorithm produces very good 
solutions, it cannot guarantee their global optimality. 
Our forecasting module of this proposed algorithm AFT will 
definitely prove to be most useful and suitable for all corporate 
teams, thereby saving their precious time which can be utilized 
on some other important chores.  
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Abstract  
Entity–relationship (ER) modeling is basically a technique 
of creating model before the detail database is formed. 
One the ERM or Entity Relationship Diagram (ERD) is 
complete and correct then it is feasible to convert into 
database design directly. The database design will also be 
complete and correct, as it is based on verified ERM and 

ERD. To increase the usability and understandability of 
ERM, ERD and large project database, I am planning to 
vote for classification of one of these or all these. There 
are two choices available: one is clustering based on this 
ERM or cluster database directly. I am planning to provide 
the algorithm based on clustering based on ERM / ERD, 
apply clustered details to database records / tuples and 
then forecast based on the available knowledge.  
 
However, the complexities inherent in large ER diagrams 
have restricted the effectiveness of their use in practice. It 
is often difficult for end-users, or even for well-trained 
database engineers and designers, to fully understand and 
properly manage large ER diagrams. Hence, to improve 
their understandability and manageability, large ER 
diagrams need to be decomposed into smaller modules by 
clustering closely related entities and relationships.  
 
Previous researchers have proposed many manual and 
semi-automatic approaches for such clustering. We are 
proposing an automated algorithm, not only for clustering 
large database or related ERD also extended to providing 
forecasting based on the same. 
 
Our automated algorithm facilitates the re-clustering of 
ER diagrams as they undergo many changes during their 
design, development, and maintenance phases, as and 
when required. 
 
The validation methodology used in this study considers a 
set of both objective and subjective criteria for comparison.  
 

Introduction 
 
Every organization or business firm need to store data in 
the most preferred form, and that is database. Pre-requisite 
required for preparing detail database is formation of 
entity relationship model and entity relationship diagram. 
ERM and ERD is a detail graphical representation of data 
requirement in an organization. This pictorial 
representation simulates details useful for database 
designers, engineers and complete team members. 
Processing the data available in the form of ERM or ERD 
or database will generate required knowledge. 
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ERDs enhance understanding of the system and improve 
communication among database engineers, designers, and 
end-users. 
 
Consider the following business scenario documented 
during systems analysis for the development of an 
information system for a retailer of, for example “book”: 
 
“A customer issues a enquiry to the vendor (retailer) to 
buy a book or few books for any library. The enquiry 
consists of an order item and book details. When the book 
is delivered, the customer is given a receipt for the book 
purchased including copies, title, author, edition, 
publisher. Because the customer has a line of credit, the 
actual payment is deferred until later. In the 
next billing cycle, the vendor issues an invoice that 
includes an invoice item related to the enquiry item on the 
purchase order. Upon receiving the invoice, the customer 
makes sales payment against the receipt of the book / 
books and the vendor receives vendor payment for the 
invoice.” 
 
This scenario results in the identification of the entities 
and relationships presented in a clustered 
ERD presented in Fig. 1a. Entities are represented by 
rectangles, relationships by diamond-shaped boxes, and 
connecting lines show which entities participate in which 
relationship [1]. For example, the fact that a customer 
(Entity A) buys a book (Entity D) is represented by the 
‘‘buy’’ relationship (Relationship 1).  
 

 
Figure 1 showing ERD for an information system of a 
retailer, for example “book”: 

In this example, weak or subtype entities are “order item” 
and “invoice item”. Strong or super type entities are “book 
/s order” and “invoice”.  
 
Based on problem stated by customer, finalize ERM and 
ERD. One this is done database implementation becomes 
easy.  There are various ER diagram generation tools 
available. This includes Visio by Microsoft, ER/1, Easy 
ER, etc. In addition to this there are various CASE tools 
available to achieve the same and much more. For ex. 
Turbo Analyst is the one which implements ERD and 
Data Flow Diagrams also.  As mentioned here, there are 
various commercially / professionally available tools to 
help team members at various levels of Software 
Development Life Cycle (SDLC). But no single tool is 
available which can give complete simulation about 
predication based on all phases of SDLC. In this phase of 
our research we are not including human or expert’s 
judgment at all. But we may add this feature later on. 
 
Most ER tools support systems analysis and database 
design, implementation, and maintenance. Yet, today ER 
tools fall short of their true potential. This is because ER 
diagrams are rarely as small as the one presented in Fig. 
1a. A typical application data model consists of 95 entities 
and an average enterprise model consists of 536 entities 
[2].  
 
To improve the understandability and user friendliness, it 
is essential not only to classify / decompose / cluster ERM, 
but also retain knowledge in the form of tables for future 
use. This research paper focuses exactly on this, so as to 
generate most effective, efficient and useful tool for all 
levels of team members. 
 
The ERD in Fig. 1a is small enough to comprehend 
without any decomposition. However, the three clusters 
(retailer’s ‘‘sales,’’ ‘‘accounts receivable,’’ and ‘‘accounts 
payable’’ subsystems) identified by our algorithm 
illustrate some of the advantages of decomposing ERDs. 
The literature on clustering [3–6] has identified several 
advantages of ERD decomposition. The advantages of 
clustering ER diagram include: 
 

• More readability and clarity 
• Ensure completeness and correctness of the 

system 
• More better organized 
• Modulation of software tasks becomes easier 
• Can develop easy and simple test cases based on 

the same 
• Clusters can be stored separately in the form of 

tables for future reuse 
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• Forecasting, one of the major part of our research, 
will be achieved better with the use of these 
formed clusters. 

 
Today no ER diagram gives complete clustering 
assistance even if many clustering advantages are known. 
This can be because of required intuitive and subjective 
judgment required from experts at various level during 
clustering algorithm’s implementation. 
  
ER tools support data model construction, communication, 
and validation by storing all the entities, relationships, 
relevant assumptions, and constraints in a repository. 
Using the repository, multiple conceptual and physical 
level ERD ‘‘views’’ can be produced for specific purposes 
such as end-user communication, database design, and 
development by presenting only relevant portions of the 
larger design to specific audiences. Users often prefer such 
views and better to provide such views to users from 
security point of view. In large organizations we need to 
consider the fact of overlap clusters. As many associated 
table will form some relationships based on requirements, 
it is essential to consider overlapping of clusters originally 
and at the time of forecasting also. ‘‘Views’’ may not 
offer some of the advantages of a clustered ERD. 
 
We are planning to cluster ERD first, then the actual data 
and then form, store and reuse these clusters whenever the 
new project arrives. Next important issue is: not always 
the new projects will reuse already formed clusters; the 
feature set of new project may require generating new 
cluster. We have taken care of this requirement / 
possibility also. Generating these new clusters will help 
new projects, as the clusters set will be updated with new 
entries. These newly entered clusters also can be made 
available for forthcoming projects. 
 
Manual algorithms which are available, developed by 
other researchers may work fine for small ERDs. However, 
for typical real-life (and large) ERDs, they are not likely to 
produce a good solution that seeks several clustering 
objectives simultaneously. As some of the researchers 
who has suggested similar methods for example, Moody 
and Flitman point out, ‘‘Because of the enormous number 
of decompositions that are possible in even small data 
models, it is clearly beyond human cognitive capabilities 
to find an optimal solution. To handle this, our future 
work includes addition of expert’s judgment along with 
provided forecast by our proposed algorithm. 
 
Other algorithms which are available are time consuming. 
In today’s demanding e-world we need to be the first and 
innovative in market and can’t afford to spend time on 
stage like clustering. This will not help the ever changing / 
dynamic requirements from customers. 
  

The ability to rapidly change databases and their 
underlying data models to support the needs of changing 
business models is high on the research agenda of 
information systems researchers [8]. 
 
In spite of their limitations, manual methods might have 
produced satisfactory decompositions of traditional 
transactional processing systems involve static and 
localized databases. However, new applications (from E-
commerce to web-based decision support systems and 
from multimedia to geographic information systems) 
demand integrated databases with more entities, 
relationships, attributes, data elements, etc. The added 
semantics and complexity require that database engineers 
and designers revisit their conceptual data models 
periodically in an attempt to expand or modify them. 
 
Furthermore, in software engineering, emphasis has 
shifted from a rigid system design, where the software is 
available at the end of the process, to an incremental and 
modular design based on iterative clustering refinements 
[10]. Clearly, an automated clustering algorithm can make 
iterative refinements considerably simpler and faster. 
According to Francalanci and Pernici 
[5], in legacy database re-engineering, automated 
clustering is particularly useful due to the size of the 
existing physical schema.  
 
Hence, it is no surprise that recent work in ER clustering 
has aimed at automated algorithms. Ideally, given the 
information obtained by database engineers and designers 
during the construction of an ERD, an automated 
algorithm should identify suitable entity and relationship 
clusters, without further human intervention. 
Unfortunately, none of the above referenced works meets 
that idea. 
 
Clustering problems arise in numerous domains ranging 
from traffic analysis, weather forecasting, in hospitality 
industry, cellular manufacturing (CM), linguistics, data 
mining, and economics. In different contexts, clustering 
takes different names such as typology, numerical 
taxonomy, decomposition techniques and partitioning. 
Clustering methodologies originate in equally diverse 
disciplines including neural networks, genetics, fuzzy sets, 
matrix manipulation, mathematical programming, and 
multivariate analysis [15]. 
 
ERD clustering also require focus on various levels and 
hierarchy of entities along with various types involved. 
The number of relationships every entity participates in is 
better criteria for ERD clustering, as suggested by Flitman 
and Moody. Focus on validation, integration and reuse of 
schema is also important. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 

 

374 

Related work  
 
To achieve automated procedure, identifies suitable entity 
and relationship clusters without any further human 
intervention and subjective judgment we need to look at 
related work performed by other researchers.  
 
The first attempt of automate clustering was by Zoeller 
and Huffman[13]. It is based on set of rules, find major 
entities and with the help of expert system. 
 
One semi-automatic method was suggested by Pernici and 
Francalanci [5], based on one entity forms one cluster. 
After which most closed clusters will be combined 
together. Myself along with my guide we have formulated 
three proposals for “closeness factor” [30] among clusters 
and it work wonders.  
 
To organize or decompose ERD, Martin suggested 
“hierarchical leveling”.  Clusters were formed with root 
entities as centers and their descendents as other elements 
in the cluster. Overlapping hierarchy chains were resolved 
by judgment from experts. 
 
Teorey [6] suggested identifying functional area first 
before clustering entity.  He achieved this by handling 
various entity types (and grouping them) including strong, 
weak, subtype, super type, binary and tertiary entities. All 
of these methods depended heavily on human judgment to 
resolve boundaries, to define strength of association, 
and/or to identify suitable subject areas. 
 
Another way of ER clustering as suggested by Moody[20] 
is again, based on “entity and participation in various 
relationships”. This connectivity between entities can give 
better idea about hierarchical chains overlap, and 
boundaries. Moody and Flitman [14] presented both a 
manual method and an automatic genetic algorithm 
method for ER clustering based on connectivity. 
 
Criteria for proposed clustering solutions 
 
Many researchers including those listed in reference at the 
end, have discussed about various methods of clustering 
ERD, clustering of Databases and forecasting separately.  
Hence we are proposing, and implementing, a combined 
algorithm, to achieve all the above and much more. 
Additional features as mentioned earlier include 
verification based on two different types of databases 
having relationships implemented successfully.  
 
Before we implemented this algorithm, we did survey of 
many software development organization to get the feel 
about usability of our proposed tool. And the feedback 
was enormous. The best part of our algorithm will be: any 

organization (if wish to) can commercially implement this 
algorithm, by concentrating on their own and respective 
customer’s quality issues.  
 
One of our important observations include: practicing 
database engineers and designers want to see non-
redundant clusters. At the same time users who must deal 
with multiple functional areas of a system often prefer to 
see overlapping database views. If some entities and 
relationships are relevant to the sales function and the 
accounting function, users prefer those entities to be 
shown in both, the sales view as well as the accounting 
view.  
 
Let me throw light on this by giving you one more 
working example. We are working on one more 
interesting type of network called “Car Area Network 
(CAN)”. This is nothing but handling all necessary 
functionalities within the boundaries of automobile car.  
This may include showing details regarding air pressure in 
all tires, gas availability in tank, source and destination 
details, GPRS system details, malfunctioning of any of the 
electrical / electronic and mechanical parts available in 
that new / updated / innovative / technology savvy 
automobile. To implement all requirements of CAN, the 
developer and the whole team must have knowledge about 
all clusters, overlapping views etc. 
 
We agree that a user understandability may be served 
better by overlapping views, and clustered ERDs cannot 
be substitutes for functional views. On the other hand, 
non-overlapping clusters better serve a database designer’s 
understanding and work allocation. 
 
We are however at this phase are not considering the size 
of clusters formed. Right now the focus is developing and 
reusing clusters. 
 
A typical cluster would have to involve 3 or 4 entities with 
their associated relationships.  As described by 
Francalanci and Pernici [5] for purposes of reuse and 
schema validation, clusters should fit their task domains 
regardless of their size. Whenever we will focus on cluster 
size we may prefer “reasonable” size. We may also focus 
not only reusing clusters but also combining clusters based 
on requirements.  
 
Another criterion proposed by Moody and Flitman [7], 
suggests that all the entities in a cluster should relate to a 
single central concept; and two entities, each involved in a 
large number of relationships, should be in different 
clusters.  
 
Thus, the first part of our proposed algorithm is designed 
to meet the following criteria: 
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• Focus on completeness: in software development 
projects in particular, completeness is one of the 
mandatory functionality. Every requirement of 
customer need to be taken care in project. Hence 
the clustering applied on customer’s data also 
need to be achieved completely. Top down and 
bottom up approaches if applied on database 
based cluster set should give the same results. No 
data should remain untouched. 

• Focus on correctness: while performing 
clustering based on ERM / ERD first and then on 
actual data to generate knowledge, consider all 
fields and records correctly. 

• Redundancy: every tuple and its relationship 
need to a part of only one cluster. 

• User friendliness: formed clustered ERD, data 
and generated knowledge should be useful and 
must be represented in friendly way. 

• Cohesion and coupling: all rules related to these 
two important functionalities need to be satisfied. 
Cohesion says: all entities within a cluster should 
be closely related to each other. And coupling 
needs all entities in different clusters should not 
be closely related to each other. Otherwise we 
will spend time resolving all dependencies. 

• Formation of clusters: totally depends upon 
requirement. 

 
As mentioned earlier we may opt to reuse already formed 
clusters and keep updating cluster set if required. 
However, simultaneous attainment of maximal cohesion 
and minimal coupling is impossible. Since every entity is 

 directly or indirectly connected to one or more entities, 
invariably, when decomposition increases within cluster 
cohesion, it also increases inter-cluster coupling. This is 
because, when each cluster contains a large number of 
entities and relationships, many entities are only indirectly 
connected to one another. Consequently, each cluster is 
not very cohesive. 
 
At the same time, since the total number of entities and 
relationships outside a cluster is relatively small, very few 
entities are connected directly to entities outside their 
clusters. Thus, inter-cluster coupling is also small. 
 
In previous research papers we have found the details 
given on this cohesion and coupling issue:  In a properly 
clustered ERD, as the average cluster size decreases, since 
there are not as many indirect connections between entity 
pairs within each cluster, within-cluster cohesion increases. 
At the same time, inter-cluster coupling increases since 
now there are many more entities outside each cluster that 
may be directly related to the entities in that cluster. 
 
In addition, our algorithm requires a table, in which lists 
all the weak and subtype entities in the ERD along with 
their corresponding strong or super-type entities and 
respective relationships. 
 
The clustering algorithm 
 
The complete algorithm is given below along with the 
required GUI’s in following sections. The detail steps of 
this algorithm are explained in annexure. 

  
1) Input Mo and To associated with ERM / ERD to be classified. 
2) Remove weak and subtype entities and their connecting relationship from Mo to M1. 
3) Remove singular entities and their connecting relationship from M1 creating M2. 
4) Compute the distance between each pair of entities in M2. 
5) Rearrange the rows in M2 to overlap pairs of entities with smallest distance creating M3. 
6) Identify N, the largest number of potential clusters to consider. 
7) For K = 2 to N 

a. Identify all S admissible sets of K groups of entities in M3 
b. For f = 1 to S 

i. Reinsert all data from M3 to create M4 
ii. Create M5, K-cluster solution from M4 

c. Next f 
d. Calculate G and identify best K-cluster solution 

8) Next K 
9) Identify optimal solution 
10) Get the database entries in the form of tuples / records once the clustering is achieved 
11) Store these clusters in the form of various tables, name them. Inform user about number of clusters generated 

and table details. 
12) Compare feature vector (vector having complete feature set of new project) details with these clusters. 
13) If match is found, then reuse these clusters, learn from these clusters and forecast. 
14) If mismatch found, then store those mismatched features in the form of new cluster for future reuse. 

Figure 2 shows complete clustering algorithm. 
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Forecasting or estimation tool framework 
 
Once the clustering details are known then we need to 
move ahead with forecasting details. The following steps 
are a part of GUI generated as an estimation result of our 
proposed algorithm.  
 
We have not fully implemented this result window but 
working on the same or better views. The result window 
will look like this including various valuable thoughts and 
knowledge. 
 
Following Figure shows Framework for result window. 

This framework gives details including the tile of “NEW” 
project which arrived at an organization (lets take an 
example of software development project to understand 
this framework). The next important estimated input based 

on available information about that project is how many 
clusters can be reused and how many “NEW” clusters will 
be required to form. One this estimation is ready then user 
will get to know links where this reusable and suitable 
information is available (including reusable diagrams, 
documents, classes / objects etc). Based on historical data 
available and clustered, algorithm can now estimate how 
much time this “NEW” project will take to complete. Next 
important suggestions will be about required team size, 
skills of team members, technology platform required, 
resources, cost, risk etc. All this estimation details prior to 
starting of “NEW” project will give better, clear picture in 
front of complete team which will ease development 
efforts drastically. Giving such forecasting was feasible 
only because of availability of historical software project 
data, and of course clustering techniques mentioned and 
used. 

 
1. Title of the project 

2. Number of new clusters formed 

3. Number of clusters REUSED 

4. Links giving reuse details including: 

i. Reusable documents 

ii. Diagrams (UML, data flow, use cases, test cases, etc.) 

iii. Classes  

iv. Designs 

v. Test cases 

vi. Code etc. 

5. Time required for this project to develop completely, will be 

6. The team size should be 

7. Suggested technology 

8. Cost (may require to spend) 

9. Required resources 

10. Risk (if any)  

 
 

Figure 3 shows framework for estimation tool. 

Store results Print results  Share results Chat with team 
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Annexure: the detail clustering algorithm explained, as 
suggested by Tavana, Joglekar etc. 
We have referred to clustering algorithm by Tavana, 
Joglekar [31]. Because of their great work, and similarity 
in our research build our ideas of on top of it. Based on 
their clustering details, we will detail the required 
forecasting in coming sections. 

Starting with the M0 and the T0 associated with 
an ERD, our algorithm consists of three major 
Parts presented in Fig. 1 shown above and described in 
detail below. 
These important vital parts include: clustering ERM / 
ERD, then storing / forming tables based first part, the 
third and last most important is “forecasting”. 

We have started implementing this algorithm 
using java specially .net technologies. In our 
implementation, we identify each cell by its row and 
column names (tuple and field) and cells containing ‘1’s 
are shaded while cells containing ‘0’s are not.  

A ‘‘problem,’’ an ER matrix to be clustered, can 
be created by choosing the number of rows and columns 
in the matrix, then clicking on cells which should contain 
‘1’s. Converting the ERD into its corresponding M0 and 
producing the corresponding T0 are easy, mechanical, and 
auto able tasks, since they require no information that is 
not already contained in the ERD.  

Alternatively, M0 and T0 could be constructed 
through appropriate interface with existing ERD tools. All 
the steps following this input of M0 and T0 are fully 
automated. That is, from this point on, no human 
intervention is needed before the computer produces the 
optimal solution. 
 
Remove weak and subtype entities and their 
connecting relationships from M0 creating M1 
 
Next step requires removing weak and sub type entities, so 
as to concentrate on strong entities first. This step is very 
essential and need concentration because the completeness 
and correctness criteria depend on this step.  We need to 
form two separate groups, one for weak and subtype 
entities and other for strong entities. We will make sure to 
store them separately as they will not be ignored 
completely. Finally they are entities. 

Using the information in T0, the computerized 
algorithm’s first step is to remove from M0 all weak and 
subtype entities as well as the relationships connecting the 
weak to the strong and the subtype to the super type 
entities. In this step, the algorithm ensures that the 
respective strong/super type Entity is now connected to all 
of the other relationships that were originally connected to 
its weak / subtype entity. This procedure produces a new 
matrix, M1. 
 

Remove singular entities and their connecting 
relationships from M1 creating M2 
 
Now this step in algorithm is to identify and remove each 
singular entity along with its associated relationship with 
M1. Sometimes, when a singular entity is removed from 
M1, a previously nonsingular entity becomes a singular 
entity in the reduced matrix. This happens when a singular 
entity’s connected entity is related to only one other entity. 
Hence, the process of identification and removal of 
singular entities is repeated until there are no singular 
entities remains.  

At the same time concentrating on singular 
entities relationship is also important and in the order of 
their removal, a list of all the singular entities and their 
associated relationships is created, so that at the 
appropriate time, they can be reinserted in the matrix, in 
the reverse order of their removal. The resulting matrix is 
labeledM2. Clearly, if one or more weak, subtype, or 
singular entities are removed, M2’s dimension, will be 
smaller than M0’s dimension  
 
 Compute the distance between each pair of 
entities in M2 
The next part of algorithm requires computing distance 
between each possible pair of rows (also called entities) in 
M2. The shorter the distance between a pair, the more 
appropriate it is to put the two entities in the same cluster, 
and the larger the distance, the more appropriate it is to 
put the two entities in different clusters. 
 
Rearrange the rows in M2 to juxtapose pairs of 
entities with smallest distances creating M3 
 
A  matrix, M3, is constructed where we leave the 
relationship columns in the same order as in M2, but 
rearrange the rows so that pairs of entities with least 
distances are closest to each other. The algorithm 
compares all pair-wise row distances, and copies the pair 
of rows with the least distance next to each other in M3.  
Among the unused Rows, the algorithm finds the one with 
the smallest distance from one of the current edge rows. 
The identified row is added to M3 next to that edge row. 
This process is repeated until there are no unused Rows in 
M2. Thus, at this point, M3 represents the rows in M2, in 
an order such that the pairs of entity rows with the 
smallest distances are closest together. 
 
Identify N, the largest number of potential 
clusters to consider 
 
The next step of this algorithm is to find the range for K, 
the number of clusters to consider. As suggested earlier, 
every cluster must contain at least two entities. Hence, the 
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maximum number of clusters, N, is the integer value of 
the number of entities divided by two. We also assume 
that, when an ER matrix is to be clustered, a database 
manager is looking for at least two clusters. Therefore, 
this algorithm assumes that the desired number of clusters, 
K, is in [2, N]. 
 
Identify the ‘‘best’’ K-cluster solution for every 
possible value of K 
 
This is one of the important parts of the algorithm with 
several sub-steps detailed below. First, for each value of K 
(2 to N), the algorithm identifies all admissible sets (say 
S) of K groups of entities. Next, for each one of the S sets 
for a given value of K, the algorithm carries out the sub-
steps, creating S matrices that are labeled M4. Then, each 
one of the M4’s is used to create a feasible and promising 
K-cluster solution. Once all S feasible and promising K-
cluster solutions are created, calculate the goodness of fit, 
G, for each one of them. Among the S solutions, the 
solution with the largest value of G is identified as the best 
K-cluster solution. 
 
Identify all S admissible sets of K groups of 
entities in M3 
 
Since a matrix’s own boundaries (i.e. the first and the last 
rows) also serve as the boundaries for the first and the last 
sub-matrices, respectively, to construct a partition 
resulting in K groups of entities (rows), we need K-1 other 
horizontal dividers between rows. It is desirable to draw 
the dividers between the K-1 pairs of adjacent rows that 
have the greatest distances. However, since a cluster must 
have at least two entities, divider locations immediately 
after the first row, or immediately before the last row, 
cannot be considered selectable. Initially, all other 
possible divider locations are considered as selectable. 
The pair of adjacent rows with the largest distance is 
found and the first divider is placed between those two 
rows. 

Since an entity group must contain at least two 
entities, entity pairs involving the rows immediately 
adjacent (on either side) to a selected divider are no longer 
selectable. Among the remaining pairs of entities, the pair 
of adjacent rows with the largest distance is found and the 
next divider is placed between those two rows. This 
process is repeated K-2 times to find all but the last 
divider. Up until this point, ties in largest distances are 
broken arbitrarily by choosing the first of the tied divider 
locations.  

For the (K-1)st divider, often, there are several 
selectable divider locations with the same and 
largest distance between adjacent rows. Hence, the last 
divider is handled differently to ensure that arbitrary tie-

breaking does not cause a better solution to be missed. 
Suppose that there are S 
candidates for the (K-1)st divider. Together, the first K-2 
dividers and one of the S candidates 
produce an admissible set of K groups of entities in M3. 
Thus, there are S sets of K groups of entities to consider.. 

When, for a given value of K, it is impossible to 
select any admissible (K-1)st divider, that value of K is 
eliminated from further consideration. 
 
Reinsert all singular, weak, and subtype entities 
and their connecting relationships in M3 to 
create M4 
 
First, for each admissible set, f ε S, of K groups of entities, 
the algorithm constructs a new matrix M4 by reinserting, 
in the reverse order of their removal, each singular, weak, 
and subtype entity immediately above its respective 
connected, strong or super type entity. If necessary, a 
divider location is adjusted to ensure that the reinserted 
entity and its relevant entity are in the same group. All the 
relationships are reinserted as the last columns of the 
matrix and any altered relationship column ‘1’s are 
adjusted back to their original entity rows. Thus, at the end 
of this procedure, for each one of the S sets, the 
corresponding M4 is a p X q matrix consisting of all the 
entities and relationships in M0 and for a given value of K, 
the total number of M4’s is S. 
 
Create M5, a feasible and promising K-cluster 
solution from a given M4 
 
Now, the columns in a given M4 need to be rearranged so 
that each group of entities is clustered with suitable 
relationships. Our aim is to maximize the goodness of fit 
of the resulting K-cluster solution. To maximize G, one 
should cluster the largest possible number of relevant 
relationships with the smallest group of entities. 

Hence, for each M4, this algorithm creates a 
blank matrix, M5, of the same dimensions (p X q) as M4. 
It copies into M5 all the entity (row) names in the same 
order as in M4. The chosen K-1 dividers are also copied in 
M5. Along with the matrix boundaries, the dividers help 
identify the K groups of entities in M5. Then, an iterative 
process of column rearrangement and cluster identification 
begins. 

Each iteration involves first identifying the 
smallest group of entities (rows) that has not yet been put 
into a cluster. In case of a tie in the entity group size, the 
first group is selected. The algorithm considers each 
relationship that has not already been copied to M5. If a 
relationship has at least as many 1’s in the rows of the 
selected group of entities, as it has in the rows of any of 
the other unclustered groups of entities, that relationship 
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column is copied to matrix M5 in the next available 
column spot. When consideration of all relationships is 
done, the copied relationships and the selected group of 
entities are declared as a cluster, and the algorithm moves 
on to the identification of the next cluster. When all K 
clusters are constructed,M5 represents the feasible and 
promising K-cluster solution resulting from a given M4. 

As can be noted, this is a greedy procedure for 
maximizing the G-value of the solution. However, there is 
no guarantee that an exhaustive approach would not have 
found a clustering arrangement with a higher value of G 
for this set of K groups of entities. That is why we call this 
solution as a ‘‘feasible and promising’’ solution. 
 
Calculate G and identify the best K-cluster 
solution 
 
Once all S feasible and promising K-cluster solutions 
have been created, the automated algorithm 
calculates the goodness of fit, G, for each one of 
them. The solution with the largest value of G is 
identified as the best K-cluster solution. 
 
Identify the optimal solution to a problem 
 
Finally, all the best K-cluster solutions for the entire range 
of K’s (2 to N) are compared based on their G values, and 
the solution with the highest G is chosen as the ‘‘optimal’’ 
clustering solution. Although we use the word ‘‘optimal’’ 
to refer to the best of the best solutions for various values 
of K, it should be clear that we are not claiming that our 
solution is globally optimal. Our algorithm is a heuristic 
that employs a greedy approach. Thus, we use the word 
‘‘optimal’’ simply to avoid the use of the awkward phrase, 
‘‘best of the best K cluster solution.’’ 
 
Last and important step of clustering 
 
While this algorithm is designed to consider all possible 
values of the number of clusters, K = 2 to N, we have also 
incorporated a special feature in it. 

As N is a variable, we may assign any required 
number to this N and execute the said algorithm to achieve 
required results. The very important part of the same 
algorithm is to generate tables as equal numbers of 
generated clusters and then focus on forecasting. 
 


