
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

371

Manuscript received December 5, 2008
Manuscript revised December 20, 2008

An Automated Forecasting Tool (AFT) achieved by clustering
Entity Relationship Model

Preeti Mulay Dr. Parag Kulkarni

 Bharati Vidyapeeth University Capsilon
 Pune Pune

Summary
We have described an algorithm (AFT) for decomposing ERDs
into various modules / clusters, forming various tables equivalent
to number of clusters generated and forecasting based on
available raw data and generated clusters. Unlike earlier efforts,
our algorithm clusters not only the entities but also the
relationships involved. While designing this tool we have
thought of its usability to all team members, application domain
and extensibility to today’s distributed systems as well. As of
now this algorithm is fully automatic, works only on data
available in the form of entities, relationships, tuples, fields,
feature vector etc. It identifies suitable entity and relationship
clusters without any further human (subjective) intervention.

The next phase of this algorithm (AFT) will involve human
intervention also. One of the corporate companies have given
one important feedback. They have one separate department in
their organization made up of very knowledgeable and
experienced team members only. Their aim is to learn customer
thoroughly and think from customer’s business point of view.
This will give a value added services to customer. To achieve the
same we may add, compare / contrast “expert’s opinion” also.

We have discussed how our algorithm AFT, fulfills a
comprehensive set of criteria for a good decomposition of ERDs.
Our algorithm produces a more cohesive set of clusters while
keeping inter-cluster coupling small. Our solution also offers a
higher degree of modularity than that offered by other
algorithms’ solutions. While our algorithm produces very good
solutions, it cannot guarantee their global optimality.
Our forecasting module of this proposed algorithm AFT will
definitely prove to be most useful and suitable for all corporate
teams, thereby saving their precious time which can be utilized
on some other important chores.

Keywords
Databases; Information systems; Analysis and designs;
Planning; Decision analysis, forecasting, clustering, entities,
ERD, ERM

Abstract
Entity–relationship (ER) modeling is basically a technique
of creating model before the detail database is formed.
One the ERM or Entity Relationship Diagram (ERD) is
complete and correct then it is feasible to convert into
database design directly. The database design will also be
complete and correct, as it is based on verified ERM and

ERD. To increase the usability and understandability of
ERM, ERD and large project database, I am planning to
vote for classification of one of these or all these. There
are two choices available: one is clustering based on this
ERM or cluster database directly. I am planning to provide
the algorithm based on clustering based on ERM / ERD,
apply clustered details to database records / tuples and
then forecast based on the available knowledge.

However, the complexities inherent in large ER diagrams
have restricted the effectiveness of their use in practice. It
is often difficult for end-users, or even for well-trained
database engineers and designers, to fully understand and
properly manage large ER diagrams. Hence, to improve
their understandability and manageability, large ER
diagrams need to be decomposed into smaller modules by
clustering closely related entities and relationships.

Previous researchers have proposed many manual and
semi-automatic approaches for such clustering. We are
proposing an automated algorithm, not only for clustering
large database or related ERD also extended to providing
forecasting based on the same.

Our automated algorithm facilitates the re-clustering of
ER diagrams as they undergo many changes during their
design, development, and maintenance phases, as and
when required.

The validation methodology used in this study considers a
set of both objective and subjective criteria for comparison.

Introduction

Every organization or business firm need to store data in
the most preferred form, and that is database. Pre-requisite
required for preparing detail database is formation of
entity relationship model and entity relationship diagram.
ERM and ERD is a detail graphical representation of data
requirement in an organization. This pictorial
representation simulates details useful for database
designers, engineers and complete team members.
Processing the data available in the form of ERM or ERD
or database will generate required knowledge.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

372

ERDs enhance understanding of the system and improve
communication among database engineers, designers, and
end-users.

Consider the following business scenario documented
during systems analysis for the development of an
information system for a retailer of, for example “book”:

“A customer issues a enquiry to the vendor (retailer) to
buy a book or few books for any library. The enquiry
consists of an order item and book details. When the book
is delivered, the customer is given a receipt for the book
purchased including copies, title, author, edition,
publisher. Because the customer has a line of credit, the
actual payment is deferred until later. In the
next billing cycle, the vendor issues an invoice that
includes an invoice item related to the enquiry item on the
purchase order. Upon receiving the invoice, the customer
makes sales payment against the receipt of the book /
books and the vendor receives vendor payment for the
invoice.”

This scenario results in the identification of the entities
and relationships presented in a clustered
ERD presented in Fig. 1a. Entities are represented by
rectangles, relationships by diamond-shaped boxes, and
connecting lines show which entities participate in which
relationship [1]. For example, the fact that a customer
(Entity A) buys a book (Entity D) is represented by the
‘‘buy’’ relationship (Relationship 1).

Figure 1 showing ERD for an information system of a
retailer, for example “book”:

In this example, weak or subtype entities are “order item”
and “invoice item”. Strong or super type entities are “book
/s order” and “invoice”.

Based on problem stated by customer, finalize ERM and
ERD. One this is done database implementation becomes
easy. There are various ER diagram generation tools
available. This includes Visio by Microsoft, ER/1, Easy
ER, etc. In addition to this there are various CASE tools
available to achieve the same and much more. For ex.
Turbo Analyst is the one which implements ERD and
Data Flow Diagrams also. As mentioned here, there are
various commercially / professionally available tools to
help team members at various levels of Software
Development Life Cycle (SDLC). But no single tool is
available which can give complete simulation about
predication based on all phases of SDLC. In this phase of
our research we are not including human or expert’s
judgment at all. But we may add this feature later on.

Most ER tools support systems analysis and database
design, implementation, and maintenance. Yet, today ER
tools fall short of their true potential. This is because ER
diagrams are rarely as small as the one presented in Fig.
1a. A typical application data model consists of 95 entities
and an average enterprise model consists of 536 entities
[2].

To improve the understandability and user friendliness, it
is essential not only to classify / decompose / cluster ERM,
but also retain knowledge in the form of tables for future
use. This research paper focuses exactly on this, so as to
generate most effective, efficient and useful tool for all
levels of team members.

The ERD in Fig. 1a is small enough to comprehend
without any decomposition. However, the three clusters
(retailer’s ‘‘sales,’’ ‘‘accounts receivable,’’ and ‘‘accounts
payable’’ subsystems) identified by our algorithm
illustrate some of the advantages of decomposing ERDs.
The literature on clustering [3–6] has identified several
advantages of ERD decomposition. The advantages of
clustering ER diagram include:

• More readability and clarity
• Ensure completeness and correctness of the

system
• More better organized
• Modulation of software tasks becomes easier
• Can develop easy and simple test cases based on

the same
• Clusters can be stored separately in the form of

tables for future reuse

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

373

• Forecasting, one of the major part of our research,
will be achieved better with the use of these
formed clusters.

Today no ER diagram gives complete clustering
assistance even if many clustering advantages are known.
This can be because of required intuitive and subjective
judgment required from experts at various level during
clustering algorithm’s implementation.

ER tools support data model construction, communication,
and validation by storing all the entities, relationships,
relevant assumptions, and constraints in a repository.
Using the repository, multiple conceptual and physical
level ERD ‘‘views’’ can be produced for specific purposes
such as end-user communication, database design, and
development by presenting only relevant portions of the
larger design to specific audiences. Users often prefer such
views and better to provide such views to users from
security point of view. In large organizations we need to
consider the fact of overlap clusters. As many associated
table will form some relationships based on requirements,
it is essential to consider overlapping of clusters originally
and at the time of forecasting also. ‘‘Views’’ may not
offer some of the advantages of a clustered ERD.

We are planning to cluster ERD first, then the actual data
and then form, store and reuse these clusters whenever the
new project arrives. Next important issue is: not always
the new projects will reuse already formed clusters; the
feature set of new project may require generating new
cluster. We have taken care of this requirement /
possibility also. Generating these new clusters will help
new projects, as the clusters set will be updated with new
entries. These newly entered clusters also can be made
available for forthcoming projects.

Manual algorithms which are available, developed by
other researchers may work fine for small ERDs. However,
for typical real-life (and large) ERDs, they are not likely to
produce a good solution that seeks several clustering
objectives simultaneously. As some of the researchers
who has suggested similar methods for example, Moody
and Flitman point out, ‘‘Because of the enormous number
of decompositions that are possible in even small data
models, it is clearly beyond human cognitive capabilities
to find an optimal solution. To handle this, our future
work includes addition of expert’s judgment along with
provided forecast by our proposed algorithm.

Other algorithms which are available are time consuming.
In today’s demanding e-world we need to be the first and
innovative in market and can’t afford to spend time on
stage like clustering. This will not help the ever changing /
dynamic requirements from customers.

The ability to rapidly change databases and their
underlying data models to support the needs of changing
business models is high on the research agenda of
information systems researchers [8].

In spite of their limitations, manual methods might have
produced satisfactory decompositions of traditional
transactional processing systems involve static and
localized databases. However, new applications (from E-
commerce to web-based decision support systems and
from multimedia to geographic information systems)
demand integrated databases with more entities,
relationships, attributes, data elements, etc. The added
semantics and complexity require that database engineers
and designers revisit their conceptual data models
periodically in an attempt to expand or modify them.

Furthermore, in software engineering, emphasis has
shifted from a rigid system design, where the software is
available at the end of the process, to an incremental and
modular design based on iterative clustering refinements
[10]. Clearly, an automated clustering algorithm can make
iterative refinements considerably simpler and faster.
According to Francalanci and Pernici
[5], in legacy database re-engineering, automated
clustering is particularly useful due to the size of the
existing physical schema.

Hence, it is no surprise that recent work in ER clustering
has aimed at automated algorithms. Ideally, given the
information obtained by database engineers and designers
during the construction of an ERD, an automated
algorithm should identify suitable entity and relationship
clusters, without further human intervention.
Unfortunately, none of the above referenced works meets
that idea.

Clustering problems arise in numerous domains ranging
from traffic analysis, weather forecasting, in hospitality
industry, cellular manufacturing (CM), linguistics, data
mining, and economics. In different contexts, clustering
takes different names such as typology, numerical
taxonomy, decomposition techniques and partitioning.
Clustering methodologies originate in equally diverse
disciplines including neural networks, genetics, fuzzy sets,
matrix manipulation, mathematical programming, and
multivariate analysis [15].

ERD clustering also require focus on various levels and
hierarchy of entities along with various types involved.
The number of relationships every entity participates in is
better criteria for ERD clustering, as suggested by Flitman
and Moody. Focus on validation, integration and reuse of
schema is also important.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

374

Related work

To achieve automated procedure, identifies suitable entity
and relationship clusters without any further human
intervention and subjective judgment we need to look at
related work performed by other researchers.

The first attempt of automate clustering was by Zoeller
and Huffman[13]. It is based on set of rules, find major
entities and with the help of expert system.

One semi-automatic method was suggested by Pernici and
Francalanci [5], based on one entity forms one cluster.
After which most closed clusters will be combined
together. Myself along with my guide we have formulated
three proposals for “closeness factor” [30] among clusters
and it work wonders.

To organize or decompose ERD, Martin suggested
“hierarchical leveling”. Clusters were formed with root
entities as centers and their descendents as other elements
in the cluster. Overlapping hierarchy chains were resolved
by judgment from experts.

Teorey [6] suggested identifying functional area first
before clustering entity. He achieved this by handling
various entity types (and grouping them) including strong,
weak, subtype, super type, binary and tertiary entities. All
of these methods depended heavily on human judgment to
resolve boundaries, to define strength of association,
and/or to identify suitable subject areas.

Another way of ER clustering as suggested by Moody[20]
is again, based on “entity and participation in various
relationships”. This connectivity between entities can give
better idea about hierarchical chains overlap, and
boundaries. Moody and Flitman [14] presented both a
manual method and an automatic genetic algorithm
method for ER clustering based on connectivity.

Criteria for proposed clustering solutions

Many researchers including those listed in reference at the
end, have discussed about various methods of clustering
ERD, clustering of Databases and forecasting separately.
Hence we are proposing, and implementing, a combined
algorithm, to achieve all the above and much more.
Additional features as mentioned earlier include
verification based on two different types of databases
having relationships implemented successfully.

Before we implemented this algorithm, we did survey of
many software development organization to get the feel
about usability of our proposed tool. And the feedback
was enormous. The best part of our algorithm will be: any

organization (if wish to) can commercially implement this
algorithm, by concentrating on their own and respective
customer’s quality issues.

One of our important observations include: practicing
database engineers and designers want to see non-
redundant clusters. At the same time users who must deal
with multiple functional areas of a system often prefer to
see overlapping database views. If some entities and
relationships are relevant to the sales function and the
accounting function, users prefer those entities to be
shown in both, the sales view as well as the accounting
view.

Let me throw light on this by giving you one more
working example. We are working on one more
interesting type of network called “Car Area Network
(CAN)”. This is nothing but handling all necessary
functionalities within the boundaries of automobile car.
This may include showing details regarding air pressure in
all tires, gas availability in tank, source and destination
details, GPRS system details, malfunctioning of any of the
electrical / electronic and mechanical parts available in
that new / updated / innovative / technology savvy
automobile. To implement all requirements of CAN, the
developer and the whole team must have knowledge about
all clusters, overlapping views etc.

We agree that a user understandability may be served
better by overlapping views, and clustered ERDs cannot
be substitutes for functional views. On the other hand,
non-overlapping clusters better serve a database designer’s
understanding and work allocation.

We are however at this phase are not considering the size
of clusters formed. Right now the focus is developing and
reusing clusters.

A typical cluster would have to involve 3 or 4 entities with
their associated relationships. As described by
Francalanci and Pernici [5] for purposes of reuse and
schema validation, clusters should fit their task domains
regardless of their size. Whenever we will focus on cluster
size we may prefer “reasonable” size. We may also focus
not only reusing clusters but also combining clusters based
on requirements.

Another criterion proposed by Moody and Flitman [7],
suggests that all the entities in a cluster should relate to a
single central concept; and two entities, each involved in a
large number of relationships, should be in different
clusters.

Thus, the first part of our proposed algorithm is designed
to meet the following criteria:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

375

• Focus on completeness: in software development
projects in particular, completeness is one of the
mandatory functionality. Every requirement of
customer need to be taken care in project. Hence
the clustering applied on customer’s data also
need to be achieved completely. Top down and
bottom up approaches if applied on database
based cluster set should give the same results. No
data should remain untouched.

• Focus on correctness: while performing
clustering based on ERM / ERD first and then on
actual data to generate knowledge, consider all
fields and records correctly.

• Redundancy: every tuple and its relationship
need to a part of only one cluster.

• User friendliness: formed clustered ERD, data
and generated knowledge should be useful and
must be represented in friendly way.

• Cohesion and coupling: all rules related to these
two important functionalities need to be satisfied.
Cohesion says: all entities within a cluster should
be closely related to each other. And coupling
needs all entities in different clusters should not
be closely related to each other. Otherwise we
will spend time resolving all dependencies.

• Formation of clusters: totally depends upon
requirement.

As mentioned earlier we may opt to reuse already formed
clusters and keep updating cluster set if required.
However, simultaneous attainment of maximal cohesion
and minimal coupling is impossible. Since every entity is

 directly or indirectly connected to one or more entities,
invariably, when decomposition increases within cluster
cohesion, it also increases inter-cluster coupling. This is
because, when each cluster contains a large number of
entities and relationships, many entities are only indirectly
connected to one another. Consequently, each cluster is
not very cohesive.

At the same time, since the total number of entities and
relationships outside a cluster is relatively small, very few
entities are connected directly to entities outside their
clusters. Thus, inter-cluster coupling is also small.

In previous research papers we have found the details
given on this cohesion and coupling issue: In a properly
clustered ERD, as the average cluster size decreases, since
there are not as many indirect connections between entity
pairs within each cluster, within-cluster cohesion increases.
At the same time, inter-cluster coupling increases since
now there are many more entities outside each cluster that
may be directly related to the entities in that cluster.

In addition, our algorithm requires a table, in which lists
all the weak and subtype entities in the ERD along with
their corresponding strong or super-type entities and
respective relationships.

The clustering algorithm

The complete algorithm is given below along with the
required GUI’s in following sections. The detail steps of
this algorithm are explained in annexure.

1) Input Mo and To associated with ERM / ERD to be classified.
2) Remove weak and subtype entities and their connecting relationship from Mo to M1.
3) Remove singular entities and their connecting relationship from M1 creating M2.
4) Compute the distance between each pair of entities in M2.
5) Rearrange the rows in M2 to overlap pairs of entities with smallest distance creating M3.
6) Identify N, the largest number of potential clusters to consider.
7) For K = 2 to N

a. Identify all S admissible sets of K groups of entities in M3
b. For f = 1 to S

i. Reinsert all data from M3 to create M4
ii. Create M5, K-cluster solution from M4

c. Next f
d. Calculate G and identify best K-cluster solution

8) Next K
9) Identify optimal solution
10) Get the database entries in the form of tuples / records once the clustering is achieved
11) Store these clusters in the form of various tables, name them. Inform user about number of clusters generated

and table details.
12) Compare feature vector (vector having complete feature set of new project) details with these clusters.
13) If match is found, then reuse these clusters, learn from these clusters and forecast.
14) If mismatch found, then store those mismatched features in the form of new cluster for future reuse.

Figure 2 shows complete clustering algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

376

Forecasting or estimation tool framework

Once the clustering details are known then we need to
move ahead with forecasting details. The following steps
are a part of GUI generated as an estimation result of our
proposed algorithm.

We have not fully implemented this result window but
working on the same or better views. The result window
will look like this including various valuable thoughts and
knowledge.

Following Figure shows Framework for result window.

This framework gives details including the tile of “NEW”
project which arrived at an organization (lets take an
example of software development project to understand
this framework). The next important estimated input based

on available information about that project is how many
clusters can be reused and how many “NEW” clusters will
be required to form. One this estimation is ready then user
will get to know links where this reusable and suitable
information is available (including reusable diagrams,
documents, classes / objects etc). Based on historical data
available and clustered, algorithm can now estimate how
much time this “NEW” project will take to complete. Next
important suggestions will be about required team size,
skills of team members, technology platform required,
resources, cost, risk etc. All this estimation details prior to
starting of “NEW” project will give better, clear picture in
front of complete team which will ease development
efforts drastically. Giving such forecasting was feasible
only because of availability of historical software project
data, and of course clustering techniques mentioned and
used.

1. Title of the project

2. Number of new clusters formed

3. Number of clusters REUSED

4. Links giving reuse details including:

i. Reusable documents

ii. Diagrams (UML, data flow, use cases, test cases, etc.)

iii. Classes

iv. Designs

v. Test cases

vi. Code etc.

5. Time required for this project to develop completely, will be

6. The team size should be

7. Suggested technology

8. Cost (may require to spend)

9. Required resources

10. Risk (if any)

Figure 3 shows framework for estimation tool.

Store results Print results Share results Chat with team

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

377

References
[1] P.P. Chen, The entity–relationship model—towards aunified

view of data, ACM Trans. Database Syst.
[2] R. Maier, Benefits and quality of data modeling—results of

an empirical analysis, in: B. Thalhiem
[3] P. Feldman, D. Miller, Entity model clustering: structuring a

data model by abstraction, Comput. J.
[4] J. Akoka, I. Comyn-Wattiau, Entity–relationship and object-

oriented model automatic clustering, Data Knowl. Eng.
(1996)

[5] C. Francalanci, B. Pernici, Abstraction levels for entity–
relationship schemas, in: P. Loucopoulus

[6] T.J. Teorey, G. Wei, D.L. Bolton, J. Koenig, ER model
clustering as an aid for user communication and
Documentation in database design, Commun. ACM 32 (8)
(1989)

[7] D. Moody, A. Flitman, A methodology for clustering entity
relationship models—a human information processing
approach, in: J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau,
E. Metais

[8] M. Genero, G. Poels, M. Piattini, Defining and validating
metrics for assessing the maintainability of ERD.

[9] A. Badia, Entity–relationship modeling revisited, ACM
SIGMOD Manage. Data Notes 33 (1) (2004)

[10] C. Francalanci, A. Fuggetta, Integrating information
requirements along processes: a survey and research
directions, ACM SIGSOFT Software Eng. Notes 22 (1)
(1997)

[11] S. Castano, V. De Antonellis, M.G. Fugini, B. Pernici,
Conceptual schema analysis: techniques and applications,
ACM Trans. Database Syst. 23 (3) (1998)

[12] P. Jaeschke, A. Oberweis, W. Stucky, Extending ER model
clustering by relationship clustering, in: R. Elmasri, V.
Kouramajian, B. Thalheim

[13] S.B. Huffman, R.V. Zoeller, A rule-based system tool for
automated ER model clustering, in: F.H. Lochovsky

[14] D. Moody, A. Flitman, A methodology for decomposing entity
relationship models, human information processing approach.

[15] M. Halkidi, M. Vazirgiannis, Y. Batistakis, Clustering
algorithms and validity measures, Proceedings of 2001

[16] D.L. Moody, A.R. Flitman, A decomposition method for
entity relationship models: a systems theoretic approach.

[17] J. Akoka, I. Comyn-Wattiau, Framework for automatic
clustering of semantic models, in: R. Elmasri, V. Kouramajian, B.
Thalheim

[18] J. Martin, Strategies for Data-Planning Methodologies,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

[19] L.J. Campbell, T.A. Halpin, H.A. Proper, Conceptual
schemas with abstractions—making lat schemas more
comprehensible, Data Knowl. Eng. 20 (1) (1996)

[20] D.L. Moody, Entity connectivity vs. hierarchical leveling as
a basis for data model clustering: an experimental analysis,
Database Expert Syst. Appl. 2736 (2003).

[21] G. Biswas, J. Weinberg, C. Li, ITERATE: A Conceptual clustering
method for knowledge discovery in databases, In Innovative
Applications of Artificial Intelligence in the Oil and Gas Industry, B.
Braunschweig, R. Day (Ed.), 1995..

[22] M.P. Chandrasekharan, R. Rajagopalan, An ideal seed
nonhierarchical clustering algorithm for cellular
manufacturing.

[23] A.J. Vakharia, U. Wemmerlov, A comparative investigation
of hierarchical clustering techniques and dissimilarity

measures applied to cell formation problem, J. Oper. Manage.
13 (2) (1995) .

[24] J. Miltenburg, W. Zhang, A comparative evaluation of nine
well-known algorithms for solving the cell formation
problem in group technology, J. Oper. Manage. 10 (1) (1991)

[25] P. Joglekar, M. Tavana, S. Banerjee, A clustering algorithm
for identifying information subsystems, J. Int.
Inform.Manage.

[26] C. Mosier, J. Yelle, G. Walker, Survey of similarity
coefficient based methods as applied to the group technology
configuration problem, Omega 25 (1) (1997).

[27] H. Seifoddini, A note on the similarity coefficient method
and the problem of improper machine assignment in group
technology applications, Int. J. Prod. Res. 27 (2) (1989).

[28] P. Joglekar, Q. Chung, M. Tavana, Note on a comparative
evaluation of nine well-known algorithms for solving the cell
formulation problem in group technology, J. Appl. Math.
Decis. Sci. 5 (4) (2001).

[29] S.M. Ng, On the characterization and measure of machine
cells in group technology, Oper. Res. 44 (5) (1996).

[30] Generalized Forecasting technique based on Pattern
Matching (GFPM), Dr.Parag Kulkarni and Preeti Mulay,
submitted to International Journal for Internet and Enterprise
Management, special issue on "Advancing Software and
Knowledge Engineering in a Connected World",2008

[31] An automated entity–relationship clustering algorithm for
conceptual database design, by Madjid Tavanaa,, Prafulla
Joglekara, Michael A. Redmondb, Management Department,
La Salle University, Philadelphia, PA 19141, USA,
Department of Mathematics and Computer Science, La Salle
University, Philadelphia, PA 19141, USA

Dr. Parag Kulkarni is Ph.D. form
IIT, Kharagpur (www.iitkgp.ernet.in).
He is working in IT industry for
more than 13 years. He is on research
panel and Ph.D. guide for University
of Pune, BITS and Symbiosis
deemed University. He has
conducted 5 tutorials at various
international conferences and was a

keynote speaker for three international conferences.
He has also worked as a referee for International Journal
for Parallel and Distributed Computing, IASTED
conferences. He is also member of IASTED technical
committee of Parallel and Distributed Computing.
Presently he is General Manager-Technical at Capsilon
India, Pune. He is also Honorary Professor at AISSM
Engineering College, Pune and on board of studies for a
couple of Institutes. He has worked as Senior Manager
(R&D) at Scientific Applications Center, Siemens
information systems Ltd., Pune. His areas of interest
include image processing, security systems, decision
systems, expert systems, classification techniques, load
balancing and distributed computing.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

378

Prof. Preeti Mulay is working on
her PhD in the areas of “software
engineering”. She completed her
MS (Software Engineering) from
Wayne State University, MI, USA
2002 and M.Tech (Software
Engineering) from JNTU, India,
2000. She is working in the
education field since 1995,on
various positions.

Other relevant reference articles are:
[Este96] M. Ester, H-P. Kriegel, J. Sander, X. Xu, A

Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise,
In proceedings of the Second Knowledge
Discovery and Data Mining conference,
Portland, Oregon, 1996.

[Gib00] D. Gibson, J. Kleinberg, P. Raghavan,
Clustering Categorical Data: An Approach
Based on Dynamical Systems, VLDB Journal 8
(3-4) pp. 222-236, 2000.

[Gant99] V. Ganti, J. Gehrke, R. Ramakrishnan,
CACTUS - Clustering Categorical Data Using
Summaries, In Proc. Of the Fifth ACM
SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-
99), San Diego, California, 1999.

[Gibs98] D. Gibson, J. Kleinberg, P. Raghavan,
Clustering Categorical Data: An Approach
Based on Dynamical Systems, In Proc. of the
24th International Conference on Very Large
Databases, New York, 1998.

[Haim97] I.J. Haimowitz, O. Gur-Ali, H. Schwarz,
Integrating and Mining Distributed Customer
Databases, In Proc. of the 3rd Int'l Conf. on
Knowledge Discovery and Data Mining,
Newport Beach, California, 1997.

[Han96] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K.
Koperski, D. Li, Y. Lu, A. Rajan, N. Stefanovic,
B. Xia, O.R. Zaiane, DBMiner: A system for
Mining Knowledge in Large Relational
Databases, In Proc. of the 2nd Int'l Conf. on
Knowledge Discovery and Data Mining,
Portalnd, Oregon, 1996.

[Han01] J. Han, M. Kamber, Data Mining Concepts and
Techniques, Morgan Kaufmann Publishers,
2001.

[Jain88] A.K. Jain, R.C. Dubes, Algorithms for
clustering data, Prentice Hall, Englewood Cliffs,
NJ, 1988.

[Kett95] A. Ketterlin, P. Gancarski, J.J. Korczak,
Conceptual Clustering in Structured Databases:
a Practical Approach, In Proc. of the 1st Int’l
Conf. On Knowledge Discovery and Data
Mining, Quebec, Montreal, 1995.

[Ng94] R.T. Ng, J. Han, Efficient and Effective
Clustering Methods for Spatial Data Mining,

Proc. 20th Int. Conf. on Very Large Data Bases,
Santiago, Chile, pp. 144-155, 1994.

[Nish93] S. Nishio, H. Kawano, J. Han, Knowledge
Discovery in Object-Oriented Databases: The
First Step, In Proc. of the AAAI-93 Workshop
on Knowledge Discovery in Databases (KDD-
93), Washington, 1993.

[Quin93] J.R. Quinlan, C4.5: Programs for Machine
Learning, Morgan Kaufmann, 1993.

[Ribe95] J.S. Ribeiro, K. Kaufmann, L. Kerschberg,
Knowledge Discovery from Multiple Databases,
In Proc. of the 1st Int’l Conf. On Knowledge
Discovery and Data Mining, Quebec, Montreal,
Canada, 1995.

[Ryu98b] T.W. Ryu, Discovery of Characteristic
Knowledge in Databases using Cluster Analysis
and Genetic Programming, Ph.D. Dissertation,
Department of Computer Science, University of
Houston, Houston, 1998.

[Ryu98c] T.W. Ryu, C.F. Eick, Similarity Measures for
Multi-valued Attributes for Database Clustering,
In the Proc. of the Conference on SMART
ENGINEERING SYSTEM DESIGN Neural
Networks, Fuzzy Logic, Evolutionary
Programming, Data Mining and Rough Sets
(ANNIE'98), St. Louis, Missouri, 1998.

[Ryu02] T.W. Ryu, W-Y. Chang, Customer Analysis
Using Decision Tree and Association Rule
Mining, In the Proc. of the International
Conference on SMART ENGINEERING
SYSTEM DESIGN: Neural Networks, Fuzzy
Logic, Evolutionary Programming, Artificial
Life, and Data Mining (ANNIE’02), ASME
press, St. Louis, Missouri, 2002.

[Sala00] H. Salameh, Nearest-neighbor clustering
algorithm for relational databases, Master of
Science Thesis, Department of Computer
Science, California State University, Fullerton,
2000.

[Shek96] E.C. Shek, R.R. Muntz, E. Mesrobian, K. Ng,
Scalable Exploratory Data Mining of
Distributed Geoscientific Data, In Proc. of the
2nd Int’l Conf. On Knowledge Discovery and
Data Mining, Portland, Oregon, 1996.

[Wils97] D.R. Wilson, T.R. Martinez, Improved
Heterogeneous Distance Functions, Journal of
Artificial Intelligence Research 6,1997.

[Zhan96] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH:
an efficient database clustering method for very
large databases, In Proc. of ACM-SIGMOD Int.
Conf. On Management of Data, Montreal,
Canada, pp. 103-114, 1996.

[Zehu98] W. Zehua, Design and Implementation Tool to
Extract Structural Information from Relational
Databases, Master of Science Thesis,
Department of Computer Science, University of
Houston, Houston, 1998.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

379

Annexure: the detail clustering algorithm explained, as
suggested by Tavana, Joglekar etc.
We have referred to clustering algorithm by Tavana,
Joglekar [31]. Because of their great work, and similarity
in our research build our ideas of on top of it. Based on
their clustering details, we will detail the required
forecasting in coming sections.

Starting with the M0 and the T0 associated with
an ERD, our algorithm consists of three major
Parts presented in Fig. 1 shown above and described in
detail below.
These important vital parts include: clustering ERM /
ERD, then storing / forming tables based first part, the
third and last most important is “forecasting”.

We have started implementing this algorithm
using java specially .net technologies. In our
implementation, we identify each cell by its row and
column names (tuple and field) and cells containing ‘1’s
are shaded while cells containing ‘0’s are not.

A ‘‘problem,’’ an ER matrix to be clustered, can
be created by choosing the number of rows and columns
in the matrix, then clicking on cells which should contain
‘1’s. Converting the ERD into its corresponding M0 and
producing the corresponding T0 are easy, mechanical, and
auto able tasks, since they require no information that is
not already contained in the ERD.

Alternatively, M0 and T0 could be constructed
through appropriate interface with existing ERD tools. All
the steps following this input of M0 and T0 are fully
automated. That is, from this point on, no human
intervention is needed before the computer produces the
optimal solution.

Remove weak and subtype entities and their
connecting relationships from M0 creating M1

Next step requires removing weak and sub type entities, so
as to concentrate on strong entities first. This step is very
essential and need concentration because the completeness
and correctness criteria depend on this step. We need to
form two separate groups, one for weak and subtype
entities and other for strong entities. We will make sure to
store them separately as they will not be ignored
completely. Finally they are entities.

Using the information in T0, the computerized
algorithm’s first step is to remove from M0 all weak and
subtype entities as well as the relationships connecting the
weak to the strong and the subtype to the super type
entities. In this step, the algorithm ensures that the
respective strong/super type Entity is now connected to all
of the other relationships that were originally connected to
its weak / subtype entity. This procedure produces a new
matrix, M1.

Remove singular entities and their connecting
relationships from M1 creating M2

Now this step in algorithm is to identify and remove each
singular entity along with its associated relationship with
M1. Sometimes, when a singular entity is removed from
M1, a previously nonsingular entity becomes a singular
entity in the reduced matrix. This happens when a singular
entity’s connected entity is related to only one other entity.
Hence, the process of identification and removal of
singular entities is repeated until there are no singular
entities remains.

At the same time concentrating on singular
entities relationship is also important and in the order of
their removal, a list of all the singular entities and their
associated relationships is created, so that at the
appropriate time, they can be reinserted in the matrix, in
the reverse order of their removal. The resulting matrix is
labeledM2. Clearly, if one or more weak, subtype, or
singular entities are removed, M2’s dimension, will be
smaller than M0’s dimension

 Compute the distance between each pair of
entities in M2
The next part of algorithm requires computing distance
between each possible pair of rows (also called entities) in
M2. The shorter the distance between a pair, the more
appropriate it is to put the two entities in the same cluster,
and the larger the distance, the more appropriate it is to
put the two entities in different clusters.

Rearrange the rows in M2 to juxtapose pairs of
entities with smallest distances creating M3

A matrix, M3, is constructed where we leave the
relationship columns in the same order as in M2, but
rearrange the rows so that pairs of entities with least
distances are closest to each other. The algorithm
compares all pair-wise row distances, and copies the pair
of rows with the least distance next to each other in M3.
Among the unused Rows, the algorithm finds the one with
the smallest distance from one of the current edge rows.
The identified row is added to M3 next to that edge row.
This process is repeated until there are no unused Rows in
M2. Thus, at this point, M3 represents the rows in M2, in
an order such that the pairs of entity rows with the
smallest distances are closest together.

Identify N, the largest number of potential
clusters to consider

The next step of this algorithm is to find the range for K,
the number of clusters to consider. As suggested earlier,
every cluster must contain at least two entities. Hence, the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

380

maximum number of clusters, N, is the integer value of
the number of entities divided by two. We also assume
that, when an ER matrix is to be clustered, a database
manager is looking for at least two clusters. Therefore,
this algorithm assumes that the desired number of clusters,
K, is in [2, N].

Identify the ‘‘best’’ K-cluster solution for every
possible value of K

This is one of the important parts of the algorithm with
several sub-steps detailed below. First, for each value of K
(2 to N), the algorithm identifies all admissible sets (say
S) of K groups of entities. Next, for each one of the S sets
for a given value of K, the algorithm carries out the sub-
steps, creating S matrices that are labeled M4. Then, each
one of the M4’s is used to create a feasible and promising
K-cluster solution. Once all S feasible and promising K-
cluster solutions are created, calculate the goodness of fit,
G, for each one of them. Among the S solutions, the
solution with the largest value of G is identified as the best
K-cluster solution.

Identify all S admissible sets of K groups of
entities in M3

Since a matrix’s own boundaries (i.e. the first and the last
rows) also serve as the boundaries for the first and the last
sub-matrices, respectively, to construct a partition
resulting in K groups of entities (rows), we need K-1 other
horizontal dividers between rows. It is desirable to draw
the dividers between the K-1 pairs of adjacent rows that
have the greatest distances. However, since a cluster must
have at least two entities, divider locations immediately
after the first row, or immediately before the last row,
cannot be considered selectable. Initially, all other
possible divider locations are considered as selectable.
The pair of adjacent rows with the largest distance is
found and the first divider is placed between those two
rows.

Since an entity group must contain at least two
entities, entity pairs involving the rows immediately
adjacent (on either side) to a selected divider are no longer
selectable. Among the remaining pairs of entities, the pair
of adjacent rows with the largest distance is found and the
next divider is placed between those two rows. This
process is repeated K-2 times to find all but the last
divider. Up until this point, ties in largest distances are
broken arbitrarily by choosing the first of the tied divider
locations.

For the (K-1)st divider, often, there are several
selectable divider locations with the same and
largest distance between adjacent rows. Hence, the last
divider is handled differently to ensure that arbitrary tie-

breaking does not cause a better solution to be missed.
Suppose that there are S
candidates for the (K-1)st divider. Together, the first K-2
dividers and one of the S candidates
produce an admissible set of K groups of entities in M3.
Thus, there are S sets of K groups of entities to consider..

When, for a given value of K, it is impossible to
select any admissible (K-1)st divider, that value of K is
eliminated from further consideration.

Reinsert all singular, weak, and subtype entities
and their connecting relationships in M3 to
create M4

First, for each admissible set, f ε S, of K groups of entities,
the algorithm constructs a new matrix M4 by reinserting,
in the reverse order of their removal, each singular, weak,
and subtype entity immediately above its respective
connected, strong or super type entity. If necessary, a
divider location is adjusted to ensure that the reinserted
entity and its relevant entity are in the same group. All the
relationships are reinserted as the last columns of the
matrix and any altered relationship column ‘1’s are
adjusted back to their original entity rows. Thus, at the end
of this procedure, for each one of the S sets, the
corresponding M4 is a p X q matrix consisting of all the
entities and relationships in M0 and for a given value of K,
the total number of M4’s is S.

Create M5, a feasible and promising K-cluster
solution from a given M4

Now, the columns in a given M4 need to be rearranged so
that each group of entities is clustered with suitable
relationships. Our aim is to maximize the goodness of fit
of the resulting K-cluster solution. To maximize G, one
should cluster the largest possible number of relevant
relationships with the smallest group of entities.

Hence, for each M4, this algorithm creates a
blank matrix, M5, of the same dimensions (p X q) as M4.
It copies into M5 all the entity (row) names in the same
order as in M4. The chosen K-1 dividers are also copied in
M5. Along with the matrix boundaries, the dividers help
identify the K groups of entities in M5. Then, an iterative
process of column rearrangement and cluster identification
begins.

Each iteration involves first identifying the
smallest group of entities (rows) that has not yet been put
into a cluster. In case of a tie in the entity group size, the
first group is selected. The algorithm considers each
relationship that has not already been copied to M5. If a
relationship has at least as many 1’s in the rows of the
selected group of entities, as it has in the rows of any of
the other unclustered groups of entities, that relationship

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

381

column is copied to matrix M5 in the next available
column spot. When consideration of all relationships is
done, the copied relationships and the selected group of
entities are declared as a cluster, and the algorithm moves
on to the identification of the next cluster. When all K
clusters are constructed,M5 represents the feasible and
promising K-cluster solution resulting from a given M4.

As can be noted, this is a greedy procedure for
maximizing the G-value of the solution. However, there is
no guarantee that an exhaustive approach would not have
found a clustering arrangement with a higher value of G
for this set of K groups of entities. That is why we call this
solution as a ‘‘feasible and promising’’ solution.

Calculate G and identify the best K-cluster
solution

Once all S feasible and promising K-cluster solutions
have been created, the automated algorithm
calculates the goodness of fit, G, for each one of
them. The solution with the largest value of G is
identified as the best K-cluster solution.

Identify the optimal solution to a problem

Finally, all the best K-cluster solutions for the entire range
of K’s (2 to N) are compared based on their G values, and
the solution with the highest G is chosen as the ‘‘optimal’’
clustering solution. Although we use the word ‘‘optimal’’
to refer to the best of the best solutions for various values
of K, it should be clear that we are not claiming that our
solution is globally optimal. Our algorithm is a heuristic
that employs a greedy approach. Thus, we use the word
‘‘optimal’’ simply to avoid the use of the awkward phrase,
‘‘best of the best K cluster solution.’’

Last and important step of clustering

While this algorithm is designed to consider all possible
values of the number of clusters, K = 2 to N, we have also
incorporated a special feature in it.

As N is a variable, we may assign any required
number to this N and execute the said algorithm to achieve
required results. The very important part of the same
algorithm is to generate tables as equal numbers of
generated clusters and then focus on forecasting.

