
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

41

Manuscript received January 5, 2009

Manuscript revised January 20, 2009

EHW Architecture for Design of FIR Filters for Adaptive

Noise Cancellation

Uma Rajaram†, Raja Paul Perinbam†, Bharghava††

† Anna University, Chennai, India
††CVEST, International Institute of Information Technology, Hyderabad, India

Summary
This paper describes a new technique for the design of Finite
Impulse Response (FIR) Filter within an Evolvable hardware
framework, using genetic algorithm (GA), aimed at noise
cancellation. This implementation aims at reducing the number of
generations required to provide time bound optimal filter
configuration and to improve the quality of the filter designed. The
filter is designed to reconfigure itself and provide real-time noise
cancellation. The filter logic is implemented on a novel
reconfigurable fabric. The GA processing and the reconfigurable
framework is synthesized on Xilinx XCV1000 hardware chip. The
results obtained show the validity of the approach to adaptive
noise cancellation using Evolvable Digital Filters.

Key words:
Evolvable Hardware, Noise Cancellation, Adaptive Filter,
Reconfigurable Hardware

1. Introduction

Reconfigurable hardware devices make it possible to
change the topology of electronic circuits at runtime. Using
reconfigurable devices as a platform for Evolvable
hardware (EHW) is well suited for real-time adaptive
systems. EHW is a scheme inspired by natural evolution,
for automatic design of hardware systems. It refers to
hardware that can change its architecture and behavior
dynamically and autonomously by interacting with its
environment. It is built on top of reconfigurable logic
devices, whose architecture can be reconfigured by using
Evolutionary Algorithms (EA). The reconfigurable device
acts as the design space for the EA, which then determines
the optimum hardware configuration required for a
particular design specification. EHW is best suited for
cases where the design specification doesn't provide
sufficient information to permit using conventional design
methods [2]. For example, the specification may only state
desired behavior of the target hardware. In other cases an
existing circuit must adapt, i.e. modify its configuration, to
compensate for faults or perhaps a changing operational

environment. For instance, deep-space probes may
encounter sudden high radiation environments and alter a
circuit's performance; the circuit must self-adapt to restore
as much of the original behavior as possible and quickly.
Another example is in the abstraction and processing of the
signal of fetus’s rhythm of the heart close to the parent’s
during labor. This involves Adaptive Noise Cancellation
(ANC) [6,7].

In this work, a reconfigurable Finite Impulse Response
(FIR) filter constitutes the backbone of the Adaptive Noise
Cancellation. A genetic algorithm based implementation of
FIR filter to cancel out the interference from the varied
noise sources and abstract the original signal is presented in
this work. Both the filter as well as the hardware required
for evolution is implemented in a single Field
programmable gate array (FPGA). The circuit is based on
context-switching in FPGA-devices and preliminary results
indicate the use of a compact hardware as well as fast
adaptation. The design is characterized by a multiplier-less
architecture that employs Primitive Operator Filter (POF)
technique [5] through which digital filters are realized using
signal flow graphs comprising low complexity operations.
POF is particularly advantageous for autonomous filter
design using EHW, as it does not require any initial
encoding scheme, such as canonic signed digit (CSD).
Furthermore, [4] shows that FIR filters designed using POF
are smaller in area than those designed using the CSD
approach. The proposed evolvable architecture for ANC is
very effective, resulting in significant improvement in
terms of reproduced signal quality. The entire system is
synthesized on a Xilinx Virtex XCV1000 FPGA. As the
entire filter, including the MAC, and the delay elements, are
realized on the reconfigurable fabric, a more optimum filter
is realized (using fewer resources) for a given frequency
response.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

42

2. Digital Filter

2.1 Basic Digital Filter

A digital filter consists of an interconnection of filter

taps connected in a certain topology. Each tap holds a filter
co-efficient. The major operations of a filter are
multiplication at each filter tap and accumulation of their
results. The number of taps decides the accuracy of the filter
and the co-efficient describes the response required from
the input signal. The interconnect topology of the taps
determines the phase and magnitude of the output signal.
FIR filter is chosen in this work as they are regarded as
more stable and reliable and as such they can be used to
study the effects of evolution on adaptability. A general FIR
filter is described by equation (1)

Y(n)=k1x(n) + k2x(n-1) + k3x(n-2) … kmx(n-m) (1)

 Where ki is the ith coefficient, x is the input signal, y is
the output signal, ‘m’ is the number of filter coefficients
(taps) and n is the input sample number. The topology of
the FIR filter corresponding to equation (1) is shown in
Figure 1.

Figure 1 Generic FIR Filter Topology

 Implementation of FIR-filters can be undertaken in
either hardware or software. A software implementation
will require sequential execution of the filter-functions.
Hardware implementation allows the filter functions to be
executed using parallel functional units and makes
improved filter processing speed possible. It is possible to
realize an FIR filter using primitive operations [5] such as
addition, subtraction, and shifting, thereby reducing circuit
complexity. This is of interest in this paper, as it provides a
logical framework for the design of a reconfigurable fabric
to implement the filter.

2.2 Adaptive Filter

Adaptive filters are self-designing using a
recursive algorithm and are useful if complete priori
knowledge of environment is not available. Adaptive
filters are utilized in a variety of applications, both on

stored data and on real time processing tasks. Areas for
real time adaptive filter utilization includes room acoustic
identification, echo cancellation, Adaptive Noise
Cancellation (ANC), CDMA interference suppression etc.
The Basic architecture of an adaptive filter is shown in
Figure 2.

Fig. 2: Basic architecture of adaptive filter

2.3 Adaptive Noise Cancellation

ANC was first proposed by Widrow and Glow
in 1975 [6], the objective of which is to filter out an
interference component by identifying a linear model
between measurable noise source and the corresponding
immeasurable interference. Fig. 3 shows the schematic
diagram of an ideal situation to which adaptive noise
cancellation can be applied.

Figure 3 Adaptive Noise Cancellation Scheme

3. Evolvable Hardware

3.1 Evolvable Hardware Concepts

Evolvable hardware is based on the idea of
combining reconfigurable devices with evolutionary
algorithms such as Genetic Algorithms [3,4]. The basic
concept in EHW is to regard the configuration bits for
reconfigurable hardware devices as chromosomes for GA.
By choosing an appropriate fitness function for the given
task, GA can autonomously find the best hardware
configuration in terms of chromosomes i.e. configuration

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

43

bits. The algorithm for evolving circuits on a
reconfigurable fabric is shown in Fig. 4

Figure 4 Block Diagram of EHW

Evolvable hardware problems fall into two

categories: original design and adaptive systems. Original
design uses evolutionary algorithms to design a system
that meets a predefined specification. Adaptive systems
reconfigure an existing design to counteract faults or
changed operational environment. Original design
of digital systems is not of much interest because industry
already can synthesize enormously complex circuitry. For
example, one can buy IP to synthesize USB port circuitry,
Ethernet microcontrollers and even entire RISC processors.
Some research into original design still yields useful
results, for example genetic algorithms have been used to
design logic systems with integrated fault detection that
out perform hand designed equivalents. Original design of
analog circuitry is still a wide-open research area. Indeed,
the analog design industry is nowhere near as mature as is
the digital design industry. Adaptive systems have been an
area of intense interest in the recent past.

 The fitness of an evolved circuit is a measure of how
well the circuit matches the design specification. Fitness in
evolvable hardware problems is determined via two
methods:-

1) Extrinsic evolution: All circuits are simulated to
see how they perform

2) Intrinsic evolution: Physical tests are run on
actual hardware.

 In off-line fitness computation (OFL) or Extrinsic
evolution, the evolution is simulated in software, and only
the elite chromosome is written to the hardware device. In
online Fitness Computation (ONL), the hardware device
gets configured for each chromosome for each generation
(sometimes named intrinsic evolution) [1]. GA is the most
commonly used evolutionary algorithm and uses
biological operators like crossover and mutation as shown
in figure 5.

Figure 5 Genetic Algorithm operators

3.2 Related Work

The evolution of an 8-tap filter using a Xilinx
Virtex XCV1000 FPGA has been demonstrated in [7],
while [8] presents the complete hardware evolution of an
adaptive filter (wherein the filter coefficients are evolved).
In comparison with these research investigations the
proposed design presents a fine-grain approach that offers
better results in terms of power over general-purpose
FPGAs or multiplier-based solutions. In [12], a fine-grained
approach has been reported, which is used to implement
image filters. Similarly, [11] proposes an adaptive median
filter for image processing. But in these cases the input data
is static. A similar design for FIR filters is presented in [9].
But the fitness function considered and the overall system
architecture does not suit noise cancellation applications.
The present approach differs from the above designs, in that,
it tracks the noise accompanying the signal, and constantly
evolves to give a better Signal-to-Noise ratio. Also, the
implementation of a configuration cache speeds up future
static evolutions.

4. System Architecture

4.1 Overall System Architecture

 The approach taken in this paper deviates from
generic EHW architecture in that it contains two working
solutions at any given instant in time, and the more
optimized of the two drives the output. The signal flow in
the proposed architecture is shown in Fig. 6. This is done
in order to dynamically track interference due to noise.
Mutation is the more dominant genetic operator than
Crossover, so as to provide subtle variations in the filter.
Recent solutions of high fitness are stored in a
configuration cache in order to reduce the number of
generations required.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

44

Figure 6 Proposed Overall System Architecture

 Initially, both the Reconfigurable Fabrics (RF) are
statically evolved to implement a filter of required
specification. The respective configurations are then stored
in the configuration cache. RF 1 is chosen to drive the
output on reset. When RF 1 drives the output, RF 2 is
constantly evolved predominantly by mutation, operated
cyclically on the contents of the configuration cache. The
fitness of RF 1 and RF 2 are compared in each generation
and if RF2 is found fitter, then, the GA block selects the
output of RF 2 as the system output and RF 1 and RF 2
exchange their previous roles. For the case of extrinsic
evolution, the contents of the configuration cache can be
used as the initial population. This can lead to reduced
number of generations in producing an optimal result.

4.2 Reconfigurable Fabric

 As digital filters can be implemented using repeated
primitive operations such as addition and shifting as
mentioned before, the reconfigurable fabric designed for
this purpose consists of Programmable Processing
Elements (PPE) with separate configurable shifting
operators, and summing operators. Each line in the
Reconfigurable fabric architecture is of ‘n’ bits. The
Extended Cartesian Genetic Programming Reconfigurable
Architecture [6,10] has been adopted adaptively, as shown
in Fig. 7. The PPEs are arranged as a 4x6 matrix, with an
extra PPE for the output. The input to this 4x6 matrix is
the original input signal and its three delayed versions. In
this implementation, 8-bit data is considered. The inputs to
each PPE are connected to the outputs of the previous l
columns, where l is the level-back parameter. The PPE
operates on these inputs according to the configuration bits
provided to it by the GA block. The Buffer Units (BU) are
inserted between adjacent rows, to enable future pipelining
and achieve higher speeds of operation.

Figure 7 Extended Cartesian Genetic Programming Reconfigurable

Architecture

 For the current implementation on a Xilinx XCV1000
FPGA chip, the level-back has been chosen as 1 in order to
realize the multiplexer blocks efficiently. Also, as the input
to the 1st column consists of delayed versions of the input,
a level-back value of 1 is justified. The chromosome for
the reconfigurable fabric design is the set of all
configuration bits representing 25 sets of 5 integers each.

4.3 Programmable Processing Element

 The PPE used in the reconfigurable fabric has been
designed to perform primitive operations in implementing
an FIR filter. The architecture of the PPE is shown in Fig.
8.

Figure 8 Architecture of the Programmable Processing element

 The configuration of the PPE is determined by 5 sets of
bits: cfg1, cfg2, cfg3, cfg4 and cfg5. cfg1 and cfg2 route
the input signals to modules A’ and B’ and each measure 2
bits. The R/L blocks are shifter units. The configuration
blocks cfg3 and cfg4 operate according to Table 1 and each
are of size 2 bits.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

45

Table 1: Configuration cfg3 and cfg4 of R/L blocks

Configuration Bits Function

00 No shift

01 1 Left Shift

10 1 Right Shift

11 2 Right Shift

Table 2 gives the details of cfg5 and is of 3 bits.

Table 2: Function code for cfg5

Configuration Bits Function/Output

000 A

001 B

010 A XOR B

011 A XOR Inv(B)

100` A OR B

101 A AND B

110 Inv(B)

111 Inv(A)

 The total number of functions that can be performed by
the designed PPE is decided by 7 bits, which implies that a
total of 128 different functions can be performed by each
of the PPE. The number of bits required to configure a
single PPE is 11 and hence, 275 bits are required to
configure the entire reconfigurable fabric (25 PPEs).

4.4 Implementation

 The EHW CGP structure is implemented in a Xilinx
Virtex XCV1000 FPGA. As shown in Figure 7, the
phenotype layer contains the structural information for
evolution and consists essentially of PPEs. Every PPE
(which is the genotype) cell is made up of two input
multiplexers, one Functional Block (FB), 2 shifter blocks
and necessary interconnections as shown in Fig. 8. The FB
contains a compact and possibly redundant representation
of the functions, one of which is to be chosen as the active
function for this PPE cell. The PPEs are initialized with
the same functionality before they are reconfigured in the
course of the evolution.

 The evolutionary circuit takes in the input signal and
reference noise signal as the input and produces a single
output. For each PPE, the, multiplexer inputs will be
chosen from the outputs of the previous l (here l=1)
columns. The output of the FB is connected to the output
of the PPE and is given by O as described by equation 2.

O={R/L[MUX(cfg1),cfg3],R/L[MUX(cfg2),cfg4],cfg5}

 (2)

 The fewer the functions, the faster is the evolution.
There exists a trade-off between the functionality and the
complexity of the hardware structure. In the current
implementation the functionality is compromised in order
to achieve lesser circuit complexity.

 Each PPE array is provided with 4 delayed versions of
the input signal every clock cycle. In each subsequent
cycle, 3 inputs remain the same (but shifted), and the next
signal value is loaded onto one of the inputs. Each PPE is
directly supplied with data individually. The total delay
exhibited by the EHW fabric equals the sum of the
individual delays of the BU, the PPE, multiplied by
(Number of Rows + 1), and also the initial delay of 3 units
due to input format. Insertion of Buffer stages provides
efficient filter tap control. The enable and clock signals
provided to each PPE can be programmed to provide
multiple delays. The PPE architecture requires 22 slices of
a Xilinx Virtex xcv1000FPGA.

5. Genetic Algorithm Specification

 As shown in section 4.3, the length of the
chromosome for each RF is 275 bits. A GA with elitism
and of a fixed population is used with selection, mutation
and low probability crossover operators. An initial
population of 24 individuals is generated constrained by
the chromosome schemas. These individuals are tested for
fitness and are evolved till terminal conditions are met.
The first 2 individuals which satisfy terminal conditions
are used to configure RF 1 and RF 2. The rate of mutation
is taken at 8 % per gene and the crossover rate is fixed at
10%. The level of mutation is very high when compared to
a generic EHW. An example chromosome for the designed
RF is 12013 33121 12312 23212 11212 22312 22123
22121 …. Each of the single digit integers is represented
by its 2-bit binary equivalent.

 In the case of a static design, the evolution process
drives the evolving design towards an optimal or near
optimal solution. In the case of the adaptive filter the
solution required varies with the input signal relative to the
reference signal. The evolution involves the configuration

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

46

of the RF which realizes the filter. The solution will vary
with varying input signals to the filter and, as such, this
type of design may be termed a dynamic design i.e.
solutions vary over time. The fitness function uses the
response from the current filter i.e. the output of the design
represented by the current individual, to calculate a fitness
value (Fitvalue) for the proposed solution.

 (3)

 This value is calculated by accumulating the difference
between the sum of the reference noise signal and the filter
output, and the noisy input signal, for each sample — 1 to
n. The optimal solution sought is a fitness value of 0 i.e.
100% fitness. In the proposed architecture, after static
evolution of a filter, the filters represented by RF 1 and RF
2 are put through the process of evolution alternately and
the system output is selected depending on the fitness
values of the 2 filters. The filter not being evolved can also
be subjected to dynamic evolution as in [8] and could
provide better results.

6. Simulation Results

 In this section, varying noise conditions are
considered and the evolved RF architecture is presented.
The mean absolute error i.e. the mean absolute deviation
between the true variations and the evolved RF output is
computed and used as a measure to demonstrate the
tracking ability of the evolved architecture.

 Two signals were considered for the test. These were
subjected to white noise of unit amplitude. Fig. 9 shows
one form of the evolved architecture of the reconfigurable
fabric during operation. The blank PPEs were unused for
the particular filter configuration. Fig. 10 and Fig. 12 give
the deviations of the output with respect to the original
value of the transmitted signals. Fig. 11 and Fig.1 3 show
the absolute error values of the filter for the 2 signals.

Figure 9 Evolved Architecture of the RF

Figure 10 Variation of Filter Output for Signal 1

Figure 11 Error Curve of Filter Output for Signal 1

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

47

Figure 12 Variation of Filter Output with Signal 2

Figure 13 Error Curve of Filter Output for Signal 2

The waveform of the filter output closely conformed to the
original signal waveform. The Mean Square Error value for
signal 1 was calculated to be .587, and that of signal 2 to
be .423. The above results validate the use of an EHW
approach for noise cancellation.

8. Conclusion

An EHW based reconfigurable fabric is proposed
in order to implement a noise canceling FIR filter. The filter
is designed to reconfigure itself and provide real-time noise
cancellation. The filter logic is implemented on a novel
reconfigurable fabric designed for the specific purpose of
implementing an FIR filter using primitive operators, and is
synthesized on a Xilinx XCV1000 hardware chip. The
results obtained show the validity of the approach to
adaptive noise cancellation using Evolvable Digital Filters.
The filter was able to track signal variations, and retrieved
the signal data with minimal error. The architecture
provides the capability of implementing the reconfigurable
fabric in a pipelined fashion, but the current implementation
does not make use of this feature. Future work includes the
implementation of the pipelined version of the filter for
improved speed, and to optimize the programmable
processing element at circuit level for efficient ASIC
implementation of the reconfigurable fabric.

References

[1]. Jim Torresen, “An Evolvable Hardware Tutorial”, FPL 2004,

821-830
[2]. L. Sekanina, “Evolvable Hardware Tutorial”, in GECCO

2007, New York
[3]. Bernard Widrow and Samuel D. Steavns, “Adaptive Signal

Processing”, Pearson Edition, 2000.
[4]. Redmill, D. W., Bull, D. R., and Dagless, E., “Genetic

synthesis of reduced complexity filters and filter banks using
primitive operator directed graphs”. IEE Proc. Circuits
Devices Syst, vol.147, pp. 303-310, 2000.

[5]. Bull, D. R. and Horrocks, D. H., “Primitive operator digital
filters”, IEE Proc. Circuits, Devices and Systems, pp.
401-412, 1991.

[6]. L. Sekanina and P. Mikusek, “Analysis of Reconfigurable
Logic Blocks for Evolvable Digital Architectures”,
EvoWorkshops 2008, LNCS 4974, pp. 144–153, 2008.

[7]. Vinger, K. A. and Torresen, J., “Implementing evolution of
FIR filters efficiently in an FPGA”, Proceedings of
NASA/DoD Conference on Evolution Hardware (EH’03), pp.
26-29, 2003.

[8]. Tufte, G. and Haddow, P. C., “Evolving an adaptive digital
filter”, Proceedings of the 2nd NASA/DoD Workshop on EH,
2000, pp. 143-150, 2000.

[9]. Evangelos F. Stefatos et al., “An EHW Architecture for
the Design of Unconstrained Low-Power FIR Filters for
Sensor Control Using Custom-Reconfigurable Technology”,
Proceedings of the 2005 NASA/DoD Conference of
Evolution Hardware (EH’05)

[10]. L. Sekanina, “Virtual Reconfigurable Circuits for
Real-World Applications of Evolvable Hardware”, Evolvable
Systems: From Biology to Hardware. Fifth International
Conference, ICES 2003, 186-198

[11]. Vašíček Zdeněk, Sekanina Lukáš, "Novel Hardware
Implementation of Adaptive Median Filters", In Proc. of 2008
IEEE Design and Diagnostics of Electronic Circuits and
Systems Workshop, Bratislava, SK, IEEE CS, 2008, p.
110-115, ISBN 978-1-4244-2276-0

[12]. Yang Zhang, Stephen L. Smith, and Andy M. Tyrell,
“Digital Circuit Design using Intrinsic Evolvable Hardware”,
Proceedings of NASA/DoD Conference on Evolution
Hardware (EH’04), 2004.

[13]. Negoita Mircea, Sekanina Lukáš, Stoica Adrian, "Adaptive
and Evolvable Hardware and Systems: The State of the Art
and the Prospectus for Future Development", In Lecture
Notes in Computer Science, Vol. 2008, No. 5179, DE, p.
310-318, ISSN 0302-9743

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

48

Author Biographies

1) Mrs. Uma Rajaram is a research scholar in the Electronics &
Communications Engineering, Anna University, Chennai. Her
areas of interest include evolvable hardware, genetic algorithms,
adaptive signal processing etc.

2) Dr. Raja Paul Perinbam is a Professor in the faculty of the
Electronics & Communications Engineering, Anna University,
Chennai. His areas of interest include EHW, embedded systems,
low power VLSI etc.

3) Bharghava is a graduate research scholar at the Center for VLSI
& Embedded Systems, International Institute of Information
Technology. His research interests include Processor Architecture,
Multicore Processors, and Reconfigurable Computing.

