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Summary 
We are facing two major cause of performance 
degradation in TCP traffic over wireless network such as 
W-CDMA that utilizing link ARQ mechanisms; jitter and 
loss in streams of segments. For mitigating the 
degradations, we explored and achieved as follows; 1) 
Leveraging the link layer optimizations techniques and 
established standardization, we evaluated the contribution 
of Eifel for WCDMA network against jitter. As a result, 
we can recommend the use of STO avoidance mechanism, 
such as Eifel. Eifel improved the throughput by around 25 
kbps at BLER 10% sample, even with unoptimized link 
parameters. This result will have substantially impact for 
network operation because if we could assume the 
presence of STO avoidance mechanism, the network can 
be optimized more toward link efficiency on the trade-off 
curve. 2) We proposed an improvement for the Fast 
Timeout algorithm with loss retransmission mechanism for 
strengthen in loss recovery. Simulation results yield the 
following; a sender using the proposed algorithms holds 
one half of the previous cwnd value and so avoids 
unnecessary throughput degradation even if duplicate 
ACKs arrive following a timeout and the retransmitted 
segment is lost. The proposed algorithm overcomes Fast 
timeout at most around 33 kbps of improvement in 
throughput for single set of recovery in our simulation 
settings. 
Key words: 
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1. Introduction 

TCP is the glue for the Internet. Tremendous numbers of 
applications are built upon it. The deployment of 2.5G/3G 
cellular technologies brought the popularity of TCP based 
wireless services8). The quality of transmission in the 
wireless networks that incur bit error can be improved 
with link layer retransmission. Using TCP on top of the 
link-layer error recovery can increase end-to-end 
performance. Therefore link-layer and end-to-end 

recovery can coexist; this can lead to inefficient 
interaction between the two layers of ARQ (Automatic 
Repeat reQuest) protocols

4),13),14)
.  

The ARQ mechanism can provide the packet service 
that offers a negligibly small probability of undetected 

error due to the use of RLC frame retransmission.
1)

 
However, the diverse interval between arrivals of packets 
caused by error recovery can lead to an unexpected 
increase in round trip time (RTT). In this event, the TCP 
sender experiences a retransmission timeout (RTO) 
because it has no information about the wireless 
conditions. We call the diverse interval as jitter.  

Several algorithms have been proposed to avoid 
costly retransmission time-outs. The Eifel algorithm

21) 

provide spurious timeout (STO) detection
17)

. STO occurs 
due to the retransmission ambiguity problem; the sender 
experiences unnecessary go-back-N retransmission and 
throughput degradation caused by false congestion 
control

22)
.  

In a case of failure of link layer transmission, ARQ 
gives up the retransmission attempt which leads to the loss 
of a TCP segment

1)
. Thus, the first unacknowledged 

segment is discarded, and the receiver acknowledges a 
series of the next arrived segments as duplicate ACKs. 
Moreover, handovers in mobile communications can cause 
the arrival of duplicate ACKs after a timeout 

3)
. As a result, 

these STO detection algorithms, such as the Eifel, only 
work as conventional TCP

7)
.  

We are facing two major cause of performance 
degradation in TCP traffic; jitter and loss in streams of 
segments. For mitigating the degradations caused by jitter 
and loss, we define the problem space to explore in this 
paper as follows; 1) Utilizing our experience for link layer 
optimizations and established standardization, we will 
evaluate the contribution of Eifel for W-CDMA network 
against jitter. The result will have substantial impact for 
network operation. 2) We evaluate and propose an 
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improvement for the Fast Timeout algorithm with loss 
retransmission mechanism for strengthen in loss recovery.  

The rest of this paper is organized as follows: Section 
2 overviews W-CDMA link ARQ mechanisms. Section 3 
surveys related topics and explains important prior arts 
including Eifel, Fast Timeout and Loss Retransmission. 
Section 4 defines our approach. Section 5, we evaluates 
Eifel on W-CDMA network emulator, Section 6 discusses 
our proposed improvements for Fast Timeout algorithms 
and its evaluation. Finally, Section 8 provides a summary.  

SN=1 P=0
SN=2 P=0
SN=3 P=0
SN=4 P=0
SN=5 P=0 status(loss:2,3ack:1)
SN=6 P=0
SN=2 P=1

SN=8 P=0
SN=9 P=0

SN=3 P=0
SN=7 P=0 status(loss:3ack:2)

Sender Receiver

Legend
Left: SN and P is in the header of a PDU

SN: Sequence Number, P: the status of Poll bit
Right: Status(loss:X, ack Y) means the contents of STATUS PDU

X is the SN of lost PDU (it can list multiple PDUs),
Y is the SN acknowledged accumulatively

The STATUS PDU
generated by Poll bit

The STATUS PDU
generated by a gap in 
received sequence

 

Fig. 1 Retransmission in RLC 

2. The Case for Jitter and Loss  

We briefly describe how the ARQ causes jitter and 
loss in the stream of packet9) as a background. First we 
introduce the L2 ARQ in W-CDMA network, and then 
discuss the cause of jitter in terms of link utilization and 
loss of packet in link persistence. Also we will introduce a 
couple of parameter in link ARQ, namely Timer Status 
Prohibit and MAX DAT.  

2.1 L2 ARQ in W-CDMA network  

W-CDMA
10)

, an IMT2000 standard, was developed 
by 3GPP (3rd Generation Partnership Project)

✍
.  

W-CDMA system controls transmission error by link 
layer ARQ. RLC is used as the ARQ protocol in W-
CDMA. The RLC protocol works between handset 
terminal and RNC (Radio Network Controller), an 
intermediate level node in core network in 3GPP 
architecture.  

When RLC receives an IP packet from the upper 
layer, the packet is segmented into PDUs (Protocol Data 
Units), each of which has a 2 octet header and 40 octet 
payload. The PDU is the unit of acknowledgment and 

retransmission in RLC. RLC is categorized as ARQ with 
Selective Repeat. Its retransmission mechanism uses 
Polling control and Status Report PDU. The protocol 
interaction of RLC sender/receiver is depicted in Figure 1. 
The sender can force status reporting (i.e. the return of 
status PDU from receiver) by setting P(oll) bit in each 
PDU header. The receiver sends status PDU in the 
following two conditions:  
(1) The receiver finds a gap in the sequence number 

of received PDUs which means the detection of 
PDU loss. If PDU(s) are lost, the receiver will see 
a gap in the numbers (say 1 2 3 5, if 4 is lost). 

(2) The received PDU holds the P bit. 
 
Sender controls retransmissions according to the received 
STATUS PDUs.  

The benefits of RLC retransmission comparing only 
relying to the end-to-end reliability offered by TCP, is two 
fold. 1) The small PDU size (42 octets) used in RLC 
makes retransmission more efficient. 2) The response time 
against feedback from the receiver is smaller than is 
possible with TCP’s end-to-end feedback, since only the 
wireless subnetwork is involved.  

2.2 The trade-off between jitter suppression and link 
utilization  

The delay in packet arrival depends on the number of 
PDU retransmissions. If the jitter increases rapidly, TCP 
interprets it as packet loss and triggers time out spuriously. 
To avoid this retransmission, we have to suppress the jitter.  

For suppressing the delay-jitter in the link layer of 
W-CDMA, we have to set the RLC parameters 
appropriately, including Timer Status Prohibit (TSP). TSP 
defines the delay imposed on the receiver before it can 
issue a STATUS PDU. For example, if this value is set to 
0, a STATUS PDU is immediately generated and issued if 
PDU loss is detected. Setting TSP to larger than 0 makes it 
possible for a single STATUS PDU to cover multiple 
losses. If TSP is too large, PDU flow stops due to a lack of 
acknowledgments and jitter increases.  

The trade-off between the suppression of jitter and 
link layer utilization impacts the optimal TCP throughput. 
When TSP is small, many STATUS PDUs are generated 
and loss notification is quick, while the STATUS PDUs 
themselves and multiple retransmissions of the same PDU 
decrease the effective link bandwidth, vice versa. A large 
TSP causes deferred notification of loss which increases 
the retransmission interval and results in large jitter, which 
degrades RTO and TCP throughput.  
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Figure. 2 Throughput versus Timer Status Prohibit (using Opnet 
simulation) 

 

Figure. 3 Throughput and Down link segment loss rate vs MAX DAT 
(using Opnet simulation)  

Figure 2 shows TCP throughput versus TSP 1 . As 
discussed above, small TSP causes low link utilization 
which degrades throughput falls (see the left side of Figure 
2). The throughput degradation seen on the right side of 
Figure 2 is caused by the spurious timeouts triggered by 
the delay-jitter. So if all of TCP implementations have a 
way of STO avoidance mechanism, the optimum point 
will be shifted toward the right side that provides larger 
link efficiency.  

2.3 Link Persistence and Segment Loss  

Persistence in link layer retransmission involves a 
trade-off between IP packet loss and the efficiency of link 
utilization. We define persistence as the maximum number 
of PDU retransmission attempts allowed by the RLC 
operation; the MAX DAT parameter defines the maximum 
number of retransmission attempts for a single PDU.  

                                                           
1 Using original simulator implemented RLC on OPNET 
with BSD RTO emulation 

To show the relation between persistence and TCP 
throughput, Figure 3 plots TCP throughput versus MAX 
DAT, the parameter that defines the maximum number of 
retransmission attempts for each PDU. From the result 
shown in Figure 3, we found that MAX DAT should be at 
least 5 to achieve BLER (BLock Error Rate) 0 = 

 
10% in 

the simulated network.  

3. Related Works  

3.1 Suppressing Spurious Timeout  

Several algorithms have been proposed to avoid the 
effects of costly retransmission timeout

21)19)
. The Eifel 

algorithm
21) 

with the TCP time stamp option can identify if 
the acknowledgment is in response to the original segment 
or the retransmitted segment. The time stamp option is 
standardized as RFC1323 and is implemented in most 
operating systems. Only the sender need implement the 
Eifel algorithm. If a sender running the Eifel algorithm 
detects Spurious Time-out (STO), it reverts to the cwnd 
and the ssthresh to avoid unnecessary retransmission and 
throughput degradation. Moreover, it can adjust 
parameters for setting the RTO, to prevent more RTO 
events. Eifel is already standardized but needs real world 
evaluation.  

Gurtov
2) 

discusses link layer characteristics of GSM 
and GPRS including long sudden delays. It focuses on link 
level retransmission and resource management. It also 
suggests applicability of Eifel; however it lacks key 
insights such as trade-off between link utilization and 
transport layer performance.  

M-TCP
5) 

discusses and achieves performance 
improvements for problem such as high bit error rate and 
long disconnection cased by wireless link characteristics. 
Still, comparing server side approach such as Eifel, its 
split-connection approach requires extra complexity in 
either mobile host or base station when to apply to cellular 
system that is limiting factor for its wider acceptance.  

3.2 Coping with segment loss and RTO caused 
by ARQ  

All of the above STO detection algorithms provide 
only conventional TCP responses (i.e. keep the slow start 
phase and transmit nothing until an acceptable ACK 
arrives) 

7)11)
. To extend the conventional TCP function so 

that it can handle timeout, the fast timeout algorithm
20) 

uses the duplicate ACKs raised after a timeout as implicit 
segment loss information. It allows the sender to directly 
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switch from the slow start algorithm to the fast recovery 
algorithm. It then transmits new segments allowed by the 
value of new congestion window upon the arrival of the 
duplicate ACKs, even if the sender times out. However, it 
has no function to detect an oversight of a loss of first 
unacknowledged segment which was retransmitted by a 
timeout.  

In order to strengthen TCP against segment loss, Lin 
and Kung originally proposed a loss retransmission 
algorithm using TCP’s ACK-clock

6)
. It retransmits the first 

unacknowledged segment if the number of duplicate 
ACKs under the fast retransmit/recovery phase reaches the 
number of outstanding segments plus DupThresh. 
Originally it is invented for enhancement only for Reno 
and lacks insights for applying other TCP enhancement 
mechanisms. 
 

 

Figure. 4 Simulated Network 
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Figure. 5 The number of incidents of RTO vs BLER (using W-CDMA 
emulator)  

4. Approach: Mitigations in TCP 
Performance for Jitter and Loss  

As we introduced the W-CDMA link mechanisms 
and its characteristics, we are facing two major cause of 
performance degradation in TCP traffic; jitter and loss. For 
mitigating the degradations caused by jitter and loss, we 
define the problem space to explore in this paper as 
follows. 

 Utilizing the link layer optimization technique, 
established standardization, we will evaluate the 
contribution of Eifel for W-CDMA network against jitter. 
The result will have substantial impact for network 

operation because as discussed in 2.2, if all of TCP 
implementation could have a way of STO avoidance 
mechanism, the network can be optimized more on link 
efficiency. We set our simulation environment as 
recreating for both unoptimized network operation and 
users in low quality coverage.  
 

Based on the survey from prior arts, we evaluate and 
improve the Fast Timeout algorithm with loss 
retransmission mechanism for strengthen in loss recovery. 
Lost recovery is just a one reason for RTO in Internet

6)
, it 

takes 5% of all RTO occasions. It can be interpreted that 
the percentage expected when users access Internet via 
good connection quality of wireless link.  
 

 

Figure. 6 Throughput vs BLER (according to W-CDMA emulator) 
 

5. RTO on W-CDMA and Eifel evaluation  

We evaluated TCP time out behavior of a 
representative operating system (OS) using an emulator.  

5.1 Network assumptions  

Figure 4 shows the model of W-CDMA network. We 
assume the RTT of 300 ms in the wireless subnetwork, 
and distribute it equally between the up and down links; so 
that each link has 150 ms delay1.

 
The wired subnetwork is 

high speed and has a bandwidth of 10 Mbps; it has a 
processing delay of 100 ms, so the end-to-end RTT is 400 
ms in our scenario. The bandwidth of the down link is 384 
kbps while the uplink offers 64 kbps. The traffic is a 2 
Mbyte TCP stream transfer from the server to the terminal 
via the base station. While the W-CDMA specification 

                                                           
1 The latency is estimated from actual measurement 300 ms by 
separating equally for up/down link, since the main cause for 
short frame is processing delay. 
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permits a bandwidth allocation of up to 2 Mbps to each 
terminal, we use 384 kbps to better match the performance 
of existing commercial services. The wireless channel 
status is described as the loss rate per PDU, BLER (BLock 
Error Rate). We examine the PDU error rate in the range 
of 0 ~ 

 
10%. In this work, we assume an ideal function of 

physical layer channel coding mechanism, such as turbo 
coding that is actually implemented in WCDMA. As the 
result, the error model RLC layer handles is uniform 
random distribution. For continuous error that caused by 
long channel blockade in hard handover is not considered 
in the simulation, if otherwise noted.  

 

Fig. 7 Contribution of Eifel in Throughput vs BLER in Linux  

5.1.1 Emulation Environment  

We used a W-CDMA emulator that re-creates the 
behavior of wireless and wired networks, especially RLC 
in the link layer. The emulator reproduces the dynamic 
delay by actually executing RLC, and adds static delay to 
represent the wired network when forming the pseudo W-
CDMA network. Since it recreates the whole W-CDMA 
network, the emulator provides two Ethernet ports for 
connecting a terminal and a server. We can connect real 
PCs to the emulator to run real applications. For 
generating TCP traffic, we used ftp command/server.  

5.2 Evaluation of retransmission time out 
characteristics in different TCP implementations  

We investigated the difference among three TCP 
implementations and selected one for studying the time 
out behavior in more detail. That is, we found the TCP 
implementation that allowed jitter to trigger the greatest 
number of TCP RTO events.  

The behavior of TCP time out depends on how the 
function is implemented in the OSs. Most commercial OSs 
do not disclose details of their time out algorithm, so 
hardware tests are needed to study real OS behavior. 
Accordingly, we investigated the TCP time out behavior 

against delay-jitter using a WCDMA emulator with the 
same mechanisms as the software simulator.  

We selected Linux-2.2, FreeBSD2.2.8, Solaris8 and 
Windows XP (SP2) as the sender hosts, since they are 
often used in Internet servers. We used FreeBSD2.2.8 as 
the receiver host. In this experiment, we made the link 
persistence high, to intentionally make jitter large; packet 
loss was prevented by setting MAX DAT to 10. FreeBSD 
is the only OS that does not implement SACK, but the 
absence of SACK is not the issue. This is because the 
possibility of IP packet loss is negligibly small due to the 
large MAX DAT value; the possibility of SACK being 
activated was virtually none.  

To select the OS that was most aggressive in terms of 
triggering retransmission by jitter, we counted the number 
of TCP RTO events by setting TSP to 500 ms. which is 
larger than RTT, to increase the possibility of jitter. FTP 
was used to transfer 1 Mbyte for generating a bulk TCP 
flow; the sender and receiver OSs used 64 Kbyte buffers. 
We counted the number of RTO events for each OS 
during 10 FTP transfers at 4 BLER values; the results are 
plotted in Table 5. Linux2.2 exhibits RTO events at all 
BLER values examined. This is also true for Solaris but 
the number of events is fewer. FreeBSD prevents any 
RTO event, except at the BLER value of 10%.  

Table 5 shows that Windows XP and FreeBSD are 
resilient against jitter. Linux2.4 changed RTO 
implementation to conform BSD algorithm that leads its 
behavior more conservative as BSD does. In addition to 
that, the retransmission timers have different settings. 
FreeBSD has larger minimum value than Linux2.21, which 
makes it less aggressive than Linux. Ludwig

15) 
pointed out 

that BSD’s retransmission timer is restarted by the arrival 
of a new acknowledgment, not the transmission of the 
original segment, so the timer is offset by roughly one 
RTT, which makes BSD less aggressive with regard to the 
RTO trigger. For Windows XP, The RTO outcome is 
similar to the FreeBSD as in our investigation that 
suggests it implements BSD behavior

18)
. Figure 6 shows 

TCP throughput under the same conditions as described 
above. The results show that the throughput is decreased 
by the RTO events, especially in Linux2.2. Comparing the 
difference between FreeBSD2.2.8 and 4.5 is small due to 
the fact that the incidents of RTO itself are small.  

The implementation of Eifel in Linux makes 
difference. The number of incidents of RTO is almost the 
same as in Table 5 regardless of Eifel; however the Figure 
7 shows that the Eifel improved the throughput by around 
25 kbps at BLER 10% sample. The closer look of the 
traces we take from the experiment, all of RTO is detected 

                                                           
1 For minimum RTO, Linux2.2 is200ms and FreeBSD2.2.8 is 1s. 
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and responded by Eifel to cancel the congestion avoidance 
behavior. 

6. Loss retransmission algorithm combined 
with fast timeout  

6.1 Proposed Algorithm  

In the case of a retransmission timeout, the sender is 
not well handled in a conventional TCP using the loss 
retransmission algorithm, because it can only receive a 
limited number of the duplicate ACKs in response to the 
outstanding segments. Thus, the loss of the retransmitted 
segment raised by the retransmission timeout leads to 
exponential back off with the smallest values of cwnd and 
ssthresh. As a result, the sender needs additional time to 
recover the congestion window size, which leads to severe 
throughput degradation.  

To avoid the above worst case, the fast timeout 
algorithm

20) 
enables the retransmitted segment loss to be 

confirmed using the number of outstanding segments and 
duplicate ACKs.  

If the number of duplicate ACKs, dupacks, equals the 
number of outstanding segments when loss recovery 
started, FlightSize, plus DupThresh, the sender retransmits 
the first unacknowledged segment immediately. It clearly 
shows that the duplicate ACKs represent not only the 
response of the original segment, but also the response of 
the next transmitted segment by the fast recovery 
algorithm. Note that DupThresh in step (7) is a 
conservative response to out-of-order segments. After that, 
the sender just waits for an acceptable ACK while sending 
the next new segment in response to the duplicate ACK. 
As a result, the sender can avoid the exponential backoff 
caused by failure to identify retransmitted segment loss, 
and increases the probability of segment retransmission 
without entering costly retransmission timeout.  
!

Step (1) RTO timer expires:
Store SND.HIGH(highest sequence number),

FlightSize (the number of outstanding
segments),

cwnd_prev cwnd, and
ssthresh_prev ssthresh

Retransmit the 1 st unacknowledged segment

Step (2) Wait for the arrival of either an acceptable
or a duplicate ACK:
Update the variable dupacks and proceed to step
(3)

Step (3) If an acceptable ACK has arrived
then proceed to step (DONE),

else if dupacks < DupThresh
then return to step (2),

else (dupacks equals DupThresh)
proceed to step (4).

Step (4) Resume transmission from the top
Suppress the fast retransmit, and set

SND.NXT SND.MAX

Step (5) Make the RTT estimation more conservative:
Set

SRT T 2 � SRT T,
recalculate the RTO, and restart retransmission
timer.

Step (6) Leave slow start and move to fast recovery
algorithm:
Set the parameters as follows:
ssthresh max( cwnd_prev/ 2, 2 � SMSS )
cwnd ssthresh + SMSS � DupThresh

dupacks == FlightSize + DupThresh

else waits for acceptable ACK while sending the
next

new segment in response to duplicate ACK.
Step (DONE) Leave the loss retransmission and fast

timeout algorithms !

Figure 8 shows the proposed loss retransmission algorithm in 

collaboration with the fast timeout algorithm
16)

. 

 

Figure 9 The loss retransmission algorithm with SACK option 
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7. Performance evaluation  

The proposed loss retransmission algorithm may not 
work well in all cases of lost outstanding segments or 
acknowledgments. In these case, the sender will retransmit 
the first unacknowledged segment later than the desired 
timing. In order to avoid this situation, the proposed 
algorithm can use the SACK option. If SACK is available, 
the sender can use the correct timing from internal state, 
without resorting to any heuristics.  
 

 

Figure 10 Simulation model 

sequence number

time

SND.HIGH

SND. UNA

 

Figure 11 2nd RTO segment retransmission using SACK option 

Figure 9 shows the proposed loss retransmission 
algorithm with SACK option. The difference from the 
previous basic loss retransmission algorithm is only the 
evaluation performed in step (7). If the right edge in a 
SACK block advances the value SND.HIGH, the sender 
retransmits the first unacknowledged segment immediately. 
After that, the sender waits for an acceptable ACK while 
sending the next new segment in response to a duplicate 
ACK.  

Figure 11 illustrates the relationship between the 
SND.HIGH and the right edge in a SACK block in a 
sender-side time-sequence graph. Symbols “R” and “S” 
show the retransmitted segment and the SACK block in 
duplicate ACK, respectively. In Fig. 11, the beginning of 
the six outstanding segments is lost, and the retransmitted 
segment raised by RTO is lost again. Next, the duplicate 
ACK with the SACK block arrives at the sender. The right 

edge in the SACK block advances the value SND.HIGH, 
when the sender receives the 6th duplicate ACK. The 
sender then retransmits the first unacknowledged segment 
immediately. In this case, there is no outstanding segment 
or acknowledgment loss, so that the sender using the 
SACK enhanced algorithm retransmits the first 
unacknowledged segment using the same timing as the 
basic loss retransmission algorithm.  

We examined both the time-sequence and the sender 
state variables in the face of duplicate ACKs arrival 
following a timeout and retransmitted segment loss.  
 

Retransmitted segment 
by RTO exponential backoff

by timeout
Retransmitted segment

Fast recovery by fast timeout 

Retransmitted segment 
by RTO exponential backoff

Retransmitted segment by timeout

Fast recovery by fast timeout 

 

Figure 12 The TCP’s time-sequence and sender state variables for the fast 
timeout algorithm 

7.1 Simulation model  

We implemented the fast timeout and proposed loss 
retransmission algorithms on the ns2 simulator (ns-2.26) 
developed by the VINT project

12)
. Figure 10 shows the 

topology used in our experiments. The sender is connected 
to the BS via a 10 Mbps wired link with 50 ms delay, and 
the receiver is connected to the BS via a 384 kbps wireless 
link with 500 ms delay. The TCP segments are transmitted 
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from the sender to the receiver. The BS has enough queue 
depth and does not drop any original outstanding segments.  
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Figure 13 The TCP’s time-sequence and sender state variables for the 
proposed algorithms 

 

Figure 14 Throughput comparison between the fast timeout and the 
proposed algorithm 

Fast recovery by fast timeout 

Retransmitted segment by timeout

Retransmitted segment
by loss retransmission

 

Figure 15 The proposed TCP’s time-sequence graph (SACK) 

7.2 Evaluation for the proposed loss retransmission 
algorithm 

Figure 12 shows the conventional TCP’s time-
sequence graph and sender state valuables for the fast 
timeout algorithm. In Fig. 12 (a), the sender faced the 
retransmitted segment that caused by the RTO at 9:00:10.7. 
The conventional TCP has no function that can handle the 
arrival of the duplicate ACKs after a timeout without the 
next segment transmission using the fast timeout algorithm 
until the 2nd RTO. Accordingly, it has to wait a long time, 
from 9:00:10.7 to 9:00:15.4, following the exponential 
backoff algorithm. According to RFC2581, the ssthresh is 
set as  

ssthresh ← max(cwnd/2, 2)  

= 2,  

so the sender enters the congestion avoidance phase 
directly when the sender receives the acceptable ACK at 
9:00:16.6. Figure 12 (b) shows the sender state variables, 
cwnd and ssthresh. The ssthresh is set to 2 at 9:00:15.4, 
the sender transmits a limited number of segments after 
that. As a result, the sender also degrades the throughput.  

In contrast, Fig. 13 shows the time-sequence graph 
and sender state valuables for the proposed algorithms. It 
is shown that the sender detects the retransmitted segment 
loss by examining the 25th duplicate ACK at 9:00:14.7, 
and it retransmits the unacknowledged segment 
immediately. Next, the sender waits for an acceptable 
ACK while sending the next new segment in response to 
the duplicate ACK. Thus, the sender switches from the 
fast timeout algorithm to congestion avoidance and 
transmits a series of segments. In this case, the sender 
holds one half of the previous cwnd value at 9:00:16.6, see 
in Fig. 13 (b). This allows it to achieve better throughput 
than conventional TCP.  
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Figure 14 shows relationship between data size and 
throughput among the fast timeout and the proposed 
algorithms, and it contains the scenario in Figs. 12, and 13. 
The throughput is obtained by doing division of the 
amount of data shown in the x-axis in transmission time 
included in the slow start and the loss retransmission 
periods. In Fig. 14, the fast timeout algorithm needs 
excessive data size to recovery the throughput. Then, it 
spends much time for sending data rather than the others 
after the loss retransmission. In contrast, the throughput of 
the proposed algorithms is superior to the fast timeout 
algorithm. The proposed algorithm overcomes Fast 
timeout at most around 33 kbps of improvement in 
throughput for single set of recovery in our simulation 
settings. Moreover, the proposed algorithm achieves the 
performance equivalent to the proposed algorithm can 
with SACK option without any additional overhead and 
receiver modification in this case.  

Figure 15 shows the time-sequence graph for the 
proposed loss retransmission algorithm with SACK option 
under the multiple segment loss; the retransmitted segment 
is also lost at 9:00:10.7. It is shown that the proposed 
algorithm can retransmit the unacknowledged segment 
since the right edge of the SACK block in the sender 
advances the value SND.HIGH at 9:00:14.5. Moreover, 
the sender retransmits it at the correct timing even if some 
outstanding segments are lost. As a result, a sender using 
the proposed algorithms holds one half of the previous 
cwnd value and so avoids unnecessary throughput 
degradation.  

8. Conclusion  

The coexistence of ARQ and TCP can lead to 
inefficient interaction. We are facing two major cause of 
performance degradation in TCP traffic; jitter and loss.  

For mitigating the degradations caused by jitter, we 
recommend the use of STO avoidance mechanism, Eifel in 
two ways. First, it is established as Internet standard. 
Second, our evaluation using actual TCP implementation 
on FreeBSD, Linux, and Solaris showed clear 
improvements on throughput. The result will have 
substantially impact for network operation because if all of 
TCP implementation could have a way of STO avoidance 
mechanism, the network can be optimized more on link 
efficiency. Eifel improved the throughput by around 25 
kbps at BLER 10% sample, even with unoptimized link 
parameters.  

For mitigating the degradations caused by segment 
loss, we proposed an improvement for the loss 
retransmission algorithm for duplicate ACK arrival 
following a timeout. The proposed algorithm allows 
careful retransmission against failure to identify the first 

unacknowledged segment loss. Simulation results yield the 
following conclusion:  

A sender using the proposed algorithms can 
overcome the loss of a re transmitted segment due to RTO. 

A sender using the proposed algorithms holds one 
half of the previous cwnd value and so avoids unnecessary 
throughput degradation even if duplicate ACKs arrive 
following a timeout and the retransmitted segment is lost. 

The proposed algorithm overcomes Fast timeout at 
most around 33 kbps of improvement in throughput for 
single set of recovery in our simulation settings.  
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