
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

62

Manuscript received January 5, 2009

Manuscript revised January 20, 2009

JPEG2000 High-Speed SNR Progressive Decoding Scheme

Takahiko Masuzaki†, Hiroshi Tsutsui††, Quang Minh Vu†††, Takao Onoye††, Yukihiro Nakamura††††
 †Department of Communications and Computer Engineering, Graduate School of Informatics, Kyoto University

Yoshida-hon-machi, Sakyo, Kyoto 606-8501 Japan

†† Graduate School of Information Science and Technology, Osaka!University
1-5 Yamada-oka, Suita-shi, Osaka 565-0871, Japan

††† National Institute of Informatics, Japan

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

†††† Research Organization of Science and Engineering, Ritsumeikan University
1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

Summary
An efficient scheme for JPEG2000 SNR progressive decoding is
proposed, which is capable of handling JPEG2000 compressed
image data with SNR progressiveness. In order to avoid entropy
decoding of the same compressed data more than once when
decoding SNR progressive images, two techniques are
introduced in our decoding scheme; reuse of intermediate
decoding result and differential inverse discrete wavelet
transform (differential IDWT). Comprehensive evaluation of our
scheme demonstrating that with 26.6% increase of required
memory size, up to 50% of computational cost of entropy
decoding can be reduced in comparison with conventional non-
progressive decoding scheme when 9/7 irreversible DWT filter is
used.
Key words:
JPEG2000, Progressive decoding, Discrete wavelet transform

1. Introduction

With the rapid progress of networking technology,
required functionalities for image utilization in the
networked environment have changed drastically.
Progressiveness of image coding, which enables us to
transmit/receive image data in incremental step, has
become an important factor. An example of progressive
image coding is illustrated in Fig. 1, as we receive more
compressed data, decoded image quality will be improved
in terms of pixel fidelity, resolution, etc.

As a still image format, JPEG has been used widely
such as images on the Internet and pictures by digital still
cameras. However, in practice no progressiveness can be
offered by JPEG. Hence there are strong demands for new
image coding system with high-level progressiveness
support, which can replace the position of JPEG.
JPEG2000 [1], a standard of image coding system, offers

many aspects of scalable coding, with which five types of
progressive image streams can be produced; i.e. SNR
progressive, resolution-SNR progressive, resolution-
position progressive, position-component progressive, and
component-position progressive. Among them, SNR
progressive shows remarkable characteristics rather than
other progressive modes since the mode newly introduces
the notion of “layer” [2].

To decode JPEG2000 compressed data, we need to
calculate status of coefficients by classification tests,
called coefficient bit modeling. This classification tests
require some information obtained from the intermediate
result of decoding. Thus in the decoding flow with SNR
progressiveness, the decoded result for former layers is
needed to decode the succeeding layer.

In conventional straightforward progressive decoding
scheme, once receiving a compressed data, it is appended
to the previously received data and the image is decoded
using the concatenated data. However, this scheme suffers
from high computational cost since the previously
received data is processed many times.

DataData Data

Fig. 1: Example of SNR progressive decoding.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

63

Motivated by this, in order to avoid decoding the
same compressed data more than once when decoding
SNR progressive images, two techniques are introduced in
our decoding scheme; reuse of intermediate decoding
result and differential IDWT. As for literatures on
JPEG2000 progressive decoding, an unequal error
protection scheme and a method that regions of interest
are more quickly decoded than backgrounds are proposed
in [3] and [4], respectively. These papers focus on the
progressive decoding in terms of its functionality. On the
other hand, this paper focuses on the system organization
and its effectiveness.

This paper is organized as follows. In Section 2, we
briefly introduce the encoding and decoding flow of
JPEG2000 image coding system. In Section 3, we describe
progressive decoding, which is one of the distinctive
JPEG2000’s functionalities, and conventional progressive
decoding scheme. In Section 4, we propose a high-speed
SNR progressive decoding scheme by introducing two
efficient techniques. In Section 5, we evaluate our scheme,
and the paper is concluded in Section 6.

2. JPEG2000

In this section, we briefly describe the encoding and
decoding flow of JPEG2000. Fig. 2 depicts the encoding
flow of JPEG2000. First, a target image is divided into
square regions, called tiles. Tiles of each color component
are called tile components. Then 2-D forward DWT
decomposes a tile component into LL, HL, LH, and HH
subbands by applying 1-D forward DWT to a tile
component vertically and horizontally. The low resolution
version of the original tile component, i.e. LL subband, is
to be decomposed into four subbands recursively. DWT
coefficients in a subband are quantized, and then the
subband is divided into code-blocks, each of which is
coded individually by entropy coder.

Entropy coder adopted in JPEG2000 is a context-
based adaptive binary arithmetic coder, which consists of
coefficient bit modeling process to generate contexts and
arithmetic coding process, known as MQ-coder, to
compress a binary sequence based on the context of each
bit. Quantized coefficients in a code-block are separated to
sign bits and absolute values, and so-called bit-planes are
generated from the bits of absolute values such that each
bit-plane refers to all the bits of the same magnitude in all
coefficients of the code-block. Then bit-planes are coded
from the most significant one to the least significant one.
In the coefficient bit modeling process, a context is
generated for each bit of a bit-plane based on the statistical
information through three different coding passes,
i.e. significance propagation pass, magnitude refinement
pass, and cleanup pass, which provides efficient
compression by succeeding MQ-coder.

As is employed in conventional DCT-base algorithms,
rate control of JPEG2000 is at first roughly done by
quantization process. Then, fine rate control is achieved by
selecting coding pass inclusion. JPEG2000 allows
selecting the number of included coding passes in a code-
block arbitrary. Therefore, the rate control can be regarded
as determining truncation point of MQ-coded data for each
code-block, which attains better image quality. Each layer
consists of such coding passes. By gathering truncated
MQ-coded data originated from a specific layer, position,
resolution level, and component, a packet is generated.
Then re-ordering of the set of packets is applied to realize
five progression modes, which is the key feature of
JPEG2000 we focus on. Finally, the packets are packed
into a codestream.

The decoding flow of JPEG2000 is the reverse
process of the encoding. Fig. 3 depicts the flow of entropy
coding and decoding. Coefficient bit modeling is a
common process to encoding and decoding. MQ-decoder
extracts binary sequences from compressed data referring
to contexts generated by the coefficient bit modeling
process using previously decoded information, while MQ-
coder generates compressed data from contexts and binary
sequences.

Quantization

Coefficient bit modeling

MQ-coder

Ordering

JPEG2000 Codestream

Packet generation

Entropy coding
Code-block

DWT

Packet

Subband

Compressed
Code-block

LH HH

HLHL

HHLH

LL

DWT

Tile component Subband

Code-block

Tiling

Input Image Data

Tile component BGR

Tile component

Tile

Fig. 2: JPEG2000 encoding flow.

Coefficient bit modeling Coefficient bit modeling

MQ-coder MQ-decoder

Entropy coding Entropy decoding

Context Binary Context Binary

Compressed data Compressed data

Code-block Code-block

Fig. 3: Entropy coding and decoding.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

64

3. SNR Progressive Decoding

3.1 SNR Progressive Decoding

Since JPEG2000 composes codestream hierarchically,
transmission of encoded image data can be achieved more
efficiently compared to JPEG. Here, we consider SNR
progressive to exemplify the effectiveness of the
hierarchical structure. L-R-C-P progression order in
JPEG2000, which implements SNR progressive, has the
following nested packet structure.

for each l = 0,..,L-1
for each r = 0,..,R-1

for each c = 0,..,C-1
for each p = 0,..,P-1

packet data for component c, resolution level
r, layer l, and position p.

where, L, R, C, and P denote the number of layers in
corresponding tile, the number of decomposition levels,
the number of color components, and the number of
positions, respectively. Layers give data classification
among code-blocks, each of which gathers data of code-
blocks having similar contribution to image quality. When
we reconstruct an image with L-R-C-P progression order,
the image can be decoded as follows. Assume that only a
part of codestream can be received in the beginning. With
L-R-C-P progression order, we receive data sequentially
from upper layer to lower layer in every code-block.
Hence, even if only the data for limited layers in the code-
block can be received, an image is to be reconstructed
from the data received until then. Then, if additional layers
are received, the decoded image reflects more faithfully to
the original one by using the additional data as well as the
data received in advance. As much layers we receive, the
more image quality can be achieved owing to the layer
structure. In other words, receiving codestream in
incremental step, the image quality in terms of signal-to-
noise ratio is raised incrementally.

3.2 Conventional Progressive Decoding Scheme

In order to decode JPEG2000 codestream, we need to
calculate status of coefficients, called “context label”.
Context label is determined by classification tests such as
whether a coefficient is significant or not, whether the
coefficient is positive or negative, and whether the
coefficient has decoded in magnitude refinement pass.
Information needed for the classification tests can be
obtained from the intermediary decoded data. Thus in the
decoding of codestream with SNR progressiveness, the
decoded result for former layers is needed to decode the
succeeding layer.

In conventional progressive decoding scheme, first
all the codestream data needed for decoding must be
stored into memory, and then start image decoding. Hence
the following serious overhead may be brought about in
the incremental step decoding stated above. Once
receiving a partial codestream, the scheme stores it to the
memory and decodes to reconstruct low quality version of
an image. If additional codestream data is received, the
scheme locates the data to the next to the codestream data
received in advance as illustrated in Fig.4. Then the
scheme starts again the decoding from the beginning of
the codestream data so as to attain higher quality version
of the image.

This tedious decoding is due to the fact that
arithmetic decoding of the newly received data is highly
dependent on the result of the previously received
codestream, and the decoding cannot be started from the
mid-flow. As a result, with this non-progressive decoding
scheme we need to execute entropy decoding for the same
data more than once. Considering that the arithmetic
decoding is the most computationally intensive among
whole decoding processes, which occupies about 60% of
all calculations [5], this non-progressive decoding scheme
can be hardly regarded as a practical one in terms of
computational costs.

4. High-Speed SNR Progressive Decoding

To resolve the decoding inefficiency described above,
high-speed progressive decoding scheme is proposed in
this paper, which enables us to resume decoding at the
mid-flow of JPEG2000 stream as illustrated in Fig. 5.

4.1 Reuse of Intermediate Decoding Result

As mentioned in Section 2, in order to gain the
coding efficiency in arithmetic coding, JPEG2000 puts the
same context label to coefficients having similar
probability, and encodes all coefficients in three passes,
i.e. significance propagation pass, magnitude refinement
pass, and cleanup pass, with updating probability

Network

1st layer
packets

2nd layer
packets

DWT coefficient 1st layer
image

2nd layer
image

DWT coefficient

IDWT

IDWT
arithmetic
decoding

arithmetic
decoding

Fig. 4: Decoding flow with conventional scheme.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

65

adaptively. Context label is determined by classification
tests as described in the following.

In the process of encoding, all values of coefficients
are known in advance so that context labels can be easily
determined. On the other hand, in the process of decoding,
context labels must be determined by using the previously
decoded data. Thus, information needed for the
classification tests must be stored as a temporal result. In
addition to this, information about in which pass a
coefficient in a bit-plane is included is also needed. The
pass is basically decided from the information whether the
coefficient in the bit-plane is significant or insignificant.
However, as for magnitude refinement pass and cleanup
pass, additional information is still needed. In magnitude
refinement pass, significant coefficients are decoded.
However, if the coefficient becomes significant for the
first time in significance propagation pass, this coefficient
is treated as significant in magnitude refinement pass.
Therefore, we need to determine whether to decode a
coefficient in magnitude refinement pass by referring to
information about coefficients which have already been
decoded in significance propagation pass.
Consequently, the temporal information to be kept is the
result of following four classification tests:

1. whether the coefficient is significant or
insignificant,

2. whether the coefficient is positive or negative,
3. whether the coefficient has already been

decoded in magnitude refinement pass, and
4. whether the coefficient has already been

decoded in significant propagation pass.
A trivial way to keep these 4 values is to assign 1 bit

for each. However, only 8 patterns out of 16 patterns are
occurred in practice. Therefore, we can save the temporal
information with 3 bits per DWT coefficient.

4.2 Differential Inverse Discrete Wavelet Transform

Output from entropy decoder is processed with
IDWT. However, using proposed intermediate result

reusing scheme, entropy decoder outputs only the
processed bit-plane, i.e. 1 bit of DWT coefficient, instead
of whole DWT coefficient. Therefore, each DWT
coefficient is necessarily saved to apply IDWT in addition
to the decoded image. Since saved DWT coefficients need
to be updated by using newly decoded bit-planes, we must
save all DWT coefficients of the image. In order to avoid
this overhead, we newly introduce the technique, which
allows us to calculate IDWT by using only one bit-plane.

The original 1D-IDWT is calculated by using
following equations.

5/3 Filter (reversible compression)
IDWT for reversible compression can be executed by

,
2

)22()2()12()12(

,
4

2)12()12()2()2(

⎥⎦
⎥

⎢⎣
⎢ ++

++=+

⎥⎦
⎥

⎢⎣
⎢ +++−

−=

nXnXnYnX

nYnYnYnX

where, Y(n) and X(n) are input and output sequences
of coefficients, respectively.
9/7 Filter (irreversible compression)
IDWT for irreversible compression is executed by a
series of STEP1&2, STEP3&4, and STEP5&6.

))22()2(()12()12(:6
))12()12(()2()2(:5
))22()2(()12()12(:4
))12()12(()2()2(:3

)12(1)12(:2

)2()2(:1

++−+=+
++−−=
++−+=+
++−−=

+=+

=

nXnXnXnXSTEP
nXnXnXnXSTEP
nXnXnXnXSTEP
nXnXnXnXSTEP

nY
K

nXSTEP

nKYnXSTEP

α
β

γ
δ

where, α, β, γ, δ and K are constant values for filter
processing.
Henceforth, the flow of differential IDWT is

described. This technique is based on the fact that
decoding of a new bit-plane is equivalent to get the
difference of DWT coefficient. This is reasonable since
there is the linearity in the equations of original IDWT
except for the floor operation in reversible compression.
Thus as for the irreversible compression, we just need to
calculate the differential value for a new bit-plane. As for
the reversible compression, the differential IDWT can be
achieved by holding the residue of floor operation for each
coefficient.

In concrete terms, the processing flow is as follows.
5/3 Filter

,
2

)22()2()12()12(

,
4

2)12()12()2()2(

12

2

⎥⎦
⎥

⎢⎣
⎢ ++Δ+Δ

++Δ=+Δ

⎥⎦
⎥

⎢⎣
⎢ +++Δ+−Δ

−Δ=Δ

+n

n

rnXnXnYnX

rnYnYnYnX

Network

1st layer
packets

2nd layer
packets

DWT coefficient

temporal data

Differential
DWT-coefficient

1st layer
image

2nd layer
image

arithmetic
decoding

differential
arithmetic
decoding

IDWT

differential
IDWT

Fig. 5: Decoding flow with proposal scheme

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

66

,2mod))22()2((
,4mod)2)12()12((

1212

22

++ ++Δ+Δ=′
+++Δ+−Δ=′

nn

nn

rnXnXr
rnYnYr

where rn and r’n are current and next residues to be
kept.
9/7 Filter

))22()2(()12()12(:6
))12()12(()2()2(:5
))22()2(()12()12(:4
))12()12(()2()2(:3

)12(1)12(:2

)2()2(:1

+Δ+Δ−+Δ=+Δ
+Δ+−Δ−Δ=Δ
+Δ+Δ−+Δ=+Δ
+Δ+−Δ−Δ=Δ

+Δ=+Δ

Δ=Δ

nXnXnXnXSTEP
nXnXnXnXSTEP
nXnXnXnXSTEP
nXnXnXnXSTEP

nY
K

nXSTEP

nYKnXSTEP

α
β

γ
δ

Since real number operations are executed in the
irreversible compression, the result of the proposed
scheme may differ from the result of the original DWT.
However, owing to the linearity of equations for both
proposed and original DWT, the error can be suppressed
to negligible value.

A result of the differential IDWT is shown in Fig.6.

5. Evaluation

In this section, evaluation of the proposed high-speed
SNR progressive decoding scheme is explained in terms of
memory size and computational costs.

5.1 Memory Size Evaluation

For this memory size evaluation, we assume that the
input image size is w×h pixels, comprising 128×128 sized-
tiles, and that each pixel is grayscale and 8bit depth.
Memory for image decoding is used mainly for I/O buffer
in IDWT and stream buffer to store I/O stream. We also
assume that the decoder processes tiles one by one.

In the calculation of DWT, the number of output bits
increases from the number of input bits so as to avoid
overflow occurrence. In practice, this increased number
differs among DWT subbands, however to make
explanation simple all DWT inputs and outputs are
assumed to 8bits and 12bits, respectively. This means that
the IDWT inputs and outputs are 12bits and 8bits,
respectively. In this case, I/O buffer size for IDWT is
8×wh+12×128×128 bits. Also memory for JPEG2000
stream buffer becomes 8cwh bits, when the worst-case
compression ratio is c. Consequently, total memory size
needed for decoding with conventional scheme is
8(1+c)wh+12×128×128 bits. Note that the memory for
input of IDWT need to store DWT coefficients for only
one tile, since we are assuming that the decoder processes
tiles one by one. If differential IDWT is not used, we need
to store all of the previously decoded DWT coefficients as
mentioned in the previous section, and the memory size
would be 8(1+c)wh+12wh bits.

For decoding by the proposed scheme, we need
temporal data memory along with the memory stated
above. First, we need to store the coefficient's state to
determine the context label and decide a pass to decode
the coefficient. There are eight states of coefficient, thus
3bits per coefficient is needed to store the state. Next, in
the case of 5/3 filter, we need to store the residues of floor
operation to calculate differential IDWT. In that floor
operation we divide coefficients by 4 or 2, and the range
of residue value is 0∼3 or 0∼1 for which 1.5 bits is needed
for each coefficient in average. Since this 1.5 bits is
needed for each 5/3 filter operation, the total amount of
bits is 1.5×2×wh×(1+1/4) =3.75wh considering 2D
differential IDWT and recursive IDWT in case the number
of DWT decomposition is 2. Summing up these two
temporal data, the needed temporal data size is 6.75wh bits.
Besides this temporal data, we need a memory to keep the
state of entropy decoder. In order to hold this temporal
data for MQ-decoder, 25bytes = 200bits are needed per
code-block. Then assume that the size of code-block is
32×32 and that the number of DWT decomposition is 2,
the number of code block is wh/(32×32). Hence, the
temporal data from entropy decoder is wh/(32×32)×200
bits. Consequently, the increasing memory size to use
proposed scheme is 6.75wh + wh/(32×32)×200 = 6.95wh
bits. The ratio of memory increase for the proposed
scheme to the conventional non-progressive decoding
scheme is

,
12812812)1(8

95.6
××++ whc

wh

which is about 57.9% when c=1/2 and w×h is large
enough. On the other hand, in the case of 9/7 filter, we
need not to store the residue of floor operation, therefore
the ratio of memory increase is

,
12812812)1(8

19.3
××++ whc

wh

which is about 26.6% in the same condition.

5.2 Computational Costs Evaluation

Then, we evaluate the computational costs for
entropy decoding. In this evaluation, we assume that the
computational cost of entropy decoder is proportional to
the amount of input data to the entropy decoder.

Fig. 6(a): 1st layer
image

Fig.6(b): differential
image (biased)

Fig. 6(c): image
from all streams

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

67

There is a trend in progressive image coding that as
the image quality increases, the data size required for more
improvement of the image quality increases. Therefore,
codestream is usually divided into layers as follows. First,
assign half of all the codestream into the first layer. Next,
divide the rest of codestream into two, and assign the
former piece into the 2nd layer. In this manner, all
codestream data are assigned to layers. For example, in the
case of dividing the codestream into three layers, layer 0
and layer 1 holds 1/4 of the entire stream, and layer 2
holds the rest 1/2 of the entire stream.

If we decode this codestream with the conventional
scheme, calculations are to be done as follows. Decoding
of layer 0 requires to process 1/4 of all image data.
Decoding from layer 0 to layer 1 requires to process 1/4 +
1/4 = 1/2 of all image data. Then, decoding from layer 0 to
layer 2 requires to process 1/4 + 1/4 + 1/2 = 1/1 of all
image data. Thus decoding all of these images, each of
which corresponds to a quality level given by a specific
layer, requires to process totally 1/4 + 1/2 + 1/1 = 7/4 of
the original image data.

In contrast, the computational costs with the proposed
high-speed SNR progressive decoding are as follows. In
this scheme intermediate decoding result is stored, hence if
there are multiple layers, we can start decoding from mid-
flow of image stream. Thus there is no need to decode the
same data more than once. Therefore the calculation
amount with proposed scheme is proportional to the image
data size.

As a result, comparing to the conventional scheme,
we can reduce (7/4−1)/(7/4) = 42.9% of computational
costs in this example. As the number of layers increases,
computational costs with the proposed scheme approaches
to 50%.

6. Conclusion

In this paper, we proposed JPEG2000 high-speed
SNR progressive decoding scheme. With the proposed
scheme, we can resume decoding from the mid-flow of
JPEG2000 codestream, instead of decoding from the start
of codestream. We proposed reusing scheme for
intermediary decoded data with holding the temporal
information needed to resume decoding from the mid-flow.

In this SNR progressive decoding scheme, arithmetic
decoder outputs only one bit-plane of DWT coefficients.
Comparing to the conventional IDWT, which needs to
gather all bit-planes of IDWT coefficient, the proposed
scheme is capable of applying differential IDWT using
only one bit-plane of DWT coefficient.

In the case of 9/7 irreversible filter, by increasing
26.6% of memory usage, the proposed scheme reduces up

to 50% of computational costs, which is practical enough
for receiving the benefit of JPEG2000 progressive coding.

References
[1] ISO/IEC JTC 1/SC 29/WG 1 N2678, “JPEG 2000 part 1

020719 (final publication draft),” 2002.
[2] D. Taubman, “High performance scalable image

compression with EBCOT,” IEEE Trans. on Image
Processing, vol.9, no.7, pp.1158−1170, Jul. 2000.

[3] L. Pu, M.W.Marcellin, B.Vasic, and A.Bilgin, “Unequal
error protection and progressive decoding for JPEG2000,”
Image Communication, vol.22, no.3, pp.340−346, Mar.
2005.

[4] O. Watanabe, and H. Kiya,!“An extension of ROI-based
scalability for progressive transmission in JPEG2000
coding,” IEICE Trans on Fundamentals, vol.E86-A, no.4,
pp.765−771, Apr. 2003.

[5] H. Tsutsui, T. Masuzaki, Y. Hayashi, Y. Taki, T. Izumi, T.
Onoye, and Y. Nakamura, “Scalable Design Framework for
JPEG2000 System Architecture,” in Proc. ACSAC2004,
pp.296−308, Sep. 2004.

Takahiko Masuzaki received B.E. and
M.S. degrees from Kyoto University, Japan,
in 2001 and 2003, respectively. He is
currently a researcher in Mitsubishi Electric
Corp. His research interests include LSI
design methodology. He is a member of
IEEE, IEICE, IPSJ, and ITE-J.

Hiroshi Tsutsui received B.E., M.S., and
Ph.D. degrees from Kyoto University,
Japan, in 2000, 2002, and 2005,
respectively. He is currently an assistant
professor in the Department of Information
Systems Engineering, Osaka University.
His research interests include image
processing and its implementation for
embedded systems. He is a member of

IEEE, ACM, IEICE, IEEJ, and IIEEJ.

Quang Minh Vu received his B.E. from
Kyoto University in 2003, his M.E. from
the University of Tokyo in 2005 and his
Ph.D from the University of Tokyo in
2008. He has done researches in several
research areas in computer science:
computer hardware optimization, network
architecture design, and text data mining.
He is now a postdoctoral researcher at

National Institute of Informatics, Japan, doing a research on a
management system of bibliography database. He is a member of
IPSJ.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

68

Takao Onoye received B.E. and M.E.
degrees in Electronic Engineering, and
Dr.Eng. degree in Information Systems
Engineering all from Osaka University,
Japan, in 1991, 1993, and 1997,
respectively. He is currently a professor
in the Department of Information
Systems Engineering, Osaka University.
His research interests include media-
centric low-power architecture and its

SoC implementation. He is a member of IEICE, IEEE, IPSJ, and
ITE-J.

Yukihiro Nakamura received his B.S.,
M.S., and Ph.D. degrees in Applied
Mathematics and Physics from Kyoto
University, in 1967, 1969 and 1995,
respectively. From 1969 to 1996, he was
with Electrical Communications
Laboratories, NTT. In NTT he engaged
in research and development of the
behavioral description language ``SFL''
and the High-Level Synthesis System

“PARTHENON”. Concurrently, he was a guest professor at
Graduate School of Information Systems, University of Electro-
Communications. In 1996, he joined Graduate School of
Informatics, Kyoto University as a professor. Since 2007, he has
been a professor of Research Organization of Science and
Engineering, Ritsumeikan University. He has also been a
coordinator of Synthesis Corporation since 1998. He received
Best Paper Award of IPSJ, Okochi Memorial Technology Prize,
Minister's Prize of the Science and Technology Agency and
Achievement Award of IEICE in 1990, 1992, 1994, and 2000,
respectively. He is a fellow of IEEE and a member of IEICE,
IPSJ, and ACM.

