
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

104

Manuscript received January 5, 2009

Manuscript revised January 20, 2009

Mitigations in TCP Performance for
Jitter and Loss in W-CDMA Networks

Hiroshi Inamura,†‡ Motoharu Miyake† and Kenichi Okada‡

† DoCoMo Communication Laboratories, USA Inc.
‡ Department of Information and Computer, Keio University

Summary
We are facing two major cause of performance
degradation in TCP traffic over wireless network such as
W-CDMA that utilizing link ARQ mechanisms; jitter and
loss in streams of segments. For mitigating the
degradations, we explored and achieved as follows; 1)
Leveraging the link layer optimizations techniques and
established standardization, we evaluated the contribution
of Eifel for WCDMA network against jitter. As a result,
we can recommend the use of STO avoidance mechanism,
such as Eifel. Eifel improved the throughput by around 25
kbps at BLER 10% sample, even with unoptimized link
parameters. This result will have substantially impact for
network operation because if we could assume the
presence of STO avoidance mechanism, the network can
be optimized more toward link efficiency on the trade-off
curve. 2) We proposed an improvement for the Fast
Timeout algorithm with loss retransmission mechanism for
strengthen in loss recovery. Simulation results yield the
following; a sender using the proposed algorithms holds
one half of the previous cwnd value and so avoids
unnecessary throughput degradation even if duplicate
ACKs arrive following a timeout and the retransmitted
segment is lost. The proposed algorithm overcomes Fast
timeout at most around 33 kbps of improvement in
throughput for single set of recovery in our simulation
settings.
Key words:
TCP, Wireless, 3G, W-CDMA

1. Introduction

TCP is the glue for the Internet. Tremendous numbers of
applications are built upon it. The deployment of 2.5G/3G
cellular technologies brought the popularity of TCP based
wireless services8). The quality of transmission in the
wireless networks that incur bit error can be improved
with link layer retransmission. Using TCP on top of the
link-layer error recovery can increase end-to-end
performance. Therefore link-layer and end-to-end

recovery can coexist; this can lead to inefficient
interaction between the two layers of ARQ (Automatic
Repeat reQuest) protocols

4),13),14)
.

The ARQ mechanism can provide the packet service
that offers a negligibly small probability of undetected

error due to the use of RLC frame retransmission.
1)

However, the diverse interval between arrivals of packets
caused by error recovery can lead to an unexpected
increase in round trip time (RTT). In this event, the TCP
sender experiences a retransmission timeout (RTO)
because it has no information about the wireless
conditions. We call the diverse interval as jitter.

Several algorithms have been proposed to avoid
costly retransmission time-outs. The Eifel algorithm

21)

provide spurious timeout (STO) detection
17)

. STO occurs
due to the retransmission ambiguity problem; the sender
experiences unnecessary go-back-N retransmission and
throughput degradation caused by false congestion
control

22)
.

In a case of failure of link layer transmission, ARQ
gives up the retransmission attempt which leads to the loss
of a TCP segment

1)
. Thus, the first unacknowledged

segment is discarded, and the receiver acknowledges a
series of the next arrived segments as duplicate ACKs.
Moreover, handovers in mobile communications can cause
the arrival of duplicate ACKs after a timeout

3)
. As a result,

these STO detection algorithms, such as the Eifel, only
work as conventional TCP

7)
.

We are facing two major cause of performance
degradation in TCP traffic; jitter and loss in streams of
segments. For mitigating the degradations caused by jitter
and loss, we define the problem space to explore in this
paper as follows; 1) Utilizing our experience for link layer
optimizations and established standardization, we will
evaluate the contribution of Eifel for W-CDMA network
against jitter. The result will have substantial impact for
network operation. 2) We evaluate and propose an

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

105

improvement for the Fast Timeout algorithm with loss
retransmission mechanism for strengthen in loss recovery.

The rest of this paper is organized as follows: Section
2 overviews W-CDMA link ARQ mechanisms. Section 3
surveys related topics and explains important prior arts
including Eifel, Fast Timeout and Loss Retransmission.
Section 4 defines our approach. Section 5, we evaluates
Eifel on W-CDMA network emulator, Section 6 discusses
our proposed improvements for Fast Timeout algorithms
and its evaluation. Finally, Section 8 provides a summary.

SN=1 P=0
SN=2 P=0
SN=3 P=0
SN=4 P=0
SN=5 P=0 status(loss:2,3ack:1)
SN=6 P=0
SN=2 P=1

SN=8 P=0
SN=9 P=0

SN=3 P=0
SN=7 P=0 status(loss:3ack:2)

Sender Receiver

Legend
Left: SN and P is in the header of a PDU

SN: Sequence Number, P: the status of Poll bit
Right: Status(loss:X, ack Y) means the contents of STATUS PDU

X is the SN of lost PDU (it can list multiple PDUs),
Y is the SN acknowledged accumulatively

The STATUS PDU
generated by Poll bit

The STATUS PDU
generated by a gap in
received sequence

Fig. 1 Retransmission in RLC

2. The Case for Jitter and Loss

We briefly describe how the ARQ causes jitter and
loss in the stream of packet9) as a background. First we
introduce the L2 ARQ in W-CDMA network, and then
discuss the cause of jitter in terms of link utilization and
loss of packet in link persistence. Also we will introduce a
couple of parameter in link ARQ, namely Timer Status
Prohibit and MAX DAT.

2.1 L2 ARQ in W-CDMA network

W-CDMA
10)

, an IMT2000 standard, was developed
by 3GPP (3rd Generation Partnership Project)

✍
.

W-CDMA system controls transmission error by link
layer ARQ. RLC is used as the ARQ protocol in W-
CDMA. The RLC protocol works between handset
terminal and RNC (Radio Network Controller), an
intermediate level node in core network in 3GPP
architecture.

When RLC receives an IP packet from the upper
layer, the packet is segmented into PDUs (Protocol Data
Units), each of which has a 2 octet header and 40 octet
payload. The PDU is the unit of acknowledgment and

retransmission in RLC. RLC is categorized as ARQ with
Selective Repeat. Its retransmission mechanism uses
Polling control and Status Report PDU. The protocol
interaction of RLC sender/receiver is depicted in Figure 1.
The sender can force status reporting (i.e. the return of
status PDU from receiver) by setting P(oll) bit in each
PDU header. The receiver sends status PDU in the
following two conditions:
(1) The receiver finds a gap in the sequence number

of received PDUs which means the detection of
PDU loss. If PDU(s) are lost, the receiver will see
a gap in the numbers (say 1 2 3 5, if 4 is lost).

(2) The received PDU holds the P bit.

Sender controls retransmissions according to the received
STATUS PDUs.

The benefits of RLC retransmission comparing only
relying to the end-to-end reliability offered by TCP, is two
fold. 1) The small PDU size (42 octets) used in RLC
makes retransmission more efficient. 2) The response time
against feedback from the receiver is smaller than is
possible with TCP’s end-to-end feedback, since only the
wireless subnetwork is involved.

2.2 The trade-off between jitter suppression and link
utilization

The delay in packet arrival depends on the number of
PDU retransmissions. If the jitter increases rapidly, TCP
interprets it as packet loss and triggers time out spuriously.
To avoid this retransmission, we have to suppress the jitter.

For suppressing the delay-jitter in the link layer of
W-CDMA, we have to set the RLC parameters
appropriately, including Timer Status Prohibit (TSP). TSP
defines the delay imposed on the receiver before it can
issue a STATUS PDU. For example, if this value is set to
0, a STATUS PDU is immediately generated and issued if
PDU loss is detected. Setting TSP to larger than 0 makes it
possible for a single STATUS PDU to cover multiple
losses. If TSP is too large, PDU flow stops due to a lack of
acknowledgments and jitter increases.

The trade-off between the suppression of jitter and
link layer utilization impacts the optimal TCP throughput.
When TSP is small, many STATUS PDUs are generated
and loss notification is quick, while the STATUS PDUs
themselves and multiple retransmissions of the same PDU
decrease the effective link bandwidth, vice versa. A large
TSP causes deferred notification of loss which increases
the retransmission interval and results in large jitter, which
degrades RTO and TCP throughput.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

106

Figure. 2 Throughput versus Timer Status Prohibit (using Opnet
simulation)

Figure. 3 Throughput and Down link segment loss rate vs MAX DAT
(using Opnet simulation)

Figure 2 shows TCP throughput versus TSP 1 . As
discussed above, small TSP causes low link utilization
which degrades throughput falls (see the left side of Figure
2). The throughput degradation seen on the right side of
Figure 2 is caused by the spurious timeouts triggered by
the delay-jitter. So if all of TCP implementations have a
way of STO avoidance mechanism, the optimum point
will be shifted toward the right side that provides larger
link efficiency.

2.3 Link Persistence and Segment Loss

Persistence in link layer retransmission involves a
trade-off between IP packet loss and the efficiency of link
utilization. We define persistence as the maximum number
of PDU retransmission attempts allowed by the RLC
operation; the MAX DAT parameter defines the maximum
number of retransmission attempts for a single PDU.

1 Using original simulator implemented RLC on OPNET
with BSD RTO emulation

To show the relation between persistence and TCP
throughput, Figure 3 plots TCP throughput versus MAX
DAT, the parameter that defines the maximum number of
retransmission attempts for each PDU. From the result
shown in Figure 3, we found that MAX DAT should be at
least 5 to achieve BLER (BLock Error Rate) 0 =

10% in

the simulated network.

3. Related Works

3.1 Suppressing Spurious Timeout

Several algorithms have been proposed to avoid the
effects of costly retransmission timeout

21)19)
. The Eifel

algorithm
21)

with the TCP time stamp option can identify if
the acknowledgment is in response to the original segment
or the retransmitted segment. The time stamp option is
standardized as RFC1323 and is implemented in most
operating systems. Only the sender need implement the
Eifel algorithm. If a sender running the Eifel algorithm
detects Spurious Time-out (STO), it reverts to the cwnd
and the ssthresh to avoid unnecessary retransmission and
throughput degradation. Moreover, it can adjust
parameters for setting the RTO, to prevent more RTO
events. Eifel is already standardized but needs real world
evaluation.

Gurtov
2)

discusses link layer characteristics of GSM
and GPRS including long sudden delays. It focuses on link
level retransmission and resource management. It also
suggests applicability of Eifel; however it lacks key
insights such as trade-off between link utilization and
transport layer performance.

M-TCP
5)

discusses and achieves performance
improvements for problem such as high bit error rate and
long disconnection cased by wireless link characteristics.
Still, comparing server side approach such as Eifel, its
split-connection approach requires extra complexity in
either mobile host or base station when to apply to cellular
system that is limiting factor for its wider acceptance.

3.2 Coping with segment loss and RTO caused
by ARQ

All of the above STO detection algorithms provide
only conventional TCP responses (i.e. keep the slow start
phase and transmit nothing until an acceptable ACK
arrives)

7)11)
. To extend the conventional TCP function so

that it can handle timeout, the fast timeout algorithm
20)

uses the duplicate ACKs raised after a timeout as implicit
segment loss information. It allows the sender to directly

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

107

switch from the slow start algorithm to the fast recovery
algorithm. It then transmits new segments allowed by the
value of new congestion window upon the arrival of the
duplicate ACKs, even if the sender times out. However, it
has no function to detect an oversight of a loss of first
unacknowledged segment which was retransmitted by a
timeout.

In order to strengthen TCP against segment loss, Lin
and Kung originally proposed a loss retransmission
algorithm using TCP’s ACK-clock

6)
. It retransmits the first

unacknowledged segment if the number of duplicate
ACKs under the fast retransmit/recovery phase reaches the
number of outstanding segments plus DupThresh.
Originally it is invented for enhancement only for Reno
and lacks insights for applying other TCP enhancement
mechanisms.

Figure. 4 Simulated Network

BLER 1% 2% 5% 10%

FreeBSD2.2.8
FreeBSD4.5
Linux2.4+Eifel
Linux2.4-Eifel
Solaris8
Linux2.2
Windows XP(SP2)

0
0
0
0
5
7
0

0
0
1
0
2
6
0

0
1
0
1
6
6
0

1
1
3
3
8
6
0

Figure. 5 The number of incidents of RTO vs BLER (using W-CDMA
emulator)

4. Approach: Mitigations in TCP
Performance for Jitter and Loss

As we introduced the W-CDMA link mechanisms
and its characteristics, we are facing two major cause of
performance degradation in TCP traffic; jitter and loss. For
mitigating the degradations caused by jitter and loss, we
define the problem space to explore in this paper as
follows.

 Utilizing the link layer optimization technique,
established standardization, we will evaluate the
contribution of Eifel for W-CDMA network against jitter.
The result will have substantial impact for network

operation because as discussed in 2.2, if all of TCP
implementation could have a way of STO avoidance
mechanism, the network can be optimized more on link
efficiency. We set our simulation environment as
recreating for both unoptimized network operation and
users in low quality coverage.

Based on the survey from prior arts, we evaluate and
improve the Fast Timeout algorithm with loss
retransmission mechanism for strengthen in loss recovery.
Lost recovery is just a one reason for RTO in Internet

6)
, it

takes 5% of all RTO occasions. It can be interpreted that
the percentage expected when users access Internet via
good connection quality of wireless link.

Figure. 6 Throughput vs BLER (according to W-CDMA emulator)

5. RTO on W-CDMA and Eifel evaluation

We evaluated TCP time out behavior of a
representative operating system (OS) using an emulator.

5.1 Network assumptions

Figure 4 shows the model of W-CDMA network. We
assume the RTT of 300 ms in the wireless subnetwork,
and distribute it equally between the up and down links; so
that each link has 150 ms delay1.

The wired subnetwork is

high speed and has a bandwidth of 10 Mbps; it has a
processing delay of 100 ms, so the end-to-end RTT is 400
ms in our scenario. The bandwidth of the down link is 384
kbps while the uplink offers 64 kbps. The traffic is a 2
Mbyte TCP stream transfer from the server to the terminal
via the base station. While the W-CDMA specification

1 The latency is estimated from actual measurement 300 ms by
separating equally for up/down link, since the main cause for
short frame is processing delay.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

108

permits a bandwidth allocation of up to 2 Mbps to each
terminal, we use 384 kbps to better match the performance
of existing commercial services. The wireless channel
status is described as the loss rate per PDU, BLER (BLock
Error Rate). We examine the PDU error rate in the range
of 0 ~

10%. In this work, we assume an ideal function of

physical layer channel coding mechanism, such as turbo
coding that is actually implemented in WCDMA. As the
result, the error model RLC layer handles is uniform
random distribution. For continuous error that caused by
long channel blockade in hard handover is not considered
in the simulation, if otherwise noted.

Fig. 7 Contribution of Eifel in Throughput vs BLER in Linux

5.1.1 Emulation Environment

We used a W-CDMA emulator that re-creates the
behavior of wireless and wired networks, especially RLC
in the link layer. The emulator reproduces the dynamic
delay by actually executing RLC, and adds static delay to
represent the wired network when forming the pseudo W-
CDMA network. Since it recreates the whole W-CDMA
network, the emulator provides two Ethernet ports for
connecting a terminal and a server. We can connect real
PCs to the emulator to run real applications. For
generating TCP traffic, we used ftp command/server.

5.2 Evaluation of retransmission time out
characteristics in different TCP implementations

We investigated the difference among three TCP
implementations and selected one for studying the time
out behavior in more detail. That is, we found the TCP
implementation that allowed jitter to trigger the greatest
number of TCP RTO events.

The behavior of TCP time out depends on how the
function is implemented in the OSs. Most commercial OSs
do not disclose details of their time out algorithm, so
hardware tests are needed to study real OS behavior.
Accordingly, we investigated the TCP time out behavior

against delay-jitter using a WCDMA emulator with the
same mechanisms as the software simulator.

We selected Linux-2.2, FreeBSD2.2.8, Solaris8 and
Windows XP (SP2) as the sender hosts, since they are
often used in Internet servers. We used FreeBSD2.2.8 as
the receiver host. In this experiment, we made the link
persistence high, to intentionally make jitter large; packet
loss was prevented by setting MAX DAT to 10. FreeBSD
is the only OS that does not implement SACK, but the
absence of SACK is not the issue. This is because the
possibility of IP packet loss is negligibly small due to the
large MAX DAT value; the possibility of SACK being
activated was virtually none.

To select the OS that was most aggressive in terms of
triggering retransmission by jitter, we counted the number
of TCP RTO events by setting TSP to 500 ms. which is
larger than RTT, to increase the possibility of jitter. FTP
was used to transfer 1 Mbyte for generating a bulk TCP
flow; the sender and receiver OSs used 64 Kbyte buffers.
We counted the number of RTO events for each OS
during 10 FTP transfers at 4 BLER values; the results are
plotted in Table 5. Linux2.2 exhibits RTO events at all
BLER values examined. This is also true for Solaris but
the number of events is fewer. FreeBSD prevents any
RTO event, except at the BLER value of 10%.

Table 5 shows that Windows XP and FreeBSD are
resilient against jitter. Linux2.4 changed RTO
implementation to conform BSD algorithm that leads its
behavior more conservative as BSD does. In addition to
that, the retransmission timers have different settings.
FreeBSD has larger minimum value than Linux2.21, which
makes it less aggressive than Linux. Ludwig

15)
pointed out

that BSD’s retransmission timer is restarted by the arrival
of a new acknowledgment, not the transmission of the
original segment, so the timer is offset by roughly one
RTT, which makes BSD less aggressive with regard to the
RTO trigger. For Windows XP, The RTO outcome is
similar to the FreeBSD as in our investigation that
suggests it implements BSD behavior

18)
. Figure 6 shows

TCP throughput under the same conditions as described
above. The results show that the throughput is decreased
by the RTO events, especially in Linux2.2. Comparing the
difference between FreeBSD2.2.8 and 4.5 is small due to
the fact that the incidents of RTO itself are small.

The implementation of Eifel in Linux makes
difference. The number of incidents of RTO is almost the
same as in Table 5 regardless of Eifel; however the Figure
7 shows that the Eifel improved the throughput by around
25 kbps at BLER 10% sample. The closer look of the
traces we take from the experiment, all of RTO is detected

1 For minimum RTO, Linux2.2 is200ms and FreeBSD2.2.8 is 1s.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

109

and responded by Eifel to cancel the congestion avoidance
behavior.

6. Loss retransmission algorithm combined
with fast timeout

6.1 Proposed Algorithm

In the case of a retransmission timeout, the sender is
not well handled in a conventional TCP using the loss
retransmission algorithm, because it can only receive a
limited number of the duplicate ACKs in response to the
outstanding segments. Thus, the loss of the retransmitted
segment raised by the retransmission timeout leads to
exponential back off with the smallest values of cwnd and
ssthresh. As a result, the sender needs additional time to
recover the congestion window size, which leads to severe
throughput degradation.

To avoid the above worst case, the fast timeout
algorithm

20)
enables the retransmitted segment loss to be

confirmed using the number of outstanding segments and
duplicate ACKs.

If the number of duplicate ACKs, dupacks, equals the
number of outstanding segments when loss recovery
started, FlightSize, plus DupThresh, the sender retransmits
the first unacknowledged segment immediately. It clearly
shows that the duplicate ACKs represent not only the
response of the original segment, but also the response of
the next transmitted segment by the fast recovery
algorithm. Note that DupThresh in step (7) is a
conservative response to out-of-order segments. After that,
the sender just waits for an acceptable ACK while sending
the next new segment in response to the duplicate ACK.
As a result, the sender can avoid the exponential backoff
caused by failure to identify retransmitted segment loss,
and increases the probability of segment retransmission
without entering costly retransmission timeout.
!

Step (1) RTO timer expires:
Store SND.HIGH(highest sequence number),

FlightSize (the number of outstanding
segments),

cwnd_prev cwnd, and
ssthresh_prev ssthresh

Retransmit the 1 st unacknowledged segment

Step (2) Wait for the arrival of either an acceptable
or a duplicate ACK:
Update the variable dupacks and proceed to step
(3)

Step (3) If an acceptable ACK has arrived
then proceed to step (DONE),

else if dupacks < DupThresh
then return to step (2),

else (dupacks equals DupThresh)
proceed to step (4).

Step (4) Resume transmission from the top
Suppress the fast retransmit, and set

SND.NXT SND.MAX

Step (5) Make the RTT estimation more conservative:
Set

SRT T 2 � SRT T,
recalculate the RTO, and restart retransmission
timer.

Step (6) Leave slow start and move to fast recovery
algorithm:
Set the parameters as follows:
ssthresh max(cwnd_prev/ 2, 2 � SMSS)
cwnd ssthresh + SMSS � DupThresh

dupacks == FlightSize + DupThresh

else waits for acceptable ACK while sending the
next

new segment in response to duplicate ACK.
Step (DONE) Leave the loss retransmission and fast

timeout algorithms !

Figure 8 shows the proposed loss retransmission algorithm in

collaboration with the fast timeout algorithm
16)

.

Figure 9 The loss retransmission algorithm with SACK option

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

110

7. Performance evaluation

The proposed loss retransmission algorithm may not
work well in all cases of lost outstanding segments or
acknowledgments. In these case, the sender will retransmit
the first unacknowledged segment later than the desired
timing. In order to avoid this situation, the proposed
algorithm can use the SACK option. If SACK is available,
the sender can use the correct timing from internal state,
without resorting to any heuristics.

Figure 10 Simulation model

sequence number

time

SND.HIGH

SND. UNA

Figure 11 2nd RTO segment retransmission using SACK option

Figure 9 shows the proposed loss retransmission
algorithm with SACK option. The difference from the
previous basic loss retransmission algorithm is only the
evaluation performed in step (7). If the right edge in a
SACK block advances the value SND.HIGH, the sender
retransmits the first unacknowledged segment immediately.
After that, the sender waits for an acceptable ACK while
sending the next new segment in response to a duplicate
ACK.

Figure 11 illustrates the relationship between the
SND.HIGH and the right edge in a SACK block in a
sender-side time-sequence graph. Symbols “R” and “S”
show the retransmitted segment and the SACK block in
duplicate ACK, respectively. In Fig. 11, the beginning of
the six outstanding segments is lost, and the retransmitted
segment raised by RTO is lost again. Next, the duplicate
ACK with the SACK block arrives at the sender. The right

edge in the SACK block advances the value SND.HIGH,
when the sender receives the 6th duplicate ACK. The
sender then retransmits the first unacknowledged segment
immediately. In this case, there is no outstanding segment
or acknowledgment loss, so that the sender using the
SACK enhanced algorithm retransmits the first
unacknowledged segment using the same timing as the
basic loss retransmission algorithm.

We examined both the time-sequence and the sender
state variables in the face of duplicate ACKs arrival
following a timeout and retransmitted segment loss.

Retransmitted segment
by RTO exponential backoff

by timeout
Retransmitted segment

Fast recovery by fast timeout

Retransmitted segment
by RTO exponential backoff

Retransmitted segment by timeout

Fast recovery by fast timeout

Figure 12 The TCP’s time-sequence and sender state variables for the fast
timeout algorithm

7.1 Simulation model

We implemented the fast timeout and proposed loss
retransmission algorithms on the ns2 simulator (ns-2.26)
developed by the VINT project

12)
. Figure 10 shows the

topology used in our experiments. The sender is connected
to the BS via a 10 Mbps wired link with 50 ms delay, and
the receiver is connected to the BS via a 384 kbps wireless
link with 500 ms delay. The TCP segments are transmitted

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

111

from the sender to the receiver. The BS has enough queue
depth and does not drop any original outstanding segments.

300000

200000

100000

0
09:00:3009:00:2009:00:10

sequence number

time

0.0.0.0:0_==>_0.0.0.3:0 (time sequence graph)

RR

160000

140000

120000

100000

80000

60000

09:00:2009:00:1509:00:10

sequence number

time

0.0.0.0:0_==>_0.0.0.3:0 (time sequence graph)

RR

Figure 13 The TCP’s time-sequence and sender state variables for the
proposed algorithms

Figure 14 Throughput comparison between the fast timeout and the
proposed algorithm

Fast recovery by fast timeout

Retransmitted segment by timeout

Retransmitted segment
by loss retransmission

Figure 15 The proposed TCP’s time-sequence graph (SACK)

7.2 Evaluation for the proposed loss retransmission
algorithm

Figure 12 shows the conventional TCP’s time-
sequence graph and sender state valuables for the fast
timeout algorithm. In Fig. 12 (a), the sender faced the
retransmitted segment that caused by the RTO at 9:00:10.7.
The conventional TCP has no function that can handle the
arrival of the duplicate ACKs after a timeout without the
next segment transmission using the fast timeout algorithm
until the 2nd RTO. Accordingly, it has to wait a long time,
from 9:00:10.7 to 9:00:15.4, following the exponential
backoff algorithm. According to RFC2581, the ssthresh is
set as

ssthresh ← max(cwnd/2, 2)

= 2,

so the sender enters the congestion avoidance phase
directly when the sender receives the acceptable ACK at
9:00:16.6. Figure 12 (b) shows the sender state variables,
cwnd and ssthresh. The ssthresh is set to 2 at 9:00:15.4,
the sender transmits a limited number of segments after
that. As a result, the sender also degrades the throughput.

In contrast, Fig. 13 shows the time-sequence graph
and sender state valuables for the proposed algorithms. It
is shown that the sender detects the retransmitted segment
loss by examining the 25th duplicate ACK at 9:00:14.7,
and it retransmits the unacknowledged segment
immediately. Next, the sender waits for an acceptable
ACK while sending the next new segment in response to
the duplicate ACK. Thus, the sender switches from the
fast timeout algorithm to congestion avoidance and
transmits a series of segments. In this case, the sender
holds one half of the previous cwnd value at 9:00:16.6, see
in Fig. 13 (b). This allows it to achieve better throughput
than conventional TCP.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

112

Figure 14 shows relationship between data size and
throughput among the fast timeout and the proposed
algorithms, and it contains the scenario in Figs. 12, and 13.
The throughput is obtained by doing division of the
amount of data shown in the x-axis in transmission time
included in the slow start and the loss retransmission
periods. In Fig. 14, the fast timeout algorithm needs
excessive data size to recovery the throughput. Then, it
spends much time for sending data rather than the others
after the loss retransmission. In contrast, the throughput of
the proposed algorithms is superior to the fast timeout
algorithm. The proposed algorithm overcomes Fast
timeout at most around 33 kbps of improvement in
throughput for single set of recovery in our simulation
settings. Moreover, the proposed algorithm achieves the
performance equivalent to the proposed algorithm can
with SACK option without any additional overhead and
receiver modification in this case.

Figure 15 shows the time-sequence graph for the
proposed loss retransmission algorithm with SACK option
under the multiple segment loss; the retransmitted segment
is also lost at 9:00:10.7. It is shown that the proposed
algorithm can retransmit the unacknowledged segment
since the right edge of the SACK block in the sender
advances the value SND.HIGH at 9:00:14.5. Moreover,
the sender retransmits it at the correct timing even if some
outstanding segments are lost. As a result, a sender using
the proposed algorithms holds one half of the previous
cwnd value and so avoids unnecessary throughput
degradation.

8. Conclusion

The coexistence of ARQ and TCP can lead to
inefficient interaction. We are facing two major cause of
performance degradation in TCP traffic; jitter and loss.

For mitigating the degradations caused by jitter, we
recommend the use of STO avoidance mechanism, Eifel in
two ways. First, it is established as Internet standard.
Second, our evaluation using actual TCP implementation
on FreeBSD, Linux, and Solaris showed clear
improvements on throughput. The result will have
substantially impact for network operation because if all of
TCP implementation could have a way of STO avoidance
mechanism, the network can be optimized more on link
efficiency. Eifel improved the throughput by around 25
kbps at BLER 10% sample, even with unoptimized link
parameters.

For mitigating the degradations caused by segment
loss, we proposed an improvement for the loss
retransmission algorithm for duplicate ACK arrival
following a timeout. The proposed algorithm allows
careful retransmission against failure to identify the first

unacknowledged segment loss. Simulation results yield the
following conclusion:

A sender using the proposed algorithms can
overcome the loss of a re transmitted segment due to RTO.

A sender using the proposed algorithms holds one
half of the previous cwnd value and so avoids unnecessary
throughput degradation even if duplicate ACKs arrive
following a timeout and the retransmitted segment is lost.

The proposed algorithm overcomes Fast timeout at
most around 33 kbps of improvement in throughput for
single set of recovery in our simulation settings.

Acknowledgment

The authors would like to thank Mr. Daikichi Osuga
for his advice and comments on this manuscript.

References

[1] 3GPP: 3G TS 25.322 v.3.5.0, RLC Protocol
Specification (2000).

[2] A. Gurtov: Effect of Delays on TCP Performance, In
Proceedings of IFIP Personal Wireless Conference
(2001).

[3] A. Gurtov, M. Passoja, O. Aalto, and M. Raitola:
Multilayer Protocol Tracing in a GPRS Network, In
Proceedings of the IEEE Vehicular Technology
Conference (VTC’02) (2002).

[4] Bai, Y., Ogielski, T. and Wu, G.: Interactions of TCP
and Radio Link! ARQ Protocol, VTC ’99 (1999).

[5] Brown, K. and Singh, S.: M-TCP:! TCP for Mobile
Cellular Networks, ACM Computer Communication
Review, Vol. 27, No. 5 (1997).

[6] D. Lin and H. T. Kung: TCP Fast Recovery Strategies:
Analysis and Improvements, In Proceedings of IEEE
INFOCOM 98 (1998).

[7] E. Blanton and M. Allman: Using TCP DSACKs and
SCTP Duplicate TSNs to Detect Spurious
Retransmissions, draft-blanton-dsack-use-02.txt
(2002).

[8] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, F.
Khafizov: TCP over Second (2.5G) and Third (3G)
Generation Wireless Networks, RFC3481 (2003).

[9] H. Inamura, T. Ishikawa, O. Takahashi, H. Nakano,
and H. Shigeno: Impact of Layer Two ARQ on TCP
Performance in W-CDMA Networks, Proceedings of
IEEE ICDCS, pp. 284–291 (2004).

[10] Harri Holma and Antti Toskala(eds.): WCDMA for
UMTS, Revised Ed., Wiley (2001).

[11] J.C.R. Bennett, C. Partridge, and N. Shectman:
Packet Reordering is Not Pathological Network
Behavior, IEEE/ACM Transactions on Networking,
Vol. 7, No. 6 (1999).

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

113

[12] K. Fall and K. Varadhan: ns Note and documentation,
The VINT Project (UC Berkeley, LBL, USC/ISI, and
Xerox PARC) (2003).

[13] Karn, P.: Advice for Internet Subnetwork Designers
(2003). internet draft, draft-ietf-pilc-link-design-13.txt.

[14] Khafizov, F. and Yavuz, M.: Running TCP over IS-
2000, International Conference of Communications,
IEEE (2002).

[15] Ludwig, R. and Sklower, K.: The Eifel
Retransmission Timer, Computer Communication
Review, Vol. 30, No. 3, pp. 17–27 (2000).

[16] M. Miyake: Responding to Duplicate ACKs after a
Timeout in TCP, TECHNICAL REPORT OF IEICE
(2004).

[17] M. Miyake, H. Inamura and O. Takahashi: TCP
Enhancement using Spurious Timeout Detection and
Congestion Window Control Algorithm, 8th
International Workshop on MoMuC 2003 (2003).

[18] MacDonald, D. and Barkley, W.: Microsoft Windows
2000 TCP/IP Implementation Details (2000). White
Paper,
http://www.microsoft.com/
technet/itsolutions/network/
deploy/depovg/tcpip2k.mspx.

[19] P. Sarolahti and M. Kojo: Forward RTO-Recovery
(F-RTO): An Algorithm for Detecting Spurious
Retransmission Timeouts with TCP and the Stream
Control Transmission Protocol (SCTP), RFC4138
(2005).

[20] R. Ludwig: Responding to Fast Timeouts in TCP,
draft-ludwig-tsvwgtcp-fast-timeouts-00.txt (2002).

[21] R. Ludwig and M. Meyer: The Eifel Detection
Algorithm for TCP, RFC3522 (2003).

[22] R. Ludwig and R. H. Katz: The Eifel Algorithm:
Marking TCP Robust Against Spurious Retransmission,
SIGCOMM Computer Communication Review, Vol. 30,
No. 1 (2000).

Hiroshi Inamura has been working for
NTT DoCoMo, Inc. since 1999. He
joined DoCoMo Communications
Laboratories USA in 2006. His research
interests are in the area of Networking
including IP architecture and wireless
access systems. He participated in the
IETF and OMA standardization
activities and he received an
achievement award from the

Information Processing Society of Japan for his contribution to
the standardization of mobile multimedia protocol in 2004.
From 1994 to 1995, he was a visited researcher in the
Department of Computer Science, Carnegie Mellon University.
He received B.S. and M.S. degree in Keio University, Japan. He
is a member of IPSJ, IEICE, and ACM.

Motoharu Miyake was born in 1973.
He received the B.S. and M.S.
degrees in electronic engineering
from Tokyo University of
Engineering, Tokyo, Japan in 1995
and 1997, respectively. He received
the Ph.D degree in electrical and
electronic engineering from Tokyo
Institute of Technology, Tokyo, Japan
in 2000. Since 2000, he has been

working at NTT DoCoMo, Inc., Yokosuka, Japan. His research
interests include a transport protocol for wireless communication
and a home network. He is a member of IEICE.

Kenichi Okada received his B.S., M.S.
and Ph.D. in instrumentation
engineering from Keio University, in
1973, 1975, and 1982, respectively. He
is currently a professor in the
Department of Information and
Computer Science at Keio University.
His research interests include CSCW,
groupware, human computer interaction,
and ubiquitous computing.

He has published 60 journal papers, 70 international conference
papers, and 13 books entitled "Collaboration and
Communication", "Designing Communication and Collaboration
Support Systems", "Introduction to Groupware" and so on. He is
a member of IEEE, ACM, IEICE and IPSJ. He was a chair of
SIGGW, a chief editor of IPSJ Journal, a chief editor of IPSJ
Transactions, and an editor of IEICE Transactions.
Dr. Okada received the IPSJ Best Paper Award in 1995 and 2000,
the IPSJ 40th Anniversary Paper Award in 2000, IPSJ Fellow in
2002 and the IEEE SAINT Best Paper Award in 2004.

