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Summary 
 
In this paper, a Committee Neural Networks (CNN) is 
proposed for transient stability prediction. Transient 
stability of a power system is first determined based on the 
generator relative rotor angles procured from time domain 
simulation outputs. Simulations were carried out on the 
IEEE 9-bus test system considering three phase faults on 
the system. The data collected from the time domain 
simulations are then used as inputs to the CNN in which 
CNN is used as a classifier to determine whether the 
power system is stable or unstable. To verify the 
effectiveness of the proposed CNN method, it is compared 
with the Probabilistic Neural Networks (PNN) and the 
Multi Layer Perceptrons Neural Networks (MLP). Results 
show that the CNN gives more accurate transient stability 
assessment compared to the probabilistic neural network 
and multi layer perceptrons neural networks in terms of 
classification results. 
Key words: 
Transient Stability Assessment (TSA). Committee Neural 
Networks (CNN). Time domain simulation method. 
Artificial Neural Networks (ANN). 

Introduction 

Power system stability is the ability of an electric power system, 
for a given initial operating condition, to regain a state of 
operating equilibrium after being subjected to a physical 
disturbance, with most system variables bounded so that 
practically the entire system remains intact [1-2]. Due to the 
complexity and vastness of this problem, it has been divided to 
smaller areas including rotor angle, frequency, and voltage 
stabilities. Rotor angle stability refers to the ability of 
synchronous machines of an interconnected power system to 
remain in synchronism after being subjected to a disturbance [1-
2]. Rotor angle stability is divided to two subcategories: small 
signal and transient stabilities [2-4]. These valuations aim to 
assess the dynamic behavior of a power system in a fast and 
accurate way. Methods normally employed to assess TSA are by 
using time domain simulation, direct and artificial intelligence 
methods. Time domain simulation method is implemented by 
solving the state space differential equations of power networks 
and then determines transient stability. Direct methods such as 
the transient energy method determine transient stability without 
solving differential state space equations of power systems [5]. 

These two methods are considered most accurate but are time 
consuming and need heavy computational effort. Presently, the 
use of artificial neural network (ANN) in TSA has gained a lot of 
interest among researchers due to its ability to do parallel data 
processing, high accuracy and fast response [9]. 
Transient stability evaluation usually focuses on the Critical 
Clearing Time (CCT) of the power system in response to a fault, 
defined as the maximum time after occurrence of disturbance, 
during which if the fault is cleared, the power system can save its 
transient stability [6–8]. 
The CCT is the maximum time duration that a fault may occur in 
power systems without failure in the system so as to recover to a 
steady state operation [4]. 
Some works have been carried out using the feed forward 
multilayer perceptrons (MLP) with back propagation learning 
algorithm to determine the CCT of power systems [10], the use 
of radial basis function networks to estimate the CCT [11]. 
Another method to assess power system transient stability using 
ANN is by means of classifying the system into either stable or 
unstable states for several contingencies applied to the system 
[10], [12]. ANN method based on fuzzy ARTMAP architecture 
is also used to analyze TSA of a power system [13]. A combined 
supervised and unsupervised learning for evaluating dynamic 
security of a power system based on the concept of stability 
margin [14] used ANN to map the operating condition of a 
power system based on a transient stability index which provides 
a measure of stability in power systems [15]. 
In this paper, a powerful manner for transient stability 
assessment of power systems is proposed using committee neural 
network (CNN). The actions of transient stability assessment 
using CNN are explained and the performance of the CNN is 
compared with the PNN and the MLP so as to verify the 
effectiveness of the proposed method. 
2. Mathematical Model of Multi-machine Power 
System: 
 
The differential equations to be solved in power system stability 
analysis using the time domain simulation method are the 
nonlinear ordinary equations with known initial values. Using 
the classical model of machines, the dynamic behavior of an n-
generator power system can be described by the following 
equations: 
 
 
                                                                                                              (1) 
 
 
It is known that, 
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By substituting (2) in (1), therefore (1) becomes 
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A time domain simulation program can solve these equations 
through step-by-step integration by producing time response of 
all state variables. 
 
3. Committee Neural Network Theory: 
 
A complex computational task is solved by dividing it into 
a number of computationally simple tasks and then 
combining the solutions to those tasks. In supervised 
learning, computational simplicity is achieved by 
distributing the learning task among a number of experts, 
which in turn divides the input space into a set of 
subspaces. The combination of experts is said to constitute 
a committee machine. Basically, it fuses knowledge 
acquired by experts to arrive at an overall decision that is 
supposedly superior to that attainable by any one of them 
acting alone. The idea of a committee machine may be 
traced back to Nilsson (1965); the network structure 
considered therein consisted of a layer of elementary 
perceptrons followed by a vote-taking perceptron in the 
second layer. Committee machines are universal 
approximators. They may be classified into two major 
categories [18]: 
3-1. Static structures  
 
In this class of committee machines, the responses of 
several predictors (experts) are combined by means of a 
mechanism that does not involve the input signal, hence 
the designation "static." This category includes the 
following Methods:  Ensemble averaging, where the 
outputs of different predictors are linearly combined to 
produce an overall output. 
Boosting, where a weak learning algorithm is converted 
into one that achieves arbitrarily high accuracy. 
 
3-2. Dynamic structures 
 
 In this second class of committee machines, the input 
signal is directly involved in actuating the mechanism that 

integrates the outputs of the individual experts into over 
all outputs, hence designation “dynamic”. [18] 
In this paper, we used from the Stacked Generalization 
that stood in type Static combiners trainable. Stacked 
generalization is a recursive form of learning ensemble 
which uses the predictions of a set of neural network 
and/or other traditional models to combine and feed into 
another set of models [19]. This process can be repeated 
many times and finally a prediction is produced for an 
unseen instance that is the result of a multi-level model 
combination process [20]. 
In stacked generalization, the output pattern of an 
ensemble of trained experts serves as an input to a second-
level expert. 

 
In this paper, in first layer experts were used from 3 
weakly networks that were 3 multi layer persreptrons 
(MLP) and in second layer the expert was used from one 
weakly network that is a MLP. Table 1 shows 
characteristics of the networks. 
 
Table 1: Characteristics of the networks in first and second layers of the 
model 
 Expert Type Number of neurons 

in hidden layer 
Epochs 

0
1Expert MLP 4 20 
0
2Expert MLP 9 25 
0
3Expert MLP 8 20 
1
1Expert MLP 8 20 

 
Figure 1-the CNN (stacked generalization)- shows  that 
first layer experts inputs are data training sets and outputs 
of first layer experts are inputs of second layer expert. 
Finally, output of the second layer expert of the CNN is a 
binary neuron that produces the classification decision. As 
for this work, the classification is either class 1 for stable 
cases or class 0 for unstable cases.  

0
1Expert 0

2Expert 0
3Expert  

1
1Expert

Output signal 

Input feature 

Fig. 1: The scheme of stacked generalization model 

First layer 

Second layer 
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Performance of the developed CNN can be gauged 
by calculating the error of the actual and desired test data.  
Firstly, error is defined as,  
 

     output) (-output) (, nn ActualDesiredEError n =             (4) 
 
where, n is the test data number. The desired output is the 
known output data used for testing the neural networks. 
Meanwhile, the actual output is the output obtained from 
testing on the trained networks.  
From equation (5), the percentage mean error, ME (%), 
can be obtained as:  
                                                                                     (5) 

 
Where N is the total number of test data. 
The percentage classification error, CE (%), is given by, 
   

                             
(6) 

4. Methodology: 

In the CNN method used for transient stability assessment, 
the IEEE 9-bus test system is used for verification of the 
method. Before the PNN implementation, time domain 
simulations considering several contingencies were carried 
out for the purpose of gathering the training data sets. 
Simulations were done by using the MATLAB-based 
PSAT software [16]. 
Time domain simulation method is chosen to assess the 
transient stability of a power system because it is the most 
accurate method compared to the direct method. In PSAT, 
power flow is used to initialize the states variable before 
commencing time domain simulation. The differential 
equations to be solved in transient stability analysis are 
nonlinear ordinary equations with known initial values. To 
solve these equations, the techniques available in PSAT 
are the Euler and trapezoidal rule techniques. In this work, 
the trapezoidal technique is used considering the fact that 
it is widely used for solving electro-mechanical 
differential algebraic equations [16]. The type of 
contingency considered is the three-phase balanced faults 
created at various locations in the system at any one time. 
When a three-phase fault occur at any line in the system, a 
breaker will operate and the respective line will be 
disconnected at the Fault Clearing Time (FCT) which is 
set by a user. The FCT is set randomly by considering 
whether the system is stable or unstable after a fault is 
cleared. According to [21], if the relative rotor angles with 
respect to the slack generator remain stable after a fault is 
cleared, it implies that FCT < CCT and the power system 
is said to be stable but if the relative angles go out of step 

after a fault is cleared, it means FCT >CCT and the system 
is  unstable[5]. 

 
 

Table 2: Input feature selected 
Name of input features No. of features 

Relative rotor angles 1)(δ i −  2 

Generator  speed )(ωi  3 

Pgen & Qgen 6 

Pline & Qline 12 

Ptrans & Qtrans 6 

Total number of feature 29 

 

 

Fig. 2: IEEE 9 bus System 
 
 
 

5. Transient Stability Simulation on the Test 
System: 
 
Figure 2 shows the IEEE 9-bus system in which the data 
used for this work is obtained from [16]. The system 
consists of three Type-2 synchronous generators with 
AVR Type-1, six transmission lines, three transformers 
and three loads. Figure 4 shows examples of the time 
domain simulation results illustrating stable and unstable 
cases. 
A three phase fault is said to occur at time t=1 second at 
bus 7. In Figure 3(a), the FCT is set at 1.083 second while 
in Figure 3(b) the FCT is set at 1.3 second. 
Figure 3(a) shows that the relative rotor angles of the 
generators oscillates and the system is said to be stable 
whereas Figure 3(b) shows that the relative rotor angles of 
the generators go out of step after a fault is cleared and the 
system becomes unstable. It can be deduced from Figure 3 
that the FCT setting is an important factor to determine the 

100
N

data test  theof ed misclassfi of No 
CE(%) ×=
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stability of power systems. If FCT is set at a shorter time 
than the CCT of the line, the system is stable; otherwise 
the system will be unstable.  
 
 
 
6. Data Preprocessing:  
 
The simulation on the system for a fault at each line runs 
for five seconds at a time step tΔ , set at 0.05sec. The fault 
is set to occur at one second from the beginning of the 
simulation. Data for each contingency is recorded in 
which one steady state data is taken before the fault occurs 
and 20 sampled data taken for one second duration after 
the fault occurs. There are 25 contingencies simulated on 
the system and this gives a size of 2125×  or 525  data 

collected. The collected data are further analyzed and 
trimmed down to 468 due to repetitions of data. The one 
steady state data taken before all faults occur are reduced 
to one only since the values will be the same for all faults. 
Next, the repetitions are due to the faults that occur on the 
same line. The FCT of the same line are set at four 
different times, two for stable cases and two for unstable 
cases. At the start of the fault, same values of data are 
recorded for all the four faults. A few milliseconds after 
the fault, the recorded data differ from each other due to 
different FCT settings. For the repetitions of data recorded, 
one data out of the four different FCT settings are kept. 
These data are denoted as data for stable cases. The data 
collected are normalized so that they have zero mean and unity 
variance. 

 
Table3:The Committee  NN Testing Results Using 29 Input Features 

Test data Desired output C NN output Test data Desired output C NN output Test data Desired output C NN output 
1 1 1 40 0 0 79 1 1 
2 1 1 41 0 0 80 1 1 
3 1 1 42 0 0 81 1 1 
4 1 1 43 0 0 82 1 1 
5 1 1 44 0 0 83 1 1 
6 1 1 45 0 0 84 1 1 
7 1 1 46 0 0 85 0 0 
8 1 1 47 0 0 86 0 0 
9 1 1 48 0 0 87 0 0 
10 1 1 49 0 0 88 0 0 
11 1 1 50 0 0 89 1 1 
12 1 1 51 0 0 90 1 1 
13 1 1 52 1 1 91 1 1 
14 1 1 53 1 1 92 0 0 
15 1 1 54 1 1 93 0 0 
16 1 1 55 1 1 94 0 0 
17 1 1 56 1 1 95 0 0 
18 1 1 57 1 1 96 0 0 
19 1 1 58 0 0 97 0 0 
20 1 1 59 0 0 98 0 0 
21 1 1 60 1 1 99 1 1 
22 1 1 61 0 0 100 1 1 
23 1 1 62 0 0 101 1 1 
24 1 1 63 0 0 102 1 1 
25 1 1 64 0 0 103 1 1 
26 1 1 65 1 1 104 1 1 
27 1 1 66 1 1 105 1 1 
28 1 1 67 1 1 106 1 1 
29 1 1 68 1 1 107 1 1 
30 0 1 69 1 1 108 1 1 
31 0 0 70 1 1 109 0 0 
32 0 0 71 0 0 110 0 0 
33 1 1 72 0 0 111 0 0 
34 1 1 73 0 0 112 0 0 
35 1 1 74 0 0 113 1 1 
36 1 1 75 0 0 114 1 1 
37 1 1 76 0 0 115 0 0 
38 1 1 77 0 0 116 0 0 
39 1 1 78 0 0 117 0 0 

 
 

 
6.1 Input Features Selection: The selection of input features 
is an important factor to be considered in the ANN 
implementation. The input features selected for this work are 
relative rotor angles (

1−iδ ), motor speed 

 
(

iω ), generated real and reactive powers (Pgen, Qgen), real and 
reactive power flows on transmission line  
(Pline, Qline) and the transformer powers  (Ptrans, Qtrans).  
Overall there are 29 input features to the ANN. Table 
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1 shows the breakdown of the input features selected  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                                         (b)
Fig 3: Relative rotor angle bents of generators for a) stable and b) unstable cases 

  
Table 4: Comparisons of the presented method with the related 
Model 
Number of input 
features  

Mean error  
misclassification  
 

CNN 
 

29 
0.0085 

1(0.85%) 

PNN[4] 
 

29 
0.0171 

2 (1.71%) 

MLPNN[4]
 

29 
0.06 

13 (11.1%)
 

 
for the neural network. Out of the (468) data collected 
from simulations, a quarter of the data which is (117) 
data are randomly selected for testing and the   remaining 
(351) data are selected for training the neural   networks.  
 
7. Test Results: 
 
In this section, the results obtained from the CNN for 
transient stability assessment are presented. Initially, the 
CNN results using 29 input features are given and 
discussed. 
 

Table 5: The expert conditions of the first CNN layer 
Expert 

Mean error 
misclassification 

 

0
1Expert

0.0453 
6(5.13 %) 

0
2Expert

0.0253 
4 (3.42%) 

0
3Expert

0.0251 
4 (3.42%)

 
 
7.1 The Experts Results for Transient Stability 
Assessment:  
The architecture of the 1,2,3)(i expert0

i =  is such that it has 29 
input neurons representing the 29 input features and the 
architecture of the  expert11 is such it has 3 input neurons 
representing the 3 experts in the first layer CNN. The training 
algorithm used for these experts are the back propagation 
algorithm. Each expert is one hidden layer of tangent sigmoid 
transfer function and a single output neuron of standard log 
sigmoid transfer function. Learning rate of each expert in all 
training phases was 0.9. 
From the Table 5, the calculated mean error of  expert0

1 is 

(4.53%), for  expert0
2 is (2.53%) and for  expert0

3 is (2.51%).  

Some of the 1,2,3)(i expert0
i =  outputs are not accurate 0 or 

1but in the range 0 to 1. If the  expert0
i is in the range 0.9 to 1, 

it will indicate that the system is stable whereas if the 
 expert0

i output is in the range of 0 to 0.1, it means that the 

system is unstable. The response of all the  expert0
i case 30 

from table 3 are wrong.  
 
 
7.2 CNN Results for Transient Stability 
Assessment: 
 
The CNN developed in this work is used for classifying 
power system transient stability states in which the CNN 
classifies '1' for stable cases and '0' for unstable cases. 
According to [4], the architecture of the PNN is such that 
it has 29 input neurons, the hidden layer neurons equal 
the number of training data which is 351 and with a 
single output neuron. Table 4 shows the CNN testing 
results using the 29 input features. From the table 3; 68 
data from test set is stable and 49 data from test set is 
unstable. Alone one data is bad response; thus, the total 
error of misclassification and the mean error are both 
(0.85%).The PNN and the MLPNN results for Transient 
Stability Assessment bones [4], [8]. 
The use of CNN proposed for transient stability assessment of 
the 9-bus power system into either stable or unstable states for 
several three phase faults applied to the system. Time domain 
simulations were first carried out to generate training data for 
both neural networks and to visualizing the generator relative 
rotor angles. The CNN was organized 3 weakly MLP networks 
in first layer experts and one wonky MLP network in second 
layer expert. Accordingly to table 4, the CNN network is then 
compared with the PNN and MLP so as to evaluate its 
effectiveness in transient stability assessment. The performance 
of CNN compared to PNN and MLP are better in term of mean 
and misclassification errors. 
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