
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

95

Manuscript received January 5, 2009

Manuscript revised January 20, 2009

Survivability Using Adaptive Reconfigurable Systems

Azween Bin Abdullah†,

University Technology Petronas, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia

Summary
Significant advances have been made in reconfigurable
computing device technology paving the path for fast,
dynamically reconfigurable systems. The biggest challenge in
the way of flexible adaptive computing is runtime
reconfiguration. Many difficult issues are involved in runtime
reconfiguration. Some of these issues are application specific
and as such need to be considered by application designer while
designing the system. Adequate high-level tool support is
required to assist the designer in this complex task. Other
difficult issues are concerned with the hardware and software
consistency and the real-time behavior of the system. The
execution environment must provide enabling support for these
issues. The paper discusses the issues involved in runtime
reconfiguration and presents a Model Integrated approach that
attempts to address some of the issues at multiple levels. The
Model Integrated approach provides a design environment that
assists the application designer in capturing system design,
requirements and constraints, and provides analysis and
automatic synthesis capability from the captured information.
The synthesized system is deployed in an execution environment
that provides the basic primitives for reconfiguration and enables
some of the difficult issues in runtime reconfiguration..
Key words:
Survivability, Reconfiguration, Runtime.

1. Introduction

Recent years have witnessed significant advances in
programmable devices and technology. The Field
Programmable Gate Array (FPGA) technology has come
of age producing very high-density gate arrays (~1 million
gates) with lower power consumption, faster clock-rate
and relatively low configuration time [1]. A variety of
hardware platforms comprising of general-purpose
computers and FPGAs have been developed [2]. The
presence of fast programmable circuitry has opened up a
vast array of opportunities for application developers. A
large number of high-performance computing applications
have been successfully mapped to these platforms taking
advantage of the fine-grain parallelism made available by
the programmable hardware, and demonstrating significant
speedup over the conventional general-purpose computer
based implementation [3].

However, the promise of programmable device technology
extends far beyond these point applications. The real
potential of reconfigurable device technology lies in

Adaptive Computing Systems (ACS) – systems that adapt
and evolve in response to the changing environment while
operational, without compromising the consistency and
real-time properties of the system [4]. Several class of
modern applications require very high performance with
minimal resources and high flexibility to operate in a
rapidly changing environment. Adaptive computing has
been considered as an enabling approach for such
applications. The essence of adaptive computing
approach is to create several different configurations
(hardware architecture/software topology) for a system,
each tailored to a specific set of operational requirements.
The system is reconfigured with a suitable configuration
when the environment and thus the operational
requirements change. The primary benefit of adaptive
computing lies in being able to deliver high performance
for a large number of operational goals with minimal
hardware, by maximizing component utilization and
minimizing hardware redundancy.

There are many challenges in the adaptive computing
approach. The biggest yet the most understudied
challenge however is runtime reconfiguration. Many
difficult issues arise. Some of these issues are specific to
the application being designed while others are more
general and relate to the underlying runtime environment.
While some studies in the adaptive computing community
have demonstrated restricted runtime reconfiguration
capabilities [5], most of the demonstrated approaches are
highly application specific and lack adequate formalism.
Additionally the primary focus of reconfiguration in these
studies is programmable hardware. This clearly limits the
approach’s applicability, as most high-performance
systems involve a mix of hardware and software
components and heterogeneous technologies. Therefore a
more comprehensive approach is required that considers
the problem of runtime reconfiguration at multiple levels,
starting from algorithms and all the way down to hardware
details.

Our research attempts to address runtime reconfiguration
in a more comprehensive and formal setting. We
approach runtime reconfiguration at two levels: 1) Design
– We have developed high-level design tools for
representation, analysis and synthesis of dynamically
reconfigurable systems. 2) Runtime – We have
developed a uniform execution environment for execution

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

96

of dynamically reconfigurable systems. In this paper we
present runtime reconfiguration and our approach to
runtime reconfiguration in a systematic manner. First, in
section 2, we discuss the different scenarios and
motivations for runtime reconfiguration and attempt a
categorization of runtime reconfiguration based on these
scenarios. Next, in section 3, we describe the difficult
issues that arise, both at an application level and at the
execution environment level. Then in section 4 we
briefly describe our design tools and the uniform execution
environment. Finally, in section 5, we conclude the
report by evaluating our approach and recommending
future directions.

2. Runtime Reconfiguration Categories

The challenges associated with runtime reconfiguration are
closely linked with the goal of reconfiguration.
Therefore, it is important to consider the motivation and
the different scenarios of runtime reconfiguration. We
have identified the objective of reconfiguration into three
categories primarily. These categories are: a)
Algorithmic reconfiguration; b) Architectural
reconfiguration; c) Functional reconfiguration. They are
briefly described below.

2.1 Algorithmic Reconfiguration

The goal in algorithmic reconfiguration is to reconfigure
the system with a different computational algorithm that
implements the same functionality, but with different
performance, accuracy, power, or resource requirements.
The need for such reconfiguration arises when either the
dynamics of the environment changes or the operational
requirements change. Figure 1 shows a scenario, where
the dynamics of the controlled process change from 2nd
order to 3rd order. In order to maintain the controllability
the control equation employed by the controller also needs
to change from 2nd order to 3rd order. Thus, while the
functionality of the controller remains the same the control
algorithm is different.

2.2 Architectural Reconfiguration

The goal in architectural reconfiguration is to modify the
hardware topology and computation topology by
reallocating resources to computations. The need for this
type of reconfiguration arises in situations where some
resources become unavailable either due to a fault, or due
to reallocation to a higher priority job, or due to a
shutdown in order to minimize the power usage. For the
system to keep functioning in spite of the fault the
hardware topology need to be modified and the
computational tasks need to be reassigned. Figure 2
shows a scenario where architectural reconfiguration is

employed. In this example an active FPGA device
becomes inactive upon a mode transition. The
computational tasks performed on that FPGA are relocated
to another resource.

Fig. 1 Algorithmic reconfiguration of a controller by changing the
control algorithm from 2nd order to 3rd order.

Fig. 2 Architectural reconfiguration of a computation by relocating
computational tasks in the event of a resource failure.

This type of reconfiguration may also arise in an exactly
opposite situation where new resources become available.
In order to effective utilize the added resource the
computational tasks must be reassigned and redistributed
to resources.

2.3 Functional Reconfiguration

The goal in functional reconfiguration is to execute
different function on the same resources. The need for
this type of reconfiguration arises in situations where a
large number of different functions are to be performed on
a very limited resource envelope. In such situations the
resources must be time-shared across different
computational tasks to maximize resource utilization and
minimize redundancy. Figure 3 depicts a scenario where
functional reconfiguration is employed. In this example
the FPGA device implements an ALU function in one
mode of operation. The device is reconfigured to

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

97

implement a limiter function in another mode of operation.
The reconfiguration in this scenario helps improve the
functional density of the FPGA device. The Dynamic
Instruction Set Computer at BYU [6] employs this type of
reconfiguration.

Typical adaptive systems would be employing one or more
of these reconfiguration categories to implement a
dynamically adaptive behavior.

Fig. 3 Functional Reconfiguration of FPGA device to improve the
functional density.

3. Challenges in Runtime Reconfiguration

The purpose of the categorization presented above was to
distinguish different reconfiguration scenarios that may
occur in real systems. These different reconfiguration
scenarios present different challenges. We present these
issues categorized into application specific and runtime
environment specific below:

3.1 Application Specific Issues

Some of the challenges are highly specific to the
application being designed and as such need to be
considered and addressed by the application designer.
The runtime environment must provide support API to
enable these issues:

1) Issues in Algorithmic Reconfiguration

The first and foremost consideration, when dynamically
adapting the algorithm is the continuity and transients in
the output signal. Due to reconfiguration there might be
a discontinuity in the output signal. An application
designer needs to consider the magnitude of the
discontinuity, the magnitude of the transient, the duration
of the transient, and their impact on the overall system.
The magnitude of the discontinuity and the reconfiguration
transients depend on the nature of the algorithm. With
filters it has been observed that the resonator structure has

low reconfiguration transients [7]. With some
applications it is possible that the discontinuity is entirely
unacceptable, in which case alternative approaches need to
be considered to maintain the continuity in spite of
reconfiguration. Figure 4 shows a scenario where the
output continuity is lost due to reconfiguration

The second consideration in algorithmic reconfiguration is
the state mapping. There could be infinite state variable
descriptions representing the same transfer function. For
reconfiguration the internal state variable description of
one algorithm needs to be mapped to the internal state
variable description of another algorithm. This is a
complex problem and needs to be understood by the
application designer.

There are some other difficult issues that are related to the
runtime environment and are presented later.

Fig. 4 Output discontinuity in algorithmic reconfiguration.

2) Issues in Architectural Reconfiguration

Architectural reconfiguration involves relocating
computations. The important consideration here is the
safe transitioning of the internal state of the computation.
The state transitioning could be further complicated due to
relocation of computation from hardware to software.
The application designer needs to understand the trade-offs
in the accuracy, and the performance of the algorithm.
Additional difficult issues are involved in shutting down a
computation on a resource and relocating it to another
resource that need to be addressed by the runtime
environment.

3) Issues in Functional Reconfiguration

Functional reconfiguration involves time-sharing of
resources between computational tasks. The primary
consideration here is to preserve the state and the
intermediate results when a computation is swapped out.
The internal state and the intermediate results must be
restored when the computation is swapped back in. To
address these issues the application designer needs to
consider the internal state and intermediate results

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

98

representation and the runtime execution environment
needs to provide API for preservation and restoration of
state and data.

3.2 Runtime Environment Specific Issues

In addition to the application specific issues presented
above there are some issues that are common to all types
of reconfiguration and need to be addressed by the runtime
environment. These issues are presented below

1) Synchronization

In order to partially or fully reconfigure an executing
system all the concurrent computations executing on
different resources need to be synchronized and brought in
a consistent state. All the communications in transit must
be finished. For the partial reconfiguration of a
heterogeneous resource network, the segment of the
network under reconfiguration must be shutdown or
decoupled from the rest of the network. The
synchronization task becomes even harder in the absence
of a separate synchronization event bus, as the internal
communication paths of the network that is about to be
reconfigured are required to propagate the reconfiguration
event.

2) Hardware Consistency

A host of problems can occur during reconfiguration that
may destroy the consistency of the underlying hardware.
Loss of hardware consistency can have many negative
effects, ranging from temporary loss of performance to
hardware damage and total/permanent system malfunction.
Some of the possible scenarios are: 1) Port contention may
occur when bi-directional ports are improperly initialized,
a reconfiguration event is not properly sequenced /
synchronized or if an improper/inconsistent design is
implemented. If two connected drivers are enabled,
permanent physical damage can occur to the circuits. 2)
Data token loss or duplication can result from incorrect
initialization or a loss of communication integrity, where
tokens represent the status of empty or full slots in a
communication interface. An extra token on the sender
side can cause too much data to be sent, resulting in a
FIFO overrun. A lost token can effectively block a
communication port, resulting in a system deadlock. 3)
Reconfigurable devices must maintain state when
controlling a complex external hardware device, such as an
attached processor or storage device. If a reconfiguration
occurs during a state transition within the device, or if the
reconfiguration incorrectly modifies the computational
component’s representation of the device, there can be a
state mismatch. This can result in improper commands
being sent to the device or in a deadlock where both
components are waiting on each other for triggering events.
Figure 5 depicts these scenarios.

Fig. 5 Possible scenarios of loss of hardware consistency on
reconfiguration.

3) Software Consistency

Software issues can present a larger challenge to dynamic
system reconfiguration. The internal state of software
must be managed under reconfiguration. Modern
operating systems have evolved to support the flexible
implementation of multiple tasks, with dynamic addition
and removal of tasks on a single processor in the form of
time-sharing and/or multitasking, and Real-time kernels
allow time critical tasks to be dynamically scheduled on a
single processor. These kernels typically do not address
the consistency of dynamic reconfiguration for distributed
networks of tasks. As a result memory leaks could occur
that would adversely affect long-term reliability. Task
structure mismanagement can happen resulting in extra
tasks executed by the kernel, with a loss in performance.
In a message passing system messages in transit can be
delivered when the receiving process no longer exists,
resulting in mismatched messages and communication
errors. Figure 6 depicts a scenario of loss of software
consistency on reconfiguration

4) Timing Consistency

The timing constraints of the application must be obeyed
during reconfiguration. During reconfiguration the
system can fail to maintain real-time constraints. If the
reconfiguration cannot be completed in sufficient time,
deadlines will be sacrificed. In addition, the time-base can
be shifted, resulting in a skew in system output period.
Figure 7 depicts a scenario of loss of deadline resulting in
timeline skew.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

99

Fig. 6 Possible scenarios of loss of software consistency on
reconfiguration.

Fig. 7 A scenario of loss of deadline resulting in period skew on
reconfiguration.

4. Model Integrated Approach

From these issues it is evident that runtime reconfiguration
needs to be addressed at multiple levels. There should be
a formal design environment with support for analysis and
synthesis. Along with the design environment there
should be a runtime environment that can be targeted for
synthesis from design environment and that supports
runtime reconfiguration. The Adaptive Computing
Systems project at Vanderbilt University attempts to
develop such a coupled design and execution environment.
The design and execution environment are briefly
described below.

4.1 Design Environment

The design environment is based on Model Integrated
Computing (MIC), an approach for synthesizing computer
based systems, developed and matured over a decade [8].
In MIC domain specific modeling environments are
developed, those allow a designer to “model” the system
in the concepts and formalism of the particular engineering
domain. The modeling environment is a multiple aspect
graphical editor that directly supports domain specific
modeling concepts. Multiple view models capture the
information relevant to the system being designed. The
system models can be analyzed and verified by different

static and dynamic analysis tools. The integrated models
are also used for synthesis of runtime system. Figure 8
depicts the overall design flow in the MIC approach.

The main elements of the design environment are: 1)
Design representation; 2) Design analysis and verification;
and 3) Design synthesis. These are briefly described
below.

1) Design Representation

The environment provides modeling objects (models,
atoms, references, and connections) to capture different
aspects of a reconfigurable system in familiar,
well-understood models of computation. They are:

a) Behavior modeling: The reconfigurable system
operates in discrete modes, with specific transitions
between modes. Therefore, a Statechart representation is
chosen to model the adaptive operational behavior [9]. The
modeling objects provided are states, events and
transitions. States represent operational modes, events
represent the cause of a mode-shift, and transitions and
transition rules define the pre-conditions and the
consequences of a mode-change. States can contain states,
events, and transitions thus enabling creation of a
hierarchical finite state machine. The computation to be
performed in a mode (state) is represented by referencing a
computation model (described below). A reference is
essentially a “pointer” to another model. Referencing
allows a single computation to be applied to any number
of system modes. States are annotated with attributes
such as real-time specifications on the computation, power
restrictions, and other user-defined constraints.

b) Computation modeling: The computations are
modeled as a Dataflow Diagram, a well-familiar
representation particularly suited to signal processing
applications [10]. The modeling environment extends the
basic Dataflow Diagrams with the concept of hierarchy
and alternatives to add flexibility to the dataflow
representation and help manage system complexity.
Dataflow structures are modeled with the following
modeling objects: primitives, compounds, and templates.
A primitive object represents elemental computation. It
maps directly to a hardware macro or a software function.
Primitive objects are annotated with attributes that capture
measured performance, resource requirements
(memory/processing time/logic blocks), and other
user-defined properties. A compound is an aggregation
object that may contain primitives, other compounds,
and/or templates. These objects are connected within the
compound to define the dataflow. A template is a
modeling object that models a processing block with
rigorously defined interface and one or more alternative
algorithm/implementation. These design alternatives can
be compounds, primitives, or templates, allowing

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

100

hierarchies of design alternatives. With alternatives one
can compose a very flexible design space, with a huge
number of potential design implementations.

c) Resource modeling: The resource network is
modeled as an interconnected network of processing
elements. The modeling objects provided include
processors, FPGAs, ASICs, datasources, and datasinks.
Processors, FPGAs, and ASICs represent the so-named
real-world objects. Datasources and datasinks capture the
specifics of data acquisition/effector interfaces. These
objects are annotated with the inherent performance
attributes of the processing element such as clock speed,
memory, logic blocks and other resources. The physical
connection points on a chip are modeled as ports of these
objects. Ports are annotated with communication
protocols and pin assignments. Physical connections
between processing elements are represented by
connections between ports.

d) Constraint modeling: The modeling environment
provides a constraint modeling object, that is annotated
with a constraint expression specified in a language similar
to Object Constraint Language (OCL). The constraint
language provides a rich expressive medium by which the
designer can express system requirements (latency,
throughput, power etc), design rules (assign a computation
to a particular resource) as well as guidelines for
alternative selection and design implementation. These
guidelines can be very valuable aid in the design space
analysis and pruning described below. Figure 9 shows a
screen capture of an example system modeled in the
environment.

2) Design Analysis

The end product of the design process described above is a
design space consisting of modes & requirements,
potential implementations, and resource sets. The task of
the design tools is to assist the designer in selecting
appropriate combinations of implementations and resource
assignments for all of the desired operational modes.
Given the flexibility in defining design alternatives, this
space can be extremely large (moderately sized design
examples have defined a space of 1024th).

Fig. 8 Design Flow in the ACS Model Integrated Design Environment.

Fig. 9 Multi-aspect graphical Models.

To deal with such large spaces we have incorporated a
multi-stage multi-resolution design analysis in the
environment that starts with a large number of design
alternatives and progressively refines the design space to a
small set of best choices. As the number of designs
under evaluation is reduced, the resolution of the
analysis/estimation increases to get more accurate
performance information.

The first stage of the analysis is an Ordered Binary
Decision Diagrams (OBDD) [11] based analytical tool that
symbolically evaluates the design space against the
user-defined constraints. The principal benefit of a
symbolic evaluation is that it does not require enumeration
of the design space, which could be prohibitively
expensive given the size of the space. The constraints can
be selectively applied in this tool to eliminate the designs
that fail to meet the system requirements, thereby pruning

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

101

the design space.

While symbolic constraint evaluation excels at large
design space exploration, it lacks the ability to assess the
fine performance details of system design tradeoffs. For
that reason, the next stage of the analysis process is a
multi-resolution performance simulation facility. The
performance simulation facility is constructed using the
Performance Modeling Library of Honeywell Advanced
Research Division [12]. The system models are
translated into a PML specification, which is then
simulated in a discrete event VHDL simulator. The
results of the simulation are translated back to the
modeling environment for use in determining if the design
satisfies performance specifications.

3) Design Synthesis

The result of design analysis process is a set of prescribed
system modes, hardware architectures, and software
structures (one set of architectures/software per mode).
These results are represented in specific combination of
the previously described models. These models must be
processed to create the actual executable
hardware/software product. A model interpretation
process performs this task. The process is briefly described
below.

a) Configuration manager synthesis: The adaptive
behavior described in the behavior models is translated to
a C-based state machine representation. The states in this
state machine contain links to the configuration files
(hardware/software). The configuration manager executes
transitions in the state machine by reconfiguring the
system with the appropriate configurations.

b) Hardware synthesis: For the configurable devices
in the network, VHDL descriptions are generated. The
VHDL design incorporates computational components
from the design library glued together using components
from a standard interface runtime library. The VHDL
specifications are compiled using vendor-supplied/COTS
compilers and device specific Place-and-Route tools to
configuration specifications for the device.

c) Software Synthesis: For the general-purpose
processors in the network, software architecture
specifications are generated. These specifications
provide the information needed by the low-level operating
system to enact the desired computational behavior.
Specifications include software load modules, real-time
schedules, communication maps, and interfaces between
software and hardware modules. The result of the
synthesis and post processing is a complete executable
system, ready for deployment. The deployment is
performed in concert with the Runtime Environment.

4.2 Runtime Environment

The Runtime Environment is designed such that it can be
easily synthesized from the high-level model-integrated
design environment. The concepts, properties and
interfaces of the runtime environment are made compatible
with the design representation and synthesis approach.
Capabilities and interfaces are tuned to simplify the
generator.

The semantics of the execution environment implement a
large-grain-dataflow architecture. The Worker Function
captures the tasks that are performed by the system.
Communication nodes capture the transfer of data between
workers. Computations can be described as a bipartite
graph, where workers connect to Comm nodes, and Comm
nodes connect to workers (Figure 10). At this level, there
are no implied semantics of the workers. The execution
properties of workers (data tokens produced/consumed per
execution, timing of execution, etc) are maintained at a
higher level. The semantics of the Comm units are
asynchronous queues.

The execution environment spans software and
reconfigurable hardware. The software environment
consists of a simple, portable real-time kernel with a
run-time-configurable process schedules, communication
schedule, and memory management [13].
Communications interfaces are supported within the kernel,
making cross-processor connections invisible. Memory
management is integrated with the scheduler and
communication subsystems, enabling (but not solving) the
problems associated with dynamic reconfiguration. The
kernel allows dynamic editing of the process table, and of
the communications maps. The proper sequencing of
these operations, including task execution phases, is
necessary for the avoidance of reconfiguration problems.
The current approach supports the “Reboot” approach
directly, and will support the more advanced
reconfiguration approaches with cooperation of the
application tasks.

The hardware execution environment supports the same
operational semantics. The implementation, however, is
very different. The Virtual Hardware Kernel exists as a
concept used in the system synthesis process. The
model-integrated design environment synthesizes a set of
VHDL structural codes, one for each configurable device
multiplied by the number of operational modes.
Processors are directly synthesized using predefined
components. Communications elements are selected
from a library of interface types based on the requirements
of the workers on either end, the required performance,
and the available resources. The communication
infrastructure works in cooperation with the software
communications, performing the signal buffering, and the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

102

necessary off-chip interfaces and data converters. The
interface components are drawn from a library of modules.
The modules implement a limited set of standardized
communications protocols to transfer data between
modules, and present data in the format required by the
destination processor. Inherent in these interface
components must be the capability to reconfigure. This
involves strict synchronization mechanisms, methods for
saving and restoring states, and facilities to allow function
and structure modification. Global system
synchronization is greatly aided by having a common
system clock, and facilities for very low-latency signaling
within the system. Our current concepts for
reconfiguration require a single interrupt signal to be
present at each component participating in a
reconfiguration.

This synchronization and control of a system during
reconfiguration is the responsibility of the Configuration
Manager. The CM contains tables capturing the
behavioral state machine that defines the transitions at
which reconfiguration is to occur. Tied to these state-based
descriptions is the information necessary to configure the
hardware and software components of the system. Given
this information, the Configuration Manager serves as a
system observer. The CM monitors relevant signals, as
defined in the transitions leading out of the current state.
When the logical conditions for a state transition are
satisfied, the Configuration Manager begins the structural
transition process.

Stream SW Process Stream HW Process FIFO

Worker
function

Comm

Software Hardware

FIFO

Comm

Asynchronous
Communication
Buffer

Queue in
kernel

Hardware
FIFO

Fig. 10 Common Execution Semantics.

The first stage of the reconfiguration involves bringing the
system into a known, safe state. All communication
interfaces must terminate. Since many of the data ports
are bi-directional, the bus token must be returned to the
‘safe’ state. Computations must be completed and
transitioned into the ‘safe’ state. The safe state may
involve using local algorithms to perform the basic
required functions to keep the system stable. After all
necessary components are in the safe state the global
interrupt is toggled to initiate the reconfiguration event.
At this point, all communications must stop for the short

period required for reloading the FPGA’s configuration
files and the kernel’s software schedules and
communication mappings. Since the state of the system
was in a known safe state prior to reconfiguration
enactment, there is little overhead atop the basic
information download. The configuration manager will
reload the necessary FPGA’s using the standard download
methods. To enable the new processing graph, a
sequence of commands is sent to each of the processing
elements and interface components. Once the new
programming information is installed, the system interrupt
signal is toggled to ensure a globally synchronized start up
operation.

3. Conclusions

The real promise of programmable device technology lies
in flexible Adaptive Computing Systems. Adaptive
computing promises high performance for a large number
of operational goals with minimal hardware, by
maximizing component utilization and minimizing
hardware redundancy. However runtime reconfiguration
poses a major challenge in the implementation of
dynamically adaptive systems. Difficult challenges arise
both at an application level and at the execution
environment level. These challenges can be met only by
considering runtime reconfiguration problem at multiple
levels starting from design all the way down to
implementation in a single thread.

Model Integrated Computing presents a unified approach
to runtime reconfiguration. The design environment
captures the design, requirements and constraints in
models. Analysis and synthesis tools in the environment
generate executable systems from the information
represented in models. The flexible representation,
analysis and synthesis capabilities of the environment have
the potential to reduce design effort and increase system
efficiency.

The runtime environment described provides a
reconfigurable execution platform. Currently a simple
reconfiguration strategy is supported that involves shutting
down the executing computations, bringing the entire
system into a consistent state and then starting the next set
of computations. More complex reconfiguration
strategies are planned. While the runtime execution
platform described provides stable, predictable results and
provides application consistency (e.g. no data loss)
throughout reconfiguration, many more of the application
specific issues described above need to be addressed.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

103

References
[1] “Virtex™ 2.5 V Field Programmable Gate Arrays”,

http://www.xilinx.com/virtex.
[2] Waugh T. C., "Field programmable gate array key to

reconfigurable array outperforming supercomputers",
Proceedings of the IEEE 1991 Custom Integrated Circuits
Conference, pp 6.6/1-4, 1991.

[3] Graham P. and Nelson B., "Genetic Algorithms In Software
and In Hardware – A Performance Analysis Of Workstation
and Custom Computing Machine Implementations",
Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, Napa, CA, pp 216-225, April 1995.

[4] Howard N. and Taylor R. W., "Reconfigurable logic:
technology and applications", Computing Control
Engineering Journal, pp 235-240, September 1992.

[5] Eldredge J. G. and Hutchings B. L., "Density Enhancement
of a Neural Network Using FPGAs and Run-Time
Reconfiguration", Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, Napa, CA, pp
180-188, April 1994.

[6] Wirthlin M. J. and Hutchings B. L., "A Dynamic Instruction
Set Computer", Proceedings of IEEE Workshop on FPGAs
for Custom Computing Machines, Napa, CA, pp 99-107,
April 1995.

[7] Kovacshazy T. and Peceli G., “Transients in adaptive and
reconfigurable measuring channels”, Proceedings of
International Symposium on Measurement Technology and
Intelligent Instruments, Miskolc, Hungary, September 1998.

[8] Franke H., Sztipanovits J., Karsai G.: "Model-Integrated
Computing", Proceedings of the 1997 Hawaii Systems
Sciences Conference, (no page number available, CD-ROM
publication), 1997.

[9] Harel, D., “StateCharts: A visual Formalism for Complex
Systems”, Science of Computer Programming 8, pp
231-278, 1987.

[10] Hatley D. J. and Pirbhai I. A., “Strategies for Real-Time
System Specification”, Dosret House, 1987.

[11] Bryant, R.E., “Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams”, Technical Report
CMU-CS-92-160, School of Computer Science, Carnegie
Mellon University, June 1992.

[12] Hein, C. and D. Nasoff, “VHDL-based Performance
Modeling and Virtual Prototyping”, Proceedings of the 2nd
Annual RASSP Conference, Arlington, VA, July 1995.

[13] Bapty, T., Abbott, B., "Portable Kernel for High-Level
Synthesis of Complex DSP-Systems," Proceedings of
ICSPAT '95, Boston, MA, October, 1995.

Azween Abdullah obtained his
bachelors degree in Computer
Science in 1985, Master in
Software Engineering in 1999
and his Ph.d in computer
science in 2003. His work
experiences includes eighteen
years as a lecturer/senior
lecturer in institutions of higher
learning and as director of

research and academic affairs at two institutions of higher
learning, twelve years in commercial companies as
Software Engineer, Systems Analyst and as a computer
software developer and IT/MIS and educational
consultancy and training. He has many years of experience
in the application of IT in business, engineering and
research and has personally designed and developed a
variety of computer software systems including business
accounting systems, software for investment analysis,
website traffic analysis, determination of hydrodynamic
interaction of ships and computation of environmental
loads on offshore structures. His area of research
specialization includes system survivability, formal
specifications and modeling and software engineering.

