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Summary 
This paper describes a new technique for the design of Finite 
Impulse Response (FIR) Filter within an Evolvable hardware 
framework, using genetic algorithm (GA), aimed at noise 
cancellation. This implementation aims at reducing the number of 
generations required to provide time bound optimal filter 
configuration and to improve the quality of the filter designed. The 
filter is designed to reconfigure itself and provide real-time noise 
cancellation. The filter logic is implemented on a novel 
reconfigurable fabric. The GA processing and the reconfigurable 
framework is synthesized on Xilinx XCV1000 hardware chip. The 
results obtained show the validity of the approach to adaptive 
noise cancellation using Evolvable Digital Filters.  
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1. Introduction 

Reconfigurable hardware devices make it possible to 
change the topology of electronic circuits at runtime. Using 
reconfigurable devices as a platform for Evolvable 
hardware (EHW) is well suited for real-time adaptive 
systems. EHW is a scheme inspired by natural evolution, 
for automatic design of hardware systems. It refers to 
hardware that can change its architecture and behavior 
dynamically and autonomously by interacting with its 
environment. It is built on top of reconfigurable logic 
devices, whose architecture can be reconfigured by using 
Evolutionary Algorithms (EA). The reconfigurable device 
acts as the design space for the EA, which then determines 
the optimum hardware configuration required for a 
particular design specification.  EHW is best suited for 
cases where the design specification doesn't provide 
sufficient information to permit using conventional design 
methods [2]. For example, the specification may only state 
desired behavior of the target hardware. In other cases an 
existing circuit must adapt, i.e. modify its configuration, to 
compensate for faults or perhaps a changing operational 

environment. For instance, deep-space probes may 
encounter sudden high radiation environments and alter a 
circuit's performance; the circuit must self-adapt to restore 
as much of the original behavior as possible and quickly. 
Another example is in the abstraction and processing of the 
signal of fetus’s rhythm of the heart close to the parent’s 
during labor. This involves Adaptive Noise Cancellation 
(ANC) [6,7].  
 

In this work, a reconfigurable Finite Impulse Response 
(FIR) filter constitutes the backbone of the Adaptive Noise 
Cancellation. A genetic algorithm based implementation of 
FIR filter to cancel out the interference from the varied 
noise sources and abstract the original signal is presented in 
this work. Both the filter as well as the hardware required 
for evolution is implemented in a single Field 
programmable gate array (FPGA). The circuit is based on 
context-switching in FPGA-devices and preliminary results 
indicate the use of a compact hardware as well as fast 
adaptation. The design is characterized by a multiplier-less 
architecture that employs Primitive Operator Filter (POF) 
technique [5] through which digital filters are realized using 
signal flow graphs comprising low complexity operations. 
POF is particularly advantageous for autonomous filter 
design using EHW, as it does not require any initial 
encoding scheme, such as canonic signed digit (CSD). 
Furthermore, [4] shows that FIR filters designed using POF 
are smaller in area than those designed using the CSD 
approach. The proposed evolvable architecture for ANC is 
very effective, resulting in significant improvement in 
terms of reproduced signal quality. The entire system is 
synthesized on a Xilinx Virtex XCV1000 FPGA. As the 
entire filter, including the MAC, and the delay elements, are 
realized on the reconfigurable fabric, a more optimum filter 
is realized (using fewer resources) for a given frequency 
response. 
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2. Digital Filter 
 
2.1 Basic Digital Filter 

 
A digital filter consists of an interconnection of filter 

taps connected in a certain topology. Each tap holds a filter 
co-efficient. The major operations of a filter are 
multiplication at each filter tap and accumulation of their 
results. The number of taps decides the accuracy of the filter 
and the co-efficient describes the response required from 
the input signal. The interconnect topology of the taps 
determines the phase and magnitude of the output signal. 
FIR filter is chosen in this work as they are regarded as 
more stable and reliable and as such they can be used to 
study the effects of evolution on adaptability. A general FIR 
filter is described by equation (1) 
 
Y(n)=k1x(n) + k2x(n-1) + k3x(n-2) … kmx(n-m)  (1) 
 
  Where ki is the ith coefficient, x is the input signal, y is 
the output signal, ‘m’ is the number of filter coefficients 
(taps) and n is the input sample number. The topology of 
the FIR filter corresponding to equation (1) is shown in 
Figure 1.  

 
Figure 1 Generic FIR Filter Topology 

 
  Implementation of FIR-filters can be undertaken in 
either hardware or software. A software implementation 
will require sequential execution of the filter-functions. 
Hardware implementation allows the filter functions to be 
executed using parallel functional units and makes 
improved filter processing speed possible. It is possible to 
realize an FIR filter using primitive operations [5] such as 
addition, subtraction, and shifting, thereby reducing circuit 
complexity. This is of interest in this paper, as it provides a 
logical framework for the design of a reconfigurable fabric 
to implement the filter. 
 
2.2 Adaptive Filter 
 

Adaptive filters are self-designing using a 
recursive algorithm and are useful if complete priori 
knowledge of environment is not available. Adaptive 
filters are utilized in a variety of applications, both on 

stored data and on real time processing tasks. Areas for 
real time adaptive filter utilization includes room acoustic 
identification, echo cancellation, Adaptive Noise 
Cancellation (ANC), CDMA interference suppression etc. 
The Basic architecture of an adaptive filter is shown in 
Figure 2. 
 

 
Fig. 2: Basic architecture of adaptive filter 

 
2.3 Adaptive Noise Cancellation 
 

ANC was first proposed by Widrow and Glow 
in 1975 [6], the objective of which is to filter out an 
interference component by identifying a linear model 
between measurable noise source and the corresponding 
immeasurable interference. Fig. 3 shows the schematic 
diagram of an ideal situation to which adaptive noise 
cancellation can be applied. 
 

 
 

Figure 3 Adaptive Noise Cancellation Scheme 
 
 
3. Evolvable Hardware  
 
3.1 Evolvable Hardware Concepts 
 

Evolvable hardware is based on the idea of 
combining reconfigurable devices with evolutionary 
algorithms such as Genetic Algorithms [3,4]. The basic 
concept in EHW is to regard the configuration bits for 
reconfigurable hardware devices as chromosomes for GA. 
By choosing an appropriate fitness function for the given 
task, GA can autonomously find the best hardware 
configuration in terms of chromosomes i.e. configuration 
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bits. The algorithm for evolving circuits on a 
reconfigurable fabric is shown in Fig. 4 
 

 
Figure 4 Block Diagram of EHW 

 
Evolvable hardware problems fall into two 

categories: original design and adaptive systems. Original 
design uses evolutionary algorithms to design a system 
that meets a predefined specification. Adaptive systems 
reconfigure an existing design to counteract faults or 
changed operational environment. Original design 
of digital systems is not of much interest because industry 
already can synthesize enormously complex circuitry. For 
example, one can buy IP to synthesize USB port circuitry, 
Ethernet microcontrollers and even entire RISC processors. 
Some research into original design still yields useful 
results, for example genetic algorithms have been used to 
design logic systems with integrated fault detection that 
out perform hand designed equivalents. Original design of 
analog circuitry is still a wide-open research area. Indeed, 
the analog design industry is nowhere near as mature as is 
the digital design industry. Adaptive systems have been an 
area of intense interest in the recent past.  

 
  The fitness of an evolved circuit is a measure of how 
well the circuit matches the design specification. Fitness in 
evolvable hardware problems is determined via two 
methods:- 

1) Extrinsic evolution: All circuits are simulated to 
see how they perform 

2) Intrinsic evolution:  Physical tests are run on 
actual hardware. 

  
  In off-line fitness computation (OFL) or Extrinsic 
evolution, the evolution is simulated in software, and only 
the elite chromosome is written to the hardware device. In 
online Fitness Computation (ONL), the hardware device 
gets configured for each chromosome for each generation 
(sometimes named intrinsic evolution) [1]. GA is the most 
commonly used evolutionary algorithm and uses 
biological operators like crossover and mutation as shown 
in figure 5. 

 
Figure 5 Genetic Algorithm operators 

 
 
3.2 Related Work 
 

The evolution of an 8-tap filter using a Xilinx 
Virtex XCV1000 FPGA has been demonstrated in [7], 
while [8] presents the complete hardware evolution of an 
adaptive filter (wherein the filter coefficients are evolved). 
In comparison with these research investigations the 
proposed design presents a fine-grain approach that offers 
better results in terms of power over general-purpose 
FPGAs or multiplier-based solutions. In [12], a fine-grained 
approach has been reported, which is used to implement 
image filters. Similarly, [11] proposes an adaptive median 
filter for image processing. But in these cases the input data 
is static. A similar design for FIR filters is presented in [9]. 
But the fitness function considered and the overall system 
architecture does not suit noise cancellation applications. 
The present approach differs from the above designs, in that, 
it tracks the noise accompanying the signal, and constantly 
evolves to give a better Signal-to-Noise ratio. Also, the 
implementation of a configuration cache speeds up future 
static evolutions. 
 
 
4. System Architecture 
 
4.1 Overall System Architecture 
 
 The approach taken in this paper deviates from 
generic EHW architecture in that it contains two working 
solutions at any given instant in time, and the more 
optimized of the two drives the output. The signal flow in 
the proposed architecture is shown in Fig. 6. This is done 
in order to dynamically track interference due to noise. 
Mutation is the more dominant genetic operator than 
Crossover, so as to provide subtle variations in the filter. 
Recent solutions of high fitness are stored in a 
configuration cache in order to reduce the number of 
generations required.  
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Figure 6 Proposed Overall System Architecture 

 
  Initially, both the Reconfigurable Fabrics (RF) are 
statically evolved to implement a filter of required 
specification. The respective configurations are then stored 
in the configuration cache. RF 1 is chosen to drive the 
output on reset. When RF 1 drives the output, RF 2 is 
constantly evolved predominantly by mutation, operated 
cyclically on the contents of the configuration cache. The 
fitness of RF 1 and RF 2 are compared in each generation 
and if RF2 is found fitter, then, the GA block selects the 
output of RF 2 as the system output and RF 1 and RF 2 
exchange their previous roles. For the case of extrinsic 
evolution, the contents of the configuration cache can be 
used as the initial population. This can lead to reduced 
number of generations in producing an optimal result.  
 
4.2 Reconfigurable Fabric 
 
 As digital filters can be implemented using repeated 
primitive operations such as addition and shifting as 
mentioned before, the reconfigurable fabric designed for 
this purpose consists of Programmable Processing 
Elements (PPE) with separate configurable shifting 
operators, and summing operators. Each line in the 
Reconfigurable fabric architecture is of ‘n’ bits. The 
Extended Cartesian Genetic Programming Reconfigurable 
Architecture [6,10] has been adopted adaptively, as shown 
in Fig. 7. The PPEs are arranged as a 4x6 matrix, with an 
extra PPE for the output. The input to this 4x6 matrix is 
the original input signal and its three delayed versions. In 
this implementation, 8-bit data is considered. The inputs to 
each PPE are connected to the outputs of the previous l 
columns, where l is the level-back parameter. The PPE 
operates on these inputs according to the configuration bits 
provided to it by the GA block. The Buffer Units (BU) are 
inserted between adjacent rows, to enable future pipelining 
and achieve higher speeds of operation.  

 
Figure 7 Extended Cartesian Genetic Programming Reconfigurable 

Architecture 
 
  For the current implementation on a Xilinx XCV1000 
FPGA chip, the level-back has been chosen as 1 in order to 
realize the multiplexer blocks efficiently. Also, as the input 
to the 1st column consists of delayed versions of the input, 
a level-back value of 1 is justified. The chromosome for 
the reconfigurable fabric design is the set of all 
configuration bits representing 25 sets of 5 integers each.  
 
4.3 Programmable Processing Element 
 
 The PPE used in the reconfigurable fabric has been 
designed to perform primitive operations in implementing 
an FIR filter. The architecture of the PPE is shown in Fig. 
8. 
 

 
Figure 8 Architecture of the Programmable Processing element 

 
  The configuration of the PPE is determined by 5 sets of 
bits: cfg1, cfg2, cfg3, cfg4 and cfg5. cfg1 and cfg2 route 
the input signals to modules A’ and B’ and each measure 2 
bits.  The R/L blocks are shifter units. The configuration 
blocks cfg3 and cfg4 operate according to Table 1 and each 
are of size 2 bits.  
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Table 1: Configuration cfg3 and cfg4 of R/L blocks 

 

Configuration Bits Function 

00 No shift 

01 1 Left Shift 

10 1 Right Shift 

11 2 Right Shift 

 
 

Table 2 gives the details of cfg5 and is of 3 bits.  
 

Table 2: Function code for cfg5 
 

Configuration Bits Function/Output 

000 A 

001 B 

010 A XOR B 

011 A XOR Inv(B) 

100` A OR B 

101 A AND B 

110 Inv(B) 

111 Inv(A) 

 
 

  The total number of functions that can be performed by 
the designed PPE is decided by 7 bits, which implies that a 
total of 128 different functions can be performed by each 
of the PPE. The number of bits required to configure a 
single PPE is 11 and hence, 275 bits are required to 
configure the entire reconfigurable fabric (25 PPEs).  

 
4.4 Implementation 
 
 The EHW CGP structure is implemented in a Xilinx 
Virtex XCV1000 FPGA. As shown in Figure 7, the 
phenotype layer contains the structural information for 
evolution and consists essentially of PPEs. Every PPE 
(which is the genotype) cell is made up of two input 
multiplexers, one Functional Block (FB), 2 shifter blocks 
and necessary interconnections as shown in Fig. 8. The FB 
contains a compact and possibly redundant representation 
of the functions, one of which is to be chosen as the active 
function for this PPE cell. The PPEs are initialized with 
the same functionality before they are reconfigured in the 
course of the evolution. 

   The evolutionary circuit takes in the input signal and 
reference noise signal as the input and produces a single 
output. For each PPE, the, multiplexer inputs will be 
chosen from the outputs of the previous l (here l=1) 
columns. The output of the FB is connected to the output 
of the PPE and is given by O as described by equation 2.  

O={R/L[MUX(cfg1),cfg3],R/L[MUX(cfg2),cfg4],cfg5}               

                                             (2) 

   The fewer the functions, the faster is the evolution. 
There exists a trade-off between the functionality and the 
complexity of the hardware structure. In the current 
implementation the functionality is compromised in order 
to achieve lesser circuit complexity. 

 Each PPE array is provided with 4 delayed versions of 
the input signal every clock cycle. In each subsequent 
cycle, 3 inputs remain the same (but shifted), and the next 
signal value is loaded onto one of the inputs. Each PPE is 
directly supplied with data individually. The total delay 
exhibited by the EHW fabric equals the sum of the 
individual delays of the BU, the PPE, multiplied by 
(Number of Rows + 1), and also the initial delay of 3 units 
due to input format. Insertion of Buffer stages provides 
efficient filter tap control. The enable and clock signals 
provided to each PPE can be programmed to provide 
multiple delays. The PPE architecture requires 22 slices of 
a Xilinx Virtex xcv1000FPGA.  

 

5. Genetic Algorithm Specification 
 
 As shown in section 4.3, the length of the 
chromosome for each RF is 275 bits. A GA with elitism 
and of a fixed population is used with selection, mutation 
and low probability crossover operators. An initial 
population of 24 individuals is generated constrained by 
the chromosome schemas. These individuals are tested for 
fitness and are evolved till terminal conditions are met. 
The first 2 individuals which satisfy terminal conditions 
are used to configure RF 1 and RF 2. The rate of mutation 
is taken at 8 % per gene and the crossover rate is fixed at 
10%. The level of mutation is very high when compared to 
a generic EHW. An example chromosome for the designed 
RF is 12013 33121 12312 23212 11212 22312 22123 
22121 …. Each of the single digit integers is represented 
by its 2-bit binary equivalent.  
 
 In the case of a static design, the evolution process 
drives the evolving design towards an optimal or near 
optimal solution. In the case of the adaptive filter the 
solution required varies with the input signal relative to the 
reference signal. The evolution involves the configuration 
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of the RF which realizes the filter. The solution will vary 
with varying input signals to the filter and, as such, this 
type of design may be termed a dynamic design i.e. 
solutions vary over time. The fitness function uses the 
response from the current filter i.e. the output of the design 
represented by the current individual, to calculate a fitness 
value (Fitvalue) for the proposed solution. 
   
      (3) 
 
 
 
 
 
 
   This value is calculated by accumulating the difference 
between the sum of the reference noise signal and the filter 
output, and the noisy input signal, for each sample — 1 to 
n. The optimal solution sought is a fitness value of 0 i.e. 
100% fitness. In the proposed architecture, after static 
evolution of a filter, the filters represented by RF 1 and RF 
2 are put through the process of evolution alternately and 
the system output is selected depending on the fitness 
values of the 2 filters. The filter not being evolved can also 
be subjected to dynamic evolution as in [8] and could 
provide better results.  
 
 
6. Simulation Results 
 
 In this section, varying noise conditions are 
considered and the evolved RF architecture is presented. 
The mean absolute error i.e. the mean absolute deviation 
between the true variations and the evolved RF output is 
computed and used as a measure to demonstrate the 
tracking ability of the evolved architecture.  
 
   Two signals were considered for the test. These were 
subjected to white noise of unit amplitude. Fig. 9 shows 
one form of the evolved architecture of the reconfigurable 
fabric during operation. The blank PPEs were unused for 
the particular filter configuration. Fig. 10 and Fig. 12 give 
the deviations of the output with respect to the original 
value of the transmitted signals. Fig. 11 and Fig.1 3 show 
the absolute error values of the filter for the 2 signals. 
 

 
Figure 9 Evolved Architecture of the RF 

 

 
Figure 10 Variation of Filter Output for Signal 1 

 

 
 

Figure 11 Error Curve of Filter Output for Signal 1 
 
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 
 

 

47

 

 
Figure 12 Variation of Filter Output with Signal 2 

 
 

 
 

Figure 13 Error Curve of Filter Output for Signal 2 
 

The waveform of the filter output closely conformed to the 
original signal waveform. The Mean Square Error value for 
signal 1 was calculated to be .587, and that of signal 2 to 
be .423. The above results validate the use of an EHW 
approach for noise cancellation. 

 
 

8. Conclusion 
 

An EHW based reconfigurable fabric is proposed 
in order to implement a noise canceling FIR filter. The filter 
is designed to reconfigure itself and provide real-time noise 
cancellation. The filter logic is implemented on a novel 
reconfigurable fabric designed for the specific purpose of 
implementing an FIR filter using primitive operators, and is 
synthesized on a Xilinx XCV1000 hardware chip. The 
results obtained show the validity of the approach to 
adaptive noise cancellation using Evolvable Digital Filters. 
The filter was able to track signal variations, and retrieved 
the signal data with minimal error. The architecture 
provides the capability of implementing the reconfigurable 
fabric in a pipelined fashion, but the current implementation 
does not make use of this feature. Future work includes the 
implementation of the pipelined version of the filter for 
improved speed, and to optimize the programmable 
processing element at circuit level for efficient ASIC 
implementation of the reconfigurable fabric. 
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