
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 
 

 
 

95

Manuscript received January 5, 2009 

Manuscript revised January 20, 2009 

Survivability Using Adaptive Reconfigurable Systems 

Azween Bin Abdullah†, 
  

University Technology Petronas, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia 
 

Summary 
Significant advances have been made in reconfigurable 
computing device technology paving the path for fast, 
dynamically reconfigurable systems.  The biggest challenge in 
the way of flexible adaptive computing is runtime 
reconfiguration.  Many difficult issues are involved in runtime 
reconfiguration.  Some of these issues are application specific 
and as such need to be considered by application designer while 
designing the system.  Adequate high-level tool support is 
required to assist the designer in this complex task.  Other 
difficult issues are concerned with the hardware and software 
consistency and the real-time behavior of the system.   The 
execution environment must provide enabling support for these 
issues.   The paper discusses the issues involved in runtime 
reconfiguration and presents a Model Integrated approach that 
attempts to address some of the issues at multiple levels.   The 
Model Integrated approach provides a design environment that 
assists the application designer in capturing system design, 
requirements and constraints, and provides analysis and 
automatic synthesis capability from the captured information.  
The synthesized system is deployed in an execution environment 
that provides the basic primitives for reconfiguration and enables 
some of the difficult issues in runtime reconfiguration.. 
Key words: 
Survivability, Reconfiguration, Runtime. 

1. Introduction 

Recent years have witnessed significant advances in 
programmable devices and technology.  The Field 
Programmable Gate Array (FPGA) technology has come 
of age producing very high-density gate arrays (~1 million 
gates) with lower power consumption, faster clock-rate 
and relatively low configuration time [1].  A variety of 
hardware platforms comprising of general-purpose 
computers and FPGAs have been developed [2].  The 
presence of fast programmable circuitry has opened up a 
vast array of opportunities for application developers.  A 
large number of high-performance computing applications 
have been successfully mapped to these platforms taking 
advantage of the fine-grain parallelism made available by 
the programmable hardware, and demonstrating significant 
speedup over the conventional general-purpose computer 
based implementation [3]. 

However, the promise of programmable device technology 
extends far beyond these point applications.  The real 
potential of reconfigurable device technology lies in 

Adaptive Computing Systems (ACS) – systems that adapt 
and evolve in response to the changing environment while 
operational, without compromising the consistency and 
real-time properties of the system [4].  Several class of 
modern applications require very high performance with 
minimal resources and high flexibility to operate in a 
rapidly changing environment.  Adaptive computing has 
been considered as an enabling approach for such 
applications.  The essence of adaptive computing 
approach is to create several different configurations 
(hardware architecture/software topology) for a system, 
each tailored to a specific set of operational requirements. 
The system is reconfigured with a suitable configuration 
when the environment and thus the operational 
requirements change.  The primary benefit of adaptive 
computing lies in being able to deliver high performance 
for a large number of operational goals with minimal 
hardware, by maximizing component utilization and 
minimizing hardware redundancy. 

There are many challenges in the adaptive computing 
approach.  The biggest yet the most understudied 
challenge however is runtime reconfiguration.  Many 
difficult issues arise.  Some of these issues are specific to 
the application being designed while others are more 
general and relate to the underlying runtime environment.  
While some studies in the adaptive computing community 
have demonstrated restricted runtime reconfiguration 
capabilities [5], most of the demonstrated approaches are 
highly application specific and lack adequate formalism.  
Additionally the primary focus of reconfiguration in these 
studies is programmable hardware. This clearly limits the 
approach’s applicability, as most high-performance 
systems involve a mix of hardware and software 
components and heterogeneous technologies. Therefore a 
more comprehensive approach is required that considers 
the problem of runtime reconfiguration at multiple levels, 
starting from algorithms and all the way down to hardware 
details. 

Our research attempts to address runtime reconfiguration 
in a more comprehensive and formal setting.  We 
approach runtime reconfiguration at two levels: 1) Design 
– We have developed high-level design tools for 
representation, analysis and synthesis of dynamically 
reconfigurable systems.  2) Runtime – We have 
developed a uniform execution environment for execution 
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of dynamically reconfigurable systems.  In this paper we 
present runtime reconfiguration and our approach to 
runtime reconfiguration in a systematic manner.  First, in 
section 2, we discuss the different scenarios and 
motivations for runtime reconfiguration and attempt a 
categorization of runtime reconfiguration based on these 
scenarios.  Next, in section 3, we describe the difficult 
issues that arise, both at an application level and at the 
execution environment level.  Then in section 4 we 
briefly describe our design tools and the uniform execution 
environment.  Finally, in section 5, we conclude the 
report by evaluating our approach and recommending 
future directions.  

2. Runtime Reconfiguration Categories 

The challenges associated with runtime reconfiguration are 
closely linked with the goal of reconfiguration.  
Therefore, it is important to consider the motivation and 
the different scenarios of runtime reconfiguration.  We 
have identified the objective of reconfiguration into three 
categories primarily.  These categories are: a) 
Algorithmic reconfiguration; b) Architectural 
reconfiguration; c) Functional reconfiguration.  They are 
briefly described below. 

2.1 Algorithmic Reconfiguration 

The goal in algorithmic reconfiguration is to reconfigure 
the system with a different computational algorithm that 
implements the same functionality, but with different 
performance, accuracy, power, or resource requirements.  
The need for such reconfiguration arises when either the 
dynamics of the environment changes or the operational 
requirements change.  Figure 1 shows a scenario, where 
the dynamics of the controlled process change from 2nd 
order to 3rd order.  In order to maintain the controllability 
the control equation employed by the controller also needs 
to change from 2nd order to 3rd order.  Thus, while the 
functionality of the controller remains the same the control 
algorithm is different. 

2.2 Architectural Reconfiguration 

The goal in architectural reconfiguration is to modify the 
hardware topology and computation topology by 
reallocating resources to computations. The need for this 
type of reconfiguration arises in situations where some 
resources become unavailable either due to a fault, or due 
to reallocation to a higher priority job, or due to a 
shutdown in order to minimize the power usage.  For the 
system to keep functioning in spite of the fault the 
hardware topology need to be modified and the 
computational tasks need to be reassigned.  Figure 2 
shows a scenario where architectural reconfiguration is 

employed.  In this example an active FPGA device 
becomes inactive upon a mode transition.  The 
computational tasks performed on that FPGA are relocated 
to another resource. 
 

 

Fig. 1  Algorithmic reconfiguration of a controller by changing the 
control algorithm from 2nd order to 3rd order. 

 

Fig. 2  Architectural reconfiguration of a computation by relocating 
computational tasks in the event of a resource failure. 

This type of reconfiguration may also arise in an exactly 
opposite situation where new resources become available.  
In order to effective utilize the added resource the 
computational tasks must be reassigned and redistributed 
to resources. 

2.3 Functional Reconfiguration 

The goal in functional reconfiguration is to execute 
different function on the same resources.  The need for 
this type of reconfiguration arises in situations where a 
large number of different functions are to be performed on 
a very limited resource envelope.  In such situations the 
resources must be time-shared across different 
computational tasks to maximize resource utilization and 
minimize redundancy.  Figure 3 depicts a scenario where 
functional reconfiguration is employed.  In this example 
the FPGA device implements an ALU function in one 
mode of operation. The device is reconfigured to 
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implement a limiter function in another mode of operation.  
The reconfiguration in this scenario helps improve the 
functional density of the FPGA device.  The Dynamic 
Instruction Set Computer at BYU [6] employs this type of 
reconfiguration.  

Typical adaptive systems would be employing one or more 
of these reconfiguration categories to implement a 
dynamically adaptive behavior. 
 

 

Fig. 3  Functional Reconfiguration of FPGA device to improve the 
functional density. 

3. Challenges in Runtime Reconfiguration 

The purpose of the categorization presented above was to 
distinguish different reconfiguration scenarios that may 
occur in real systems.  These different reconfiguration 
scenarios present different challenges.  We present these 
issues categorized into application specific and runtime 
environment specific below: 

3.1 Application Specific Issues 

Some of the challenges are highly specific to the 
application being designed and as such need to be 
considered and addressed by the application designer.  
The runtime environment must provide support API to 
enable these issues: 

1) Issues in Algorithmic Reconfiguration 

The first and foremost consideration, when dynamically 
adapting the algorithm is the continuity and transients in 
the output signal.  Due to reconfiguration there might be 
a discontinuity in the output signal.  An application 
designer needs to consider the magnitude of the 
discontinuity, the magnitude of the transient, the duration 
of the transient, and their impact on the overall system.  
The magnitude of the discontinuity and the reconfiguration 
transients depend on the nature of the algorithm.  With 
filters it has been observed that the resonator structure has 

low reconfiguration transients [7].  With some 
applications it is possible that the discontinuity is entirely 
unacceptable, in which case alternative approaches need to 
be considered to maintain the continuity in spite of 
reconfiguration.  Figure 4 shows a scenario where the 
output continuity is lost due to reconfiguration 

The second consideration in algorithmic reconfiguration is 
the state mapping.  There could be infinite state variable 
descriptions representing the same transfer function.  For 
reconfiguration the internal state variable description of 
one algorithm needs to be mapped to the internal state 
variable description of another algorithm.  This is a 
complex problem and needs to be understood by the 
application designer. 

There are some other difficult issues that are related to the 
runtime environment and are presented later. 

 

Fig. 4  Output discontinuity in algorithmic reconfiguration. 

2) Issues in Architectural Reconfiguration 

Architectural reconfiguration involves relocating 
computations.  The important consideration here is the 
safe transitioning of the internal state of the computation.  
The state transitioning could be further complicated due to 
relocation of computation from hardware to software.   
The application designer needs to understand the trade-offs 
in the accuracy, and the performance of the algorithm.  
Additional difficult issues are involved in shutting down a 
computation on a resource and relocating it to another 
resource that need to be addressed by the runtime 
environment. 

3) Issues in Functional Reconfiguration 

Functional reconfiguration involves time-sharing of 
resources between computational tasks.  The primary 
consideration here is to preserve the state and the 
intermediate results when a computation is swapped out.  
The internal state and the intermediate results must be 
restored when the computation is swapped back in.  To 
address these issues the application designer needs to 
consider the internal state and intermediate results 
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representation and the runtime execution environment 
needs to provide API for preservation and restoration of 
state and data. 

3.2 Runtime Environment Specific Issues 

In addition to the application specific issues presented 
above there are some issues that are common to all types 
of reconfiguration and need to be addressed by the runtime 
environment.  These issues are presented below 

1) Synchronization 

In order to partially or fully reconfigure an executing 
system all the concurrent computations executing on 
different resources need to be synchronized and brought in 
a consistent state.  All the communications in transit must 
be finished.  For the partial reconfiguration of a 
heterogeneous resource network, the segment of the 
network under reconfiguration must be shutdown or 
decoupled from the rest of the network. The 
synchronization task becomes even harder in the absence 
of a separate synchronization event bus, as the internal 
communication paths of the network that is about to be 
reconfigured are required to propagate the reconfiguration 
event.   

2) Hardware Consistency 

A host of problems can occur during reconfiguration that 
may destroy the consistency of the underlying hardware.  
Loss of hardware consistency can have many negative 
effects, ranging from temporary loss of performance to 
hardware damage and total/permanent system malfunction.  
Some of the possible scenarios are: 1) Port contention may 
occur when bi-directional ports are improperly initialized, 
a reconfiguration event is not properly sequenced / 
synchronized or if an improper/inconsistent design is 
implemented.  If two connected drivers are enabled, 
permanent physical damage can occur to the circuits.  2) 
Data token loss or duplication can result from incorrect 
initialization or a loss of communication integrity, where 
tokens represent the status of empty or full slots in a 
communication interface.  An extra token on the sender 
side can cause too much data to be sent, resulting in a 
FIFO overrun.  A lost token can effectively block a 
communication port, resulting in a system deadlock.  3) 
Reconfigurable devices must maintain state when 
controlling a complex external hardware device, such as an 
attached processor or storage device.  If a reconfiguration 
occurs during a state transition within the device, or if the 
reconfiguration incorrectly modifies the computational 
component’s representation of the device, there can be a 
state mismatch.  This can result in improper commands 
being sent to the device or in a deadlock where both 
components are waiting on each other for triggering events.  
Figure 5 depicts these scenarios. 

 

Fig. 5  Possible scenarios of loss of hardware consistency on 
reconfiguration. 

3) Software Consistency 

Software issues can present a larger challenge to dynamic 
system reconfiguration.  The internal state of software 
must be managed under reconfiguration.  Modern 
operating systems have evolved to support the flexible 
implementation of multiple tasks, with dynamic addition 
and removal of tasks on a single processor in the form of 
time-sharing and/or multitasking, and Real-time kernels 
allow time critical tasks to be dynamically scheduled on a 
single processor.  These kernels typically do not address 
the consistency of dynamic reconfiguration for distributed 
networks of tasks.  As a result memory leaks could occur 
that would adversely affect long-term reliability.  Task 
structure mismanagement can happen resulting in extra 
tasks executed by the kernel, with a loss in performance.  
In a message passing system messages in transit can be 
delivered when the receiving process no longer exists, 
resulting in mismatched messages and communication 
errors.  Figure 6 depicts a scenario of loss of software 
consistency on reconfiguration 

4) Timing Consistency 

The timing constraints of the application must be obeyed 
during reconfiguration.  During reconfiguration the 
system can fail to maintain real-time constraints.  If the 
reconfiguration cannot be completed in sufficient time, 
deadlines will be sacrificed. In addition, the time-base can 
be shifted, resulting in a skew in system output period.  
Figure 7 depicts a scenario of loss of deadline resulting in 
timeline skew. 
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Fig. 6  Possible scenarios of loss of software consistency on 
reconfiguration. 

 

Fig. 7  A scenario of loss of deadline resulting in period skew on 
reconfiguration. 

4. Model Integrated Approach 

From these issues it is evident that runtime reconfiguration 
needs to be addressed at multiple levels.  There should be 
a formal design environment with support for analysis and 
synthesis.  Along with the design environment there 
should be a runtime environment that can be targeted for 
synthesis from design environment and that supports 
runtime reconfiguration.  The Adaptive Computing 
Systems project at Vanderbilt University attempts to 
develop such a coupled design and execution environment.  
The design and execution environment are briefly 
described below. 

4.1 Design Environment 

The design environment is based on Model Integrated 
Computing (MIC), an approach for synthesizing computer 
based systems, developed and matured over a decade [8].  
In MIC domain specific modeling environments are 
developed, those allow a designer to “model” the system 
in the concepts and formalism of the particular engineering 
domain. The modeling environment is a multiple aspect 
graphical editor that directly supports domain specific 
modeling concepts.  Multiple view models capture the 
information relevant to the system being designed.   The 
system models can be analyzed and verified by different 

static and dynamic analysis tools.  The integrated models 
are also used for synthesis of runtime system.  Figure 8 
depicts the overall design flow in the MIC approach.   

The main elements of the design environment are: 1) 
Design representation; 2) Design analysis and verification; 
and 3) Design synthesis.  These are briefly described 
below. 

1) Design Representation 

The environment provides modeling objects (models, 
atoms, references, and connections) to capture different 
aspects of a reconfigurable system in familiar, 
well-understood models of computation. They are: 

a) Behavior modeling: The reconfigurable system 
operates in discrete modes, with specific transitions 
between modes. Therefore, a Statechart representation is 
chosen to model the adaptive operational behavior [9]. The 
modeling objects provided are states, events and 
transitions. States represent operational modes, events 
represent the cause of a mode-shift, and transitions and 
transition rules define the pre-conditions and the 
consequences of a mode-change. States can contain states, 
events, and transitions thus enabling creation of a 
hierarchical finite state machine.  The computation to be 
performed in a mode (state) is represented by referencing a 
computation model (described below).  A reference is 
essentially a “pointer” to another model.  Referencing 
allows a single computation to be applied to any number 
of system modes.   States are annotated with attributes 
such as real-time specifications on the computation, power 
restrictions, and other user-defined constraints. 

b) Computation modeling: The computations are 
modeled as a Dataflow Diagram, a well-familiar 
representation particularly suited to signal processing 
applications [10]. The modeling environment extends the 
basic Dataflow Diagrams with the concept of hierarchy 
and alternatives to add flexibility to the dataflow 
representation and help manage system complexity. 
Dataflow structures are modeled with the following 
modeling objects: primitives, compounds, and templates. 
A primitive object represents elemental computation. It 
maps directly to a hardware macro or a software function.  
Primitive objects are annotated with attributes that capture 
measured performance, resource requirements 
(memory/processing time/logic blocks), and other 
user-defined properties. A compound is an aggregation 
object that may contain primitives, other compounds, 
and/or templates. These objects are connected within the 
compound to define the dataflow.  A template is a 
modeling object that models a processing block with 
rigorously defined interface and one or more alternative 
algorithm/implementation. These design alternatives can 
be compounds, primitives, or templates, allowing 
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hierarchies of design alternatives. With alternatives one 
can compose a very flexible design space, with a huge 
number of potential design implementations. 

c) Resource modeling: The resource network is 
modeled as an interconnected network of processing 
elements.  The modeling objects provided include 
processors, FPGAs, ASICs, datasources, and datasinks. 
Processors, FPGAs, and ASICs represent the so-named 
real-world objects. Datasources and datasinks capture the 
specifics of data acquisition/effector interfaces. These 
objects are annotated with the inherent performance 
attributes of the processing element such as clock speed, 
memory, logic blocks and other resources. The physical 
connection points on a chip are modeled as ports of these 
objects.  Ports are annotated with communication 
protocols and pin assignments. Physical connections 
between processing elements are represented by 
connections between ports. 

d) Constraint modeling: The modeling environment 
provides a constraint modeling object, that is annotated 
with a constraint expression specified in a language similar 
to Object Constraint Language (OCL).   The constraint 
language provides a rich expressive medium by which the 
designer can express system requirements (latency, 
throughput, power etc), design rules (assign a computation 
to a particular resource) as well as guidelines for 
alternative selection and design implementation.  These 
guidelines can be very valuable aid in the design space 
analysis and pruning described below. Figure 9 shows a 
screen capture of an example system modeled in the 
environment. 

2) Design Analysis 

The end product of the design process described above is a 
design space consisting of modes & requirements, 
potential implementations, and resource sets.  The task of 
the design tools is to assist the designer in selecting 
appropriate combinations of implementations and resource 
assignments for all of the desired operational modes.  
Given the flexibility in defining design alternatives, this 
space can be extremely large (moderately sized design 
examples have defined a space of 1024th). 

 

Fig. 8  Design Flow in the ACS Model Integrated Design Environment. 

 

Fig. 9  Multi-aspect graphical Models. 

To deal with such large spaces we have incorporated a 
multi-stage multi-resolution design analysis in the 
environment that starts with a large number of design 
alternatives and progressively refines the design space to a 
small set of best choices.  As the number of designs 
under evaluation is reduced, the resolution of the 
analysis/estimation increases to get more accurate 
performance information. 

The first stage of the analysis is an Ordered Binary 
Decision Diagrams (OBDD) [11] based analytical tool that 
symbolically evaluates the design space against the 
user-defined constraints.  The principal benefit of a 
symbolic evaluation is that it does not require enumeration 
of the design space, which could be prohibitively 
expensive given the size of the space. The constraints can 
be selectively applied in this tool to eliminate the designs 
that fail to meet the system requirements, thereby pruning 
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the design space.  

While symbolic constraint evaluation excels at large 
design space exploration, it lacks the ability to assess the 
fine performance details of system design tradeoffs.  For 
that reason, the next stage of the analysis process is a 
multi-resolution performance simulation facility.  The 
performance simulation facility is constructed using the 
Performance Modeling Library of Honeywell Advanced 
Research Division [12].  The system models are 
translated into a PML specification, which is then 
simulated in a discrete event VHDL simulator.  The 
results of the simulation are translated back to the 
modeling environment for use in determining if the design 
satisfies performance specifications. 

3) Design Synthesis 

The result of design analysis process is a set of prescribed 
system modes, hardware architectures, and software 
structures (one set of architectures/software per mode).  
These results are represented in specific combination of 
the previously described models.  These models must be 
processed to create the actual executable 
hardware/software product.  A model interpretation 
process performs this task. The process is briefly described 
below. 

a) Configuration manager synthesis: The adaptive 
behavior described in the behavior models is translated to 
a C-based state machine representation. The states in this 
state machine contain links to the configuration files 
(hardware/software). The configuration manager executes 
transitions in the state machine by reconfiguring the 
system with the appropriate configurations. 

b) Hardware synthesis: For the configurable devices 
in the network, VHDL descriptions are generated. The 
VHDL design incorporates computational components 
from the design library glued together using components 
from a standard interface runtime library.  The VHDL 
specifications are compiled using vendor-supplied/COTS 
compilers and device specific Place-and-Route tools to 
configuration specifications for the device. 

c) Software Synthesis: For the general-purpose 
processors in the network, software architecture 
specifications are generated.  These specifications 
provide the information needed by the low-level operating 
system to enact the desired computational behavior. 
Specifications include software load modules, real-time 
schedules, communication maps, and interfaces between 
software and hardware modules.  The result of the 
synthesis and post processing is a complete executable 
system, ready for deployment.  The deployment is 
performed in concert with the Runtime Environment.  

4.2 Runtime Environment 

The Runtime Environment is designed such that it can be 
easily synthesized from the high-level model-integrated 
design environment.  The concepts, properties and 
interfaces of the runtime environment are made compatible 
with the design representation and synthesis approach.  
Capabilities and interfaces are tuned to simplify the 
generator.   

The semantics of the execution environment implement a 
large-grain-dataflow architecture.  The Worker Function 
captures the tasks that are performed by the system.  
Communication nodes capture the transfer of data between 
workers.  Computations can be described as a bipartite 
graph, where workers connect to Comm nodes, and Comm 
nodes connect to workers (Figure 10).  At this level, there 
are no implied semantics of the workers.  The execution 
properties of workers (data tokens produced/consumed per 
execution, timing of execution, etc) are maintained at a 
higher level.  The semantics of the Comm units are 
asynchronous queues. 

The execution environment spans software and 
reconfigurable hardware.  The software environment 
consists of a simple, portable real-time kernel with a 
run-time-configurable process schedules, communication 
schedule, and memory management [13].  
Communications interfaces are supported within the kernel, 
making cross-processor connections invisible.  Memory 
management is integrated with the scheduler and 
communication subsystems, enabling (but not solving) the 
problems associated with dynamic reconfiguration.  The 
kernel allows dynamic editing of the process table, and of 
the communications maps.  The proper sequencing of 
these operations, including task execution phases, is 
necessary for the avoidance of reconfiguration problems.  
The current approach supports the “Reboot” approach 
directly, and will support the more advanced 
reconfiguration approaches with cooperation of the 
application tasks. 

The hardware execution environment supports the same 
operational semantics.  The implementation, however, is 
very different.  The Virtual Hardware Kernel exists as a 
concept used in the system synthesis process.  The 
model-integrated design environment synthesizes a set of 
VHDL structural codes, one for each configurable device 
multiplied by the number of operational modes.  
Processors are directly synthesized using predefined 
components.  Communications elements are selected 
from a library of interface types based on the requirements 
of the workers on either end, the required performance, 
and the available resources.  The communication 
infrastructure works in cooperation with the software 
communications, performing the signal buffering, and the 
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necessary off-chip interfaces and data converters. The 
interface components are drawn from a library of modules.  
The modules implement a limited set of standardized 
communications protocols to transfer data between 
modules, and present data in the format required by the 
destination processor.  Inherent in these interface 
components must be the capability to reconfigure.  This 
involves strict synchronization mechanisms, methods for 
saving and restoring states, and facilities to allow function 
and structure modification.  Global system 
synchronization is greatly aided by having a common 
system clock, and facilities for very low-latency signaling 
within the system.  Our current concepts for 
reconfiguration require a single interrupt signal to be 
present at each component participating in a 
reconfiguration. 

This synchronization and control of a system during 
reconfiguration is the responsibility of the Configuration 
Manager.  The CM contains tables capturing the 
behavioral state machine that defines the transitions at 
which reconfiguration is to occur. Tied to these state-based 
descriptions is the information necessary to configure the 
hardware and software components of the system.  Given 
this information, the Configuration Manager serves as a 
system observer.  The CM monitors relevant signals, as 
defined in the transitions leading out of the current state.  
When the logical conditions for a state transition are 
satisfied, the Configuration Manager begins the structural 
transition process. 

Stream SW Process Stream HW Process FIFO

Worker
function

Comm

Software Hardware

FIFO

Comm

Asynchronous
Communication
Buffer

Queue in
kernel

Hardware
FIFO

 

Fig. 10  Common Execution Semantics. 

The first stage of the reconfiguration involves bringing the 
system into a known, safe state.  All communication 
interfaces must terminate.  Since many of the data ports 
are bi-directional, the bus token must be returned to the 
‘safe’ state.  Computations must be completed and 
transitioned into the ‘safe’ state.  The safe state may 
involve using local algorithms to perform the basic 
required functions to keep the system stable.  After all 
necessary components are in the safe state the global 
interrupt is toggled to initiate the reconfiguration event.  
At this point, all communications must stop for the short 

period required for reloading the FPGA’s configuration 
files and the kernel’s software schedules and 
communication mappings.  Since the state of the system 
was in a known safe state prior to reconfiguration 
enactment, there is little overhead atop the basic 
information download.  The configuration manager will 
reload the necessary FPGA’s using the standard download 
methods.  To enable the new processing graph, a 
sequence of commands is sent to each of the processing 
elements and interface components. Once the new 
programming information is installed, the system interrupt 
signal is toggled to ensure a globally synchronized start up 
operation. 

3. Conclusions 

The real promise of programmable device technology lies 
in flexible Adaptive Computing Systems.  Adaptive 
computing promises high performance for a large number 
of operational goals with minimal hardware, by 
maximizing component utilization and minimizing 
hardware redundancy.  However runtime reconfiguration 
poses a major challenge in the implementation of 
dynamically adaptive systems.  Difficult challenges arise 
both at an application level and at the execution 
environment level.  These challenges can be met only by 
considering runtime reconfiguration problem at multiple 
levels starting from design all the way down to 
implementation in a single thread.   

Model Integrated Computing presents a unified approach 
to runtime reconfiguration.  The design environment 
captures the design, requirements and constraints in 
models.  Analysis and synthesis tools in the environment 
generate executable systems from the information 
represented in models.  The flexible representation, 
analysis and synthesis capabilities of the environment have 
the potential to reduce design effort and increase system 
efficiency.   

The runtime environment described provides a 
reconfigurable execution platform.  Currently a simple 
reconfiguration strategy is supported that involves shutting 
down the executing computations, bringing the entire 
system into a consistent state and then starting the next set 
of computations.  More complex reconfiguration 
strategies are planned.  While the runtime execution 
platform described provides stable, predictable results and 
provides application consistency (e.g. no data loss) 
throughout reconfiguration, many more of the application 
specific issues described above need to be addressed. 
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