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Summary 
An efficient scheme for JPEG2000 SNR progressive decoding is 
proposed, which is capable of handling JPEG2000 compressed 
image data with SNR progressiveness. In order to avoid entropy 
decoding of the same compressed data more than once when 
decoding SNR progressive images, two techniques are 
introduced in our decoding scheme; reuse of intermediate 
decoding result and differential inverse discrete wavelet 
transform (differential IDWT). Comprehensive evaluation of our 
scheme demonstrating that with 26.6% increase of required 
memory size, up to 50% of computational cost of entropy 
decoding can be reduced in comparison with conventional non-
progressive decoding scheme when 9/7 irreversible DWT filter is 
used. 
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1. Introduction 

With the rapid progress of networking technology, 
required functionalities for image utilization in the 
networked environment have changed drastically. 
Progressiveness of image coding, which enables us to 
transmit/receive image data in incremental step, has 
become an important factor. An example of progressive 
image coding is illustrated in Fig. 1, as we receive more 
compressed data, decoded image quality will be improved 
in terms of pixel fidelity, resolution, etc.  

As a still image format, JPEG has been used widely 
such as images on the Internet and pictures by digital still 
cameras. However, in practice no progressiveness can be 
offered by JPEG. Hence there are strong demands for new 
image coding system with high-level progressiveness 
support, which can replace the position of JPEG. 
JPEG2000 [1], a standard of image coding system, offers 

many aspects of scalable coding, with which five types of 
progressive image streams can be produced; i.e. SNR 
progressive, resolution-SNR progressive, resolution-
position progressive, position-component progressive, and 
component-position progressive. Among them, SNR 
progressive shows remarkable characteristics rather than 
other progressive modes since the mode newly introduces 
the notion of “layer” [2]. 

To decode JPEG2000 compressed data, we need to 
calculate status of coefficients by classification tests, 
called coefficient bit modeling. This classification tests 
require some information obtained from the intermediate 
result of decoding. Thus in the decoding flow with SNR 
progressiveness, the decoded result for former layers is 
needed to decode the succeeding layer. 

In conventional straightforward progressive decoding 
scheme, once receiving a compressed data, it is appended 
to the previously received data and the image is decoded 
using the concatenated data. However, this scheme suffers 
from high computational cost since the previously 
received data is processed many times. 

DataData Data

Fig. 1: Example of SNR progressive decoding. 
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Motivated by this, in order to avoid decoding the 
same compressed data more than once when decoding 
SNR progressive images, two techniques are introduced in 
our decoding scheme; reuse of intermediate decoding 
result and differential IDWT. As for literatures on 
JPEG2000 progressive decoding, an unequal error 
protection scheme and a method that regions of interest 
are more quickly decoded than backgrounds are proposed 
in [3] and [4], respectively. These papers focus on the 
progressive decoding in terms of its functionality. On the 
other hand, this paper focuses on the system organization 
and its effectiveness. 

This paper is organized as follows. In Section 2, we 
briefly introduce the encoding and decoding flow of 
JPEG2000 image coding system. In Section 3, we describe 
progressive decoding, which is one of the distinctive 
JPEG2000’s functionalities, and conventional progressive 
decoding scheme. In Section 4, we propose a high-speed 
SNR progressive decoding scheme by introducing two 
efficient techniques. In Section 5, we evaluate our scheme, 
and the paper is concluded in Section 6. 

2. JPEG2000 

In this section, we briefly describe the encoding and 
decoding flow of JPEG2000. Fig. 2 depicts the encoding 
flow of JPEG2000. First, a target image is divided into 
square regions, called tiles. Tiles of each color component 
are called tile components. Then 2-D forward DWT 
decomposes a tile component into LL, HL, LH, and HH 
subbands by applying 1-D forward DWT to a tile 
component vertically and horizontally. The low resolution 
version of the original tile component, i.e. LL subband, is 
to be decomposed into four subbands recursively. DWT 
coefficients in a subband are quantized, and then the 
subband is divided into code-blocks, each of which is 
coded individually by entropy coder.  

Entropy coder adopted in JPEG2000 is a context-
based adaptive binary arithmetic coder, which consists of 
coefficient bit modeling process to generate contexts and 
arithmetic coding process, known as MQ-coder, to 
compress a binary sequence based on the context of each 
bit. Quantized coefficients in a code-block are separated to 
sign bits and absolute values, and so-called bit-planes are 
generated from the bits of absolute values such that each 
bit-plane refers to all the bits of the same magnitude in all 
coefficients of the code-block. Then bit-planes are coded 
from the most significant one to the least significant one. 
In the coefficient bit modeling process, a context is 
generated for each bit of a bit-plane based on the statistical 
information through three different coding passes, 
i.e. significance propagation pass, magnitude refinement 
pass, and cleanup pass, which provides efficient 
compression by succeeding MQ-coder. 

As is employed in conventional DCT-base algorithms, 
rate control of JPEG2000 is at first roughly done by 
quantization process. Then, fine rate control is achieved by 
selecting coding pass inclusion. JPEG2000 allows 
selecting the number of included coding passes in a code-
block arbitrary. Therefore, the rate control can be regarded 
as determining truncation point of MQ-coded data for each 
code-block, which attains better image quality. Each layer 
consists of such coding passes. By gathering truncated 
MQ-coded data originated from a specific layer, position, 
resolution level, and component, a packet is generated. 
Then re-ordering of the set of packets is applied to realize 
five progression modes, which is the key feature of 
JPEG2000 we focus on. Finally, the packets are packed 
into a codestream. 

The decoding flow of JPEG2000 is the reverse 
process of the encoding. Fig. 3 depicts the flow of entropy 
coding and decoding. Coefficient bit modeling is a 
common process to encoding and decoding. MQ-decoder 
extracts binary sequences from compressed data referring 
to contexts generated by the coefficient bit modeling 
process using previously decoded information, while MQ-
coder generates compressed data from contexts and binary 
sequences. 
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Fig. 2: JPEG2000 encoding flow. 
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Fig. 3: Entropy coding and decoding. 
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3. SNR Progressive Decoding 

3.1 SNR Progressive Decoding 

Since JPEG2000 composes codestream hierarchically, 
transmission of encoded image data can be achieved more 
efficiently compared to JPEG. Here, we consider SNR 
progressive to exemplify the effectiveness of the 
hierarchical structure. L-R-C-P progression order in 
JPEG2000, which implements SNR progressive, has the 
following nested packet structure. 

for each l = 0,..,L-1 
for each r = 0,..,R-1 

for each c = 0,..,C-1 
for each p = 0,..,P-1 

packet data for component c, resolution level 
r, layer l, and position p. 

where, L, R, C, and P denote the number of layers in 
corresponding tile, the number of decomposition levels, 
the number of color components, and the number of 
positions, respectively. Layers give data classification 
among code-blocks, each of which gathers data of code-
blocks having similar contribution to image quality. When 
we reconstruct an image with L-R-C-P progression order, 
the image can be decoded as follows. Assume that only a 
part of codestream can be received in the beginning. With 
L-R-C-P progression order, we receive data sequentially 
from upper layer to lower layer in every code-block. 
Hence, even if only the data for limited layers in the code-
block can be received, an image is to be reconstructed 
from the data received until then. Then, if additional layers 
are received, the decoded image reflects more faithfully to 
the original one by using the additional data as well as the 
data received in advance. As much layers we receive, the 
more image quality can be achieved owing to the layer 
structure. In other words, receiving codestream in 
incremental step, the image quality in terms of signal-to-
noise ratio is raised incrementally. 

3.2 Conventional Progressive Decoding Scheme 

In order to decode JPEG2000 codestream, we need to 
calculate status of coefficients, called “context label”. 
Context label is determined by classification tests such as 
whether a coefficient is significant or not, whether the 
coefficient is positive or negative, and whether the 
coefficient has decoded in magnitude refinement pass. 
Information needed for the classification tests can be 
obtained from the intermediary decoded data. Thus in the 
decoding of codestream with SNR progressiveness, the 
decoded result for former layers is needed to decode the 
succeeding layer.  

In conventional progressive decoding scheme, first 
all the codestream data needed for decoding must be 
stored into memory, and then start image decoding. Hence 
the following serious overhead may be brought about in 
the incremental step decoding stated above. Once 
receiving a partial codestream, the scheme stores it to the 
memory and decodes to reconstruct low quality version of 
an image. If additional codestream data is received, the 
scheme locates the data to the next to the codestream data 
received in advance as illustrated in Fig.4. Then the 
scheme starts again the decoding from the beginning of 
the codestream data so as to attain higher quality version 
of the image.  

This tedious decoding is due to the fact that 
arithmetic decoding of the newly received data is highly 
dependent on the result of the previously received 
codestream, and the decoding cannot be started from the 
mid-flow. As a result, with this non-progressive decoding 
scheme we need to execute entropy decoding for the same 
data more than once. Considering that the arithmetic 
decoding is the most computationally intensive among 
whole decoding processes, which occupies about 60% of 
all calculations [5], this non-progressive decoding scheme 
can be hardly regarded as a practical one in terms of 
computational costs.  

4. High-Speed SNR Progressive Decoding 

To resolve the decoding inefficiency described above, 
high-speed progressive decoding scheme is proposed in 
this paper, which enables us to resume decoding at the 
mid-flow of JPEG2000 stream as illustrated in Fig. 5.  

4.1 Reuse of Intermediate Decoding Result 

As mentioned in Section 2, in order to gain the 
coding efficiency in arithmetic coding, JPEG2000 puts the 
same context label to coefficients having similar 
probability, and encodes all coefficients in three passes, 
i.e. significance propagation pass, magnitude refinement 
pass, and cleanup pass, with updating probability 
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Fig. 4: Decoding flow with conventional scheme. 
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adaptively. Context label is determined by classification 
tests as described in the following.  

In the process of encoding, all values of coefficients 
are known in advance so that context labels can be easily 
determined. On the other hand, in the process of decoding, 
context labels must be determined by using the previously 
decoded data. Thus, information needed for the 
classification tests must be stored as a temporal result. In 
addition to this, information about in which pass a 
coefficient in a bit-plane is included is also needed. The 
pass is basically decided from the information whether the 
coefficient in the bit-plane is significant or insignificant. 
However, as for magnitude refinement pass and cleanup 
pass, additional information is still needed. In magnitude 
refinement pass, significant coefficients are decoded. 
However, if the coefficient becomes significant for the 
first time in significance propagation pass, this coefficient 
is treated as significant in magnitude refinement pass. 
Therefore, we need to determine whether to decode a 
coefficient in magnitude refinement pass by referring to 
information about coefficients which have already been 
decoded in significance propagation pass.  
Consequently, the temporal information to be kept is the 
result of following four classification tests:  

1. whether the coefficient is significant or 
insignificant, 

2. whether the coefficient is positive or negative, 
3. whether the coefficient has already been 

decoded in magnitude refinement pass, and 
4. whether the coefficient has already been 

decoded in significant propagation pass.  
A trivial way to keep these 4 values is to assign 1 bit 

for each. However, only 8 patterns out of 16 patterns are 
occurred in practice. Therefore, we can save the temporal 
information with 3 bits per DWT coefficient.  

4.2 Differential Inverse Discrete Wavelet Transform 

Output from entropy decoder is processed with 
IDWT. However, using proposed intermediate result 

reusing scheme, entropy decoder outputs only the 
processed bit-plane, i.e. 1 bit of DWT coefficient, instead 
of whole DWT coefficient. Therefore, each DWT 
coefficient is necessarily saved to apply IDWT in addition 
to the decoded image. Since saved DWT coefficients need 
to be updated by using newly decoded bit-planes, we must 
save all DWT coefficients of the image. In order to avoid 
this overhead, we newly introduce the technique, which 
allows us to calculate IDWT by using only one bit-plane.  

The original 1D-IDWT is calculated by using 
following equations. 

5/3 Filter (reversible compression)  
IDWT for reversible compression can be executed by 
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where, Y(n) and X(n) are input and output sequences 
of coefficients, respectively. 
9/7 Filter (irreversible compression)  
IDWT for irreversible compression is executed by a 
series of STEP1&2, STEP3&4, and STEP5&6. 
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where, α, β, γ, δ and K are constant values for filter 
processing.  
Henceforth, the flow of differential IDWT is 

described. This technique is based on the fact that 
decoding of a new bit-plane is equivalent to get the 
difference of DWT coefficient. This is reasonable since 
there is the linearity in the equations of original IDWT 
except for the floor operation in reversible compression. 
Thus as for the irreversible compression, we just need to 
calculate the differential value for a new bit-plane. As for 
the reversible compression, the differential IDWT can be 
achieved by holding the residue of floor operation for each 
coefficient.  

In concrete terms, the processing flow is as follows.  
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Since real number operations are executed in the 
irreversible compression, the result of the proposed 
scheme may differ from the result of the original DWT. 
However, owing to the linearity of equations for both 
proposed and original DWT, the error can be suppressed 
to negligible value. 

A result of the differential IDWT is shown in Fig.6. 

5. Evaluation 

In this section, evaluation of the proposed high-speed 
SNR progressive decoding scheme is explained in terms of 
memory size and computational costs. 

5.1 Memory Size Evaluation 

For this memory size evaluation, we assume that the 
input image size is w×h pixels, comprising 128×128 sized-
tiles, and that each pixel is grayscale and 8bit depth. 
Memory for image decoding is used mainly for I/O buffer 
in IDWT and stream buffer to store I/O stream. We also 
assume that the decoder processes tiles one by one. 

In the calculation of DWT, the number of output bits 
increases from the number of input bits so as to avoid 
overflow occurrence. In practice, this increased number 
differs among DWT subbands, however to make 
explanation simple all DWT inputs and outputs are 
assumed to 8bits and 12bits, respectively. This means that 
the IDWT inputs and outputs are 12bits and 8bits, 
respectively. In this case, I/O buffer size for IDWT is 
8×wh+12×128×128 bits. Also memory for JPEG2000 
stream buffer becomes 8cwh bits, when the worst-case 
compression ratio is c. Consequently, total memory size 
needed for decoding with conventional scheme is 
8(1+c)wh+12×128×128 bits. Note that the memory for 
input of IDWT need to store DWT coefficients for only 
one tile, since we are assuming that the decoder processes 
tiles one by one. If differential IDWT is not used, we need 
to store all of the previously decoded DWT coefficients as 
mentioned in the previous section, and the memory size 
would be 8(1+c)wh+12wh bits. 

For decoding by the proposed scheme, we need 
temporal data memory along with the memory stated 
above. First, we need to store the coefficient's state to 
determine the context label and decide a pass to decode 
the coefficient. There are eight states of coefficient, thus 
3bits per coefficient is needed to store the state. Next, in 
the case of 5/3 filter, we need to store the residues of floor 
operation to calculate differential IDWT. In that floor 
operation we divide coefficients by 4 or 2, and the range 
of residue value is 0∼3 or 0∼1 for which 1.5 bits is needed 
for each coefficient in average. Since this 1.5 bits is 
needed for each 5/3 filter operation, the total amount of 
bits is 1.5×2×wh×(1+1/4) =3.75wh considering 2D 
differential IDWT and recursive IDWT in case the number 
of DWT decomposition is 2. Summing up these two 
temporal data, the needed temporal data size is 6.75wh bits. 
Besides this temporal data, we need a memory to keep the 
state of entropy decoder. In order to hold this temporal 
data for MQ-decoder, 25bytes = 200bits are needed per 
code-block. Then assume that the size of code-block is 
32×32 and that the number of DWT decomposition is 2, 
the number of code block is wh/(32×32). Hence, the 
temporal data from entropy decoder is wh/(32×32)×200 
bits. Consequently, the increasing memory size to use 
proposed scheme is 6.75wh + wh/(32×32)×200 = 6.95wh 
bits. The ratio of memory increase for the proposed 
scheme to the conventional non-progressive decoding 
scheme is 

,
12812812)1(8

95.6
××++ whc

wh  

which is about 57.9% when c=1/2 and w×h is large 
enough. On the other hand, in the case of 9/7 filter, we 
need not to store the residue of floor operation, therefore 
the ratio of memory increase is 

,
12812812)1(8

19.3
××++ whc

wh  

which is about 26.6% in the same condition. 

5.2 Computational Costs Evaluation  

Then, we evaluate the computational costs for 
entropy decoding. In this evaluation, we assume that the 
computational cost of entropy decoder is proportional to 
the amount of input data to the entropy decoder. 
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There is a trend in progressive image coding that as 
the image quality increases, the data size required for more 
improvement of the image quality increases. Therefore, 
codestream is usually divided into layers as follows. First, 
assign half of all the codestream into the first layer. Next, 
divide the rest of codestream into two, and assign the 
former piece into the 2nd layer. In this manner, all 
codestream data are assigned to layers. For example, in the 
case of dividing the codestream into three layers, layer 0 
and layer 1 holds 1/4 of the entire stream, and layer 2 
holds the rest 1/2 of the entire stream.  

If we decode this codestream with the conventional 
scheme, calculations are to be done as follows. Decoding 
of layer 0 requires to process 1/4 of all image data. 
Decoding from layer 0 to layer 1 requires to process 1/4 + 
1/4 = 1/2 of all image data. Then, decoding from layer 0 to 
layer 2 requires to process 1/4 + 1/4 + 1/2 = 1/1 of all 
image data. Thus decoding all of these images, each of 
which corresponds to a quality level given by a specific 
layer, requires to process totally 1/4 + 1/2 + 1/1 = 7/4 of 
the original image data.  

In contrast, the computational costs with the proposed 
high-speed SNR progressive decoding are as follows. In 
this scheme intermediate decoding result is stored, hence if 
there are multiple layers, we can start decoding from mid-
flow of image stream. Thus there is no need to decode the 
same data more than once. Therefore the calculation 
amount with proposed scheme is proportional to the image 
data size.  

As a result, comparing to the conventional scheme, 
we can reduce (7/4−1)/(7/4) = 42.9% of computational 
costs in this example. As the number of layers increases, 
computational costs with the proposed scheme approaches 
to 50%.  

6. Conclusion 

In this paper, we proposed JPEG2000 high-speed 
SNR progressive decoding scheme. With the proposed 
scheme, we can resume decoding from the mid-flow of 
JPEG2000 codestream, instead of decoding from the start 
of codestream. We proposed reusing scheme for 
intermediary decoded data with holding the temporal 
information needed to resume decoding from the mid-flow.  

In this SNR progressive decoding scheme, arithmetic 
decoder outputs only one bit-plane of DWT coefficients. 
Comparing to the conventional IDWT, which needs to 
gather all bit-planes of IDWT coefficient, the proposed 
scheme is capable of applying differential IDWT using 
only one bit-plane of DWT coefficient.  

In the case of 9/7 irreversible filter, by increasing 
26.6% of memory usage, the proposed scheme reduces up 

to 50% of computational costs, which is practical enough 
for receiving the benefit of JPEG2000 progressive coding.  
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