
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

125

Manuscript received January 5, 2009

Manuscript revised January 20, 2009

Analysis and Design of Object-oriented Program Understanding
System

Nor Fazlida Mohd Sani†, Abdullah Mohd. Zin†† and Sufian Idris ††

 †Universiti Putra Malaysia, 43400 Serdang, Selangor, MALAYSIA
††Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MALAYSIA

Summary
Programming is the most difficult task to most computer sciences
students. They always faces problem to write and to understand
the program codes. There are lots of exercises is been given to
students for practice on writing a program code. But those
students still faces problem on understanding the programming
codes while written it. The purpose of this paper is to present the
model and the developed system that can help students to
understand the programming codes. It is a program
understanding system for an object-oriented programming
language using the plan base approach named CONCEIVER++.
In this paper will describe the design and implementation of two
main modules of this system, the understanding and editor
modules.
Key words:
Program Understanding, Object-oriented Programming, Plan-
base, UML, Java.

1. Introduction

Program understanding is an activity that enables the
programmer to know the meaning for programming codes.
It is an important activity in maintaining available system,
debugging a programming code and one of activity in
reverse engineering. Romero [1] suggested that program
understanding is an intermediate skill to programmers.
Understanding on computer program is a complex
cognitive activity, therefore realization or development of
system or tool is very beneficial to novice programmers
and the experienced. Those who involve in programming
activities which is difficult are the programmers.
Knowledge and experienced of programmer in
programming covered writing capability, reading and
understanding of a program code. Understanding of a
program code is ability and also a difficult task especially
for novice programmer. The important skill for any
programmers to be developed is the ability to read an
available program code which being coded by other
programmers [2].

Research in program understanding is still being study
until now and the common approach used for supporting

program understanding is with completing the program
code through abstraction [1]. Abstraction approach is used
which directly deal with the source code or system that to
be comprehend. It can help to reduced complexity and
minimizing the numbers of details in certain program
codes [3], also helps a lot in the process of understanding
purposes. Another concrete reasons using abstraction is
the reliability of the understanding or inference result is
true based on the source program [4].

Most of the program understanding algorithm with this
approach were using library of programming plan with
multi-heuristics strategies to find the existence of plans in
the source program. This statement has emphasized in
former researches such as Quicili et al. [5], Woods and
Yang [6], and Kozaczynski and Ning [7]. The available
program understanding system using the plan based
approach usually are developed for non-object-oriented
programming languages, there are such as Programmer’s
Apprentice [8], PROUST [9], Talus [10], PAT [11]),
CONCEIVER [13] and BUG-DOCTOR [13]. But the
object-oriented languages has widely used in education
and industry recently. Obviously in local and foreign
countries, this new paradigm programming language has
been used in teaching of computer programming and has
been proved by Bruhn and Burton [14], Gerailt [15], and
Madden and Chambers [16]. Therefore, an object-oriented
program understanding system is needed specifically for
teaching of programming.

Problems arise on the existing program understanding
system is incompatible of the usage of teaching a
programming process at university. Most of the available
programs understanding systems are specially developed
for maintaining a system in an organization. A program
understanding system can help students on learning
programming, reading and understanding certain program
codes. Currently, learning of programming at university
has widely used the object-oriented programming
languages to learn programming at many universities,
local or abroad. Program understanding system for object-
oriented programming language such as Java does not

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

126

exist was the main reason why this research is being
carried out.

Most the available program understanding systems do not
provide utility for add new plan into plan base for their
system. Add plan utility will be focused in this research
because if students are given with new programming
problem, lecturers need to add new plan to the plan base.
Now therefore, one module name plan editor will be
developed for CONCEIVER++ to accommodate lecturers
or users in order to create and add new plan that can solve
the problem of the new statement of codes.

The purpose of this paper is to present the design and
implementation of CONCEIVER++, which contain two
main modules, which are understanding and editor module.
The remainder of this paper is organized as follows.
Section 2 is a short survey of related works on automated
program understanding, knowledge based program
understanding, and plan base with its formalism. Section 3
discusses the methodology use to produce the UML
sequence diagram of the system that is object-oriented
analysis and design. The design of understanding module
is explained in section 4, while for editor module in
section 5. Section 6 is devoted to the result or
implementation of the system. Final section concludes the
current findings and discusses some potential future works.

2. Related Works

2.1 Automated Program Understanding

Plan is use for the purpose of understanding must be
formatted in a standard form. The standard form is vital so
the derived plan formed in the same format and easily
accessed using specified recognition algorithm. The
language design that will be used for creating plans is
called plan formalism. This formalism must be designed to
ensure each plan that will be created is in even formed.
There are several plan formalisms used by previous
researchers. One of is a Plan Calculus in Programmer’s
Apprentice system is for Lisp language [17]. There was a
plan formalism to recognize COBOL programming
language by Kozaczynski et al. [18]. This formalism is use
in development of program understanding system named
Concept Recognizer.

Lots of researchers’ groups have focused their efforts in
developing tool and technique for automating program
understanding. Different program understanding systems
are tends to apply different representative framework and
heuristics in recognition algorithm. Example, Concept
Recognizer by Kozaczynski and Ning [7] used top-down

library based approach for plan recognition. This system
recognizing plan using heuristic approach, specific rules
and constrains instruction using representation of
component and constraint of plan. Source code will be
transformed into abstract syntax tree. The plan recognition
algorithm starts by collecting all patterns from the library,
then matching all components to the program, come out
with a set of potential plans with all components matched.
After that, the constraint part of the set of plans will be
implemented. Limpiyakorn [19] says that plan
representation in Concept Recognizer is simple and
unambiguous, also algorithm used is successful to
recognize plan in COBOL programs.

Representation of abstraction emitting information that not
needed such as syntax tree omits format variations, while
control flow graph omitting variation for control
statements. Representation replacing codes with abstract
model such as event for Quicili [20, 21] represents syntax
tree entity. Abstraction was needed for recognition
because it will simplify searching area for program
representation. In addition, abstract representations have
multiple use if there any missing information. Syntax tree
and control flow graph will retain the same execution.

2.2 Knowledge based program understanding

PROUST produced by Johnson and Soloway [9] was
programming tutor or debugger which match students
code with true and known solution. PROUST works as
top-bottom, use goal tree solution and analysis with
synthesis. It’s cannot understands code which do not have
problem explanation. Some heuristics is used for
instructions, comparison and evaluation during
recognition. Transformation will reduces the differences
because variation in execution and bugs. Example,
different between a=b+c has been declared in plan and for
a=c+b that has been written in code will not been
recognized as error.

Recognition plan for PROUST is not many as
programming knowledge for certain programs, solution or
algorithm. It is an explanation of program problems which
is written as goal list that the program need to execute.
The goal lists have to match the plan with code. A
recognition component contains Pascal instances that are
language-dependent instances that not tolerate with syntax
variations, sub-goal and constraint to be checked compare
to the Pascal program representation and the goal that
fulfilled earlier. Plan match program statements if the
instance being integrated, including sub-patterns,
matching syntax tree for statement and its sub-goals and
sub-goals completed. If it is failed to matched, PROUST
will refer to its knowledge base for standard error so that it

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

127

be as reasons that caused by unmatched between student’s
program and their own solution. This system demonstrates
recognition for whole program is possible with small and
limited students’ code.

Mei Hong et al. [22] have developed an understanding
system for C++ language called BDCom-C++. This
system analyzed C++ program in static with bottom-up
inference, extracting programs information based on
conceptual model created by using Enhanced Entity
Relationship (EER) model and keep the information in the
database. In return to the different requirements, it may
ease the functional understanding and structure of C++
program, creating an object-oriented design document,
which is Object-oriented Design (OOD) for C++ program
in reversed, or supporting the usability of component
extraction from the existing program code.

2.3 Plan base and formalism

Plan base is the important component for any program
understanding system, usually with plan based approach.
This is because of the plan base is the library of inference
knowledge for each program code that will be identified
by the system in the future. Therefore, in this section is
focusing the discussion about plan base approach and plan
formalism that has commonly used in existing
understanding system nowadays.

The terms ‘plan’ always been used by the Artificial
Intelligent (AI) and Program Analysis community.
According to Ning [11], in AI, plan usually referred as
sequence of action to achieve the goal. Mean while, for
program analysis research literature, this term is used for
referring to different subjects such as:

i. Abstract representation for fragment of code

Rich [23] states that, the real ‘plan’ is for data and
control flow representation together with input/output
set and intermediate test/operation specification. Ning
[11] suggested that, plan is for representation aspect,
which as how to represents the language independent
information in form of plans.

ii. Programming heuristics
Here, plan stressed as implementation aspects, by
which how implementation (instantiation, coding) of
problem solving algorithm by using a plan [11].

iii. Programming abstraction concept
Letovsky [24] explain that plan is the conceptual part
(example is opposite to primitive or physical part,
such as variable, statement, loop) for represents the

idea of design of language independent. Ning [11]
describe a more semantics orientation on plan
definition, that is anything that express the abstract
concept or higher level.

iv. Knowledge for identify programming concept
Programming plan is procedural or strategic
knowledge for mean of code [9]. It shows plan as
knowledge which is needed to understand the
programming abstract concept [11].

An experienced programmer is keep on redeveloping lots
of hierarchy for program design by recognizing from the
data structure and algorithm which is commonly used and
typically know how to do the higher level abstraction. The
common computerize structure that being used called as
cliché. Cliché is a frequently appears pattern in program
codes, such as algorithm, data structure or pattern specific
domains. Plan is the representation of cliché. The
objective of plan recognition is identifying cliché by using
the plan. There were three approach of plan recognition,
which is top-down, bottom-up, and hybrid which
combining the top-down and bottom-up approach [25].

Plan base approach is consists of programming plan that
represents specific programming code or domain of
application. The developed plan for a plan base is based
on formalism that standardized the form of production of
the plan.

3. Methodology

This research phase is to produce a model of program
understanding system which will be developed using the
software development methodology called Unified
Approach (UA).

This methodology has been chosen because of the system
will be developed by using an object-oriented language
and it also can show the system model clearly, also show
overall objects and classes that has been developed.
Bahrami [26] explained that UA methodology create
standardization and unification around the working
environment using the Unified Modeling Language
(UML) for explaining, modeling and documenting
processes of system development. Hence, results from this
research in producing a model for the suggested system,
CONCEIVER++ will be showed by using the UML
notation.

UML has become the universal language for modeling a
system. The purpose is been used for representing various
type and different model purposes same as the
programming languages or natural languages that can be

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

128

use in any ways. UML has become standard notation for
modeling the object-oriented system. It is an expansionary
notation and still being developed. UA use UML to
explain and model the analysis and design phase for
system development.

In this research of producing the object-oriented program
understanding system model which is CONCEIVER++,
some of the involved UA processes are the object-oriented
analysis (OOA) and object-oriented design (OOD). UA
give authorization iterative development which allows
going forward and backward between the design and
modeling or analysis phase. It makes that tracing become
easier and different than the linear process of Waterfall
which don’t have any form of tracing [26].

3.1 Object-oriented Analysis (OOA)

Main objective for analysis is to present complete
graphical view, non-obscured and consistent for system
requirement and operation in order to fulfilled users’
requirement and need. This will be achieve by developing
model for the system focusing on the explanation about
what the system will do rather than how to do it [26].
Bahrami add that analysis is the process of transferring the
problems definition from obscure facts into system
requirement statements.

In this phase will be analyze how users use the system and
what are needed for complete requirement of system
operation. The methods use in analysis study to gets all
information about CONCEIVER++ system is from
literature reviews that has been done. OOA phase in UA
are using actor and use case for describing about the
system in user perspective. Actor is an external factor
which will interact with the system mean while use case is
the scenario that explaining how the actor use the system.
Use case that been identified here is involved in the
overall development process.

The OOA process consists of several steps that can
referred to Fig. 1 follows. The steps involves are:

1. Identify actor
• For CONCEIVER++, actor is the users that

use the system.
2. Create process model by using UML activity

diagram.
3. Create use case

• Use case gives views on what user can do
with CONCEIVER++ system.

4. Develop interaction diagram
• Interaction diagram is used to assigned

execution sequence of the system.

• Interaction inside the system can be show in
the collaboration diagram

5. Classification, creating a static UML class
diagram
• Identify class
• Identify relationship
• Identify attribute
• Identify method

Iterate and refine. If needed, repeat the previous steps.

Fig. 1 Object-oriented Analysis (OOA) Process

3.2 Object-oriented Design (OOD)

In the study of UML model for a prototype also involve
the object-oriented design phase. Rumbaugh et al. [27]
state that the main focus in analysis phase of system
development is into what we need to do. Objects that
identify during analysis can be used as the framework for
design. Attribute methods and relationship for class that
has been identified during analysis must be design for
implementation such as data type must be describe in the
implementation language. According to Bahrami [26], in
design phase is the starting of thinking how the problem
be really implemented in the system. But, in this phase, the
centre is on the class view and access such as for fixed the
information or the better way for interact with user or
presenting the information. In this level, it is useful for
getting the good understanding of the classes in the
development environment.

During the design phase, the identified class from the
OOA for CONCEIVER++ must be called-back with up
shift focus to its implementation. New classes and
attributes including methods is been added for the purpose
of implementation and user interface. The OOD process
consists of such activities as shown in Fig. 2:

1. Design class, attribute, method, association,
structure
1.1 Refine and completing the static UML class

diagram with additional details to the diagram.
The steps are with below activities:
1.1.1 Refine attribute

Identify
actors

Create use
case,
activity
diagram

Prototyping

Develop
interaction
diagram

Identify
class,
relationship,
attribute and
method

Refin
e and
repeat

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

129

1.1.2 Design methods using the activity
diagram to illustrate the algorithm of
the method

1.1.3 Refine the relationship between classes
(if needed)

1.2 Repeat and refine more

2. Design access level
2.1 Simplify class and the relationship. Main goal

is take out the redundant class and structure.
2.1.1 Redundant class: Do not need to keep

two classes that executing the changes
of the same request and result. Choose
either one and drop the other one.

2.1.2 Method class: Explore all classes with
one or two methods whether it can drop
it or combine it with the other class.

2.2 Repeat and refine again
3. Design the form of display level

3.1 Develop prototype for display level program
3.2 User satisfaction testing
3.3 Repeat and refine

Repeat and refine overall design. If needed, repeat all
steps.

Fig. 2 Object-oriented Design (OOD) Process

The result of the object-oriented analysis and design of the
UA method is the model for the CONCEIVER++, object-
oriented program understanding system. CONCEIVER++
has two main modules, understanding and editor modules.
The focus of this paper is to presents the details of
execution with its classes and object involves for each
module. In terms of that, in order to give better
understanding of the system, UML sequence diagram is
use for that purpose. In sequence diagram, the flow of
implementation for every module can be show it clearly,
what are classes has been used and what are the objects
has been created to execute for each module.

4. Understanding Module

As mentioned earlier, CONCEIVER++ consists of two
main modules: understanding and editor. In this section
will describe on the understanding module. An overall
process in this module is that, programming code written

by students will be parse and transform using the parser
and transformer components. Output from it is in form of
control flow graph (CFG) and being kept in one file. The
CFG file will read by the code/CFG processor and then all
the CFG information will be put in binary search tree
structure. In the other side, plan which has been kept in
plan base will be access by the plan processor. Plans is
read and put into linked list structure. These tree and
linked list will be as input to the recognition engine. With
these two type of data structure, the recognition engine
will match the data from both structure type will come out
with the result of understanding to the user of this system.

This module has been divided into three parts which has
been mentioned just now, that are code/CFG processor,
plan processor and recognition engine. In this research, the
user in this module is students or lecturers. Users will
write a Java program codes and then insert to the
understanding module to be inferred by the system. At the
same time, plans will be accessed from plan base for the
purpose of inferring the codes. Below discuss on each part
of the understanding module.

4.1 Plan Processor

The process involve in this plan processor part is to read
the plan in the plan base. Linked list structure is generated
and each node in the linked list will contain plan,
including the information of the plan. This generated
linked list with plan inside is the output from this plan
processor part and will be as input for the recognition
engine. The objects created for executing this processor,
there are plan, list, next and element. The UML sequence
diagram in Fig. 3 below shows flow of execution of this
part and all its objects.

Fig. 3 Plan Processor

: User : ConceiverPP plan
: GeneratePlanList2

list
: GenericLinkedList

next :
Node

element :
Plan

Execute the system

Insert plan into the liked list

All plans is generated in the linked list

Linked list crested for plans
Node created for each

plan

Create next node

Node for each plan is execute

Linked list for every node is generated

Read all data of the plan

All plans is put inside nodes

Design
class,
attribute,
method,
association,
structure

Develop
UML
class
diagram

Design
display
and access
level
including
prototype

User
satisfaction
test on the
use case

Continuous testing

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

130

Plan object will hold linked list that contain all plans from
the plan base. Plan object is the object reference for
GeneratePlanList2 that has been used in main class which
is ConceiverPP. This object is use next in the recognition
engine part.

List is an object with role as object reference to
GenericLinkedList class. In this object will activate the
linked list that holds all plans. Each node of linked list
represents one plan.

Object that responsible for generating each node inside the
linked list is next, object reference for Node. For each
node of plan will keep all information for that particular
plan. Therefore, object for retrieving this information is
element. This object is the reference object of class Plan,
that pointing to the information of plan. All the
information is the data about knowledge of language
based on the plan formalism that had mentioned in above
section. Because of the design of the plan formalism is not
the focus of this paper, researched has been done and
based on discussion has agreed on specifying the
information needed for representing the knowledge.

4.2 Code/CFG Processor

Second part on implementing the Understanding module is
code/CFG processor. Operations that involve in here are
information about code which is from the control flow
graph (CFG) will generate into binary search tree structure
(BST). Each node in three is represents each line of
program code. The BST will hold information for
programming codes which then will use in recognition
process. Simultaneously, number of nodes is collected to
be use during the process.

There are several object created for the execution of this
code/CFG processor: startTree, tree, root, data and
countTree. The UML sequence diagram in Fig. 4 below
shows flow of execution of this part and all its objects.

Object startTree is an object reference for TreeTest class.
The program code that has been through parsing and
transforming processes will be change into control flow
graph form. The external component named KONSIS
[28](Najib and Abdullah, 2005) will parse and transform
the code. The result from KONSIS, which is an abstract
syntac tree (AST) will be used and formed the CFG with
its’ data flow information. This CFG will be read by
startTree object and hereinafter use in the recognition
engine part.

Object tree is an object that will generate the binary search
tree structure. It is an object reference for class named
Tree. In order to generate the BST, each node created is
referred to node in the CFG. These nodes of BST is
created using root object, an object reference of TreeNode.

Each node will saved and contains data or information for
the CFG node, with one CFG node represents one line of
code. The data or information for the CFG node will be
hold by object data. Data is an object reference of
ParseTree class. The number of CFG node created will be
counted by object countTree, an object reference for class
TypeNodeCount.

Fig. 4 Code/CFG Processor

4.3 Recognition Engine

This is the third division of understanding module called
recognition engine. Operation involve in this part is to
match results from plan processor and code/CFG
processor part. Result of the recognition produce the
information of the meaning or understanding of the
program code. Objects created in this recognition engine
are MM (for matcing), ttree and methodname. The UML
sequence diagram in Fig. 5 below shows flow of execution
of this part and all its objects involved.

Object MM is an object reference of Match class is build
to use the linked list of plans and the binary search tree of
code/CFG. In object MM, these two data structures will be
matched and then produce the understanding information
for program code.

During the matching execution, ttree, an object reference
of TreeTest is created. This object is use to check the

startTree:
TreeTest

data
: ParseTree

root :
TreeNode

tree : Tree countTree :
TreeNodeCount

 : ConceiverPP

Insert information of CFG into tree

Create tree for CFG information

Generate tree

Create node for tree

Create next tree node

Generate all tree nodes

Get all data of CFG

All CFG data is put inside tree node

Count number of tree nodes

Generate all CFG information in tree

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

131

binary search tree contents which are methods. Linked list
name of methods is created by object methodname,
instantiate by using CollectMethodName class. This object
is needed during matching process.

Fig. 5 Recognition Engine

5. Editor Module

The second main module of CONCEIVER++ is an editor
module. This module specially created for use by
knowledge engineer or lecturers. The two types of users
are assumed to understand on the standard that has been
set for the plan that is plan formalism, so that they can use
this module correctly. This module is created to ease the
lecturers to add new plan into the plan base. This editor
also allowed lecturer to check each plan that exist.

The importance of this module is when lecturer given a
different sets of programming exercises. Even though the
lecturers sometimes are using the same programming
codes, but they may need statement of code which still did
not have the plan for recognition process. So, editor
module is the solution to help them to improve and add
new plan. This module has been divided into two parts
that are: add plan and view plan.

5.1 Add Plan

Operation involve in this add plan part is, new data will
inserted by lecturer through add panel available. It will be
kept in plan base and be use for understanding purpose.
Objects created in this part are TE, planPanel and pplan.
The UML sequence diagram in Fig. 6 below shows flow
of execution of this part and all its objects involved.

Object TE is referenced to TestEditor class is an interface
for editor module. From this interface, knowledge
engineers that are lecturers have to select tab ‘Add’ in

order to add new plan. Hence, AddPlan class is executed
then an object for panel view is executed.

Object that display panel for lecturer to key-in new plan is
planPanel, referenced object of PlanPanel class.
Hereinafter, PPlan class is use to create an object
reference pplan which will hold all data or information
input through the panel. Each data inserted will be
checked the size by using the FixedLengthStringIO class.

Fig. 6 Add Plan

5.2 View Plan

Operation involve in this view plan part is for accessing
information of available plans from the plan base. Objects
created in this part are pplan and planPanel. The UML
sequence diagram in Fig. 7 below shows flow of execution
of this part and all its objects involved.

Object TE is referenced to TestEditor class is an interface
for editor module. From this interface, knowledge
engineer that are lecturers have to select tab ‘View’ in
order to display all plans. Hence, the contents of plan base
can be view with execution of ViewPlan class.

Object reference of Pplan class, which is pplan, will hold
data or information of plan. The other object, planPanel is
referring to PlanPanel class is use to execute panel for
displaying the information for each plan. Knowledge
engineer can use button on the view panel to look on the
content of the plan.

: Knowledge
Engineer

 : ConceiverPP TE : TestEditor : AddPlan planPanel
: PlanPanel

pplan : PPlan
: FixedLengthStringI

O
Execute the system

Execute the plan editor

Click add new plan tab
Generate panel to add plan

User key-in data for new plan

Collect data that user key-in from the panel

Data will be write in plan file depending on required size

: User : ConceiverPP MM :
Match

ttree :
TreeTest

methodname :
CollectMethodName

Match the linked list of plan with tree of CFG

Generate tree information

Collect data of methods’ name

Methods’ name for tree is kept in a list

Matching results is the information of understanding and debugging of program code

Result display to user

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

132

Fig. 7 View Plan

6. Result

The output of the model is the user interface that has been
developed by using the Java programming language
asmentioned earlier, the name of this system is
CONCEIVER++. The main user interface of
CONCEIVER++ is as in Fig. 8, which has four menus at
the menu bar: File, Edit, Program and Help menus. In File
menu contain instructions such as open file, open new file
and save file. For Edit menu, the instructions are cut, copy
and paste. In Program menu contain the main instruction
of the system: Parser, Transformer, Understanding and
Editor. The last menu, Help give brief explanation of this
system.
Toolbar is also included in this main interface, with the
purpose is to give user friendliness environment, easy and
fast touch for accessing any command to users. Buttons
that has been provided are New File, Open File, Save File,
Parser, Transformer, Understanding, Editor and Help
buttons.

Fig. 8 User interface of CONCEIVER++

6.1 Understanding Module Interface

The result of developing the understanding module, based
on the model discussed earlier will be presented in this
section. In order to execute this module, user has to click
on button Understanding or by using the Program menu
bar. After clicking, another interface will be display as
shown in Fig. 9.

Based on the UML sequence diagram for Understanding
module, there are three processes involved which are
code/CFG processor, plan processor and recognition
engine. From figure 9 has showed the three panel that
labeled as A, B and C. A is named as Plan Base panel
which is the result of the plan processor process. B is
named as Node of Flow Graph is the result of code/CFG
processor process. C named as Understanding &
Debugging is the result of the recognition engine process.

Fig. 9 Understanding Module Interface

6.2 Editor Module Interface

The result of developing the editor module, based on the
model discussed earlier will be presented in this section.
This module is restricted the knowledge engineer, which is
lecturer only. In terms of that, this module is executed
once the users key-in the password. If correct, the
interface of the Plan Editor will be display as in Fig. 10

 : ConceiverPP TE : TestEditor : ViewPlan pplan : PPlan : FixedLengthStringIO planPanel :
PlanPanel

Execute the system
Execute the Plan Editor

Click on View Plan tab

Plan is access from plan file

Each plan is access based on the fixed size

Plan is display on the view panel

Plan can be view from panel of Plan Editor

Plan is display to user

: Knowledge
Engineer

Open File

New File

Save File

Parser

Transformer

Understanding

Editor

Help

B

A

 C

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

133

shown. There are two tabs in this interface, Add Plan and
View Plan. If the user wants to add new plan into plan
base, they have to select Add Plan tab. The added plan
must follow the specification or the formalism that has
been agreed from the plan design phase, which do not
discuss in detail in this paper. User can click Add button at
the bottom, and the clear field will be display for user to
key-in.

Otherwise, if the user only wan t to view all plans
available in the plan base, they have to click tab View Plan.
Interface of view plan as in Fig. 11. From the figure shows
that this interface has four buttons at the bottom labeled as
First, Next, Previous and Last. These buttons is use for
searching plan with its data and to update any plan.

Fig. 10 Add Plan Interface

Fig. 11 View Plan Interface

7. Conclusion

This paper has discussed on the model of an object-
oriented program understanding system, called
CONCEIVER++. Based on the model, we have developed

the system and the system has run successfully. The model
has been created and design according to the object-
oriented analysis and design phases of Unified Approach
methodology. The model has been produced and the detail
for two main modules of the system, that are
understanding and editor modules, has been discussed in
detail by using the UML sequence diagram. This diagram
has showed and presented a clear discussion on the flow
of execution that involved on each module, the classes and
object created also has been presented. Then the result of
the presented model has been discussed for every module
created. The developed module understanding and editor
is by using the Java programming language. Finally, future
work should be made for evaluating the system to
investigate the usability of the system.
References
[1] Romero, P., Cox, R., du Boulay, B. & Lutz, R. 2003. A

survey of external representation employed in object-
oriented programming environments. Journal of Visual
Languages and Computing 14(15): 387-419.

[2] Barr, M., Holden, S., Philips, D. & Greening, T. 1999. An
Exploration of Novice Programming Errors in an Object-
Oriented Environment. SIGCSE Bulletin 31(4): 42-46.

[3] Jun Shen, G.V. Cormack, D. Duggan. 1995. On Abstraction
and Sharing in Generic Modules. Object-oriented
Technology for Database and Software Systems, World
Scientific

[4] Kozaczynski, W. & Ning, J.Q. 1989. SRE: A knowledge-
Based Environment for Large-Scale Software Re-
engineering Activities. Proc. of 11th International
Conference on Software Engineering, pp. 113-122.

[5] Quicili, A., Yang, Q. & Woods, S. 1998. Applying Plan
Recognition Algorithms to Program Understanding. Journal
of Automated Software Engineering 5(3): 347-372.

[6] Woods, S. & Yang, Q. 1995. Program Understanding as
Constraint Satisfaction. Proc. Computer-Aided Software
Engineering 7: 318-327.

[7] Kozaczynski, W. & Ning, J.Q. 1994. Automated Program
Understanding by Concept Recognition. Automated
Software Engineering 1(1): 61-78.

[8] Rich, C. & Wills, L.M. 1990. Recognizing a Program’s
Design: A Graph-Parsing Approach. IEEE Software 7(1):
82-89.

[9] Johnson, W.L. & Soloway, E. 1985. PROUST: Knowledge-
based Program Understanding. IEEE Transaction on
Software Engineering SE-11(3): 267-275.

[10] Murray, W.R. 1986. Talus: Automatic Program Debugging
for Intelligent Tutoring Systems. Technical Report AI
TR86-32. AI Laboratory, University of Texas.

[11] Ning, J.Q. 1989. A Knowledge-Based Approach to
Automatic Program Analysis. Ph.D. Thesis. University of
Illinois.

[12] Al-Omari, H.M.A. 1999. CONCEIVER: A Program
Understanding System. Ph.D. Thesis. Universiti
Kebangsaan Malaysia.

[13] Burnstein, I. & Saner, F. 2000. Using Fuzzy Reasoning to
Support Automated Program Understanding. International

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

134

Journal of Software Engineering and Knowledge
Engineering 10(1): 115-137.

[14] Bruhn, R.E., and Burton, P.J. 2003. An Approach to
Teaching Java Using Computers. SIGCSE Bulletin 35(4):
94-99.

[15] Gearailt, A. 2002. Using Java to increase Active Learning in
Programming Courses. Proceedings of the Inaugural
Conference on the Principles and Practice of Programming,
107-112.

[16] Madden, M., and Chambers, D. 2002. Evaluation of Student
Attitudes to Learning the Java Language. Proceedings of the
Inaugural Conference on the Principles and Practice of
Programming, 125-130.

[17] Rich, C. & Wills, L.M. 1990. Recognizing a Program’s
Design: A Graph-Parsing Approach. IEEE Software 7(1):
82-89.

[18] Kozaczynski, W., Ning, J. & Engberts, A. 1992. Program
Concept Recognition and Transformation. IEEE
Transactions on Software Engineering 18(12): 1065-1075.

[19] Limpiyakorn, Y. 2002. The Signature Approach to Program
Plan Retrieval. Ph.D. Thesis. Illinois Institute of
Technology.

[20] Quicili, A. 1993. A Hybrid Approach to Recognizing
Programming Plans. Proc. Working Conference on Reverse
Engineering, pp. 126-133.

[21] Quicili, A. 1994. A Memory-Based Approach to
Recognizing Program Plans. Communications of the ACM
37(5): 84-93.

[22] Mei, H., Yuan, W., Wu, Q. & Yang, F. 1997. BDCom-C++:
A C++ Program Understanding System. Chinese Journal of
Electronics 6(2): 64-69.

[23] Rich, C. 1981. A Formal Representation for Plans in the
Programmer’s Apprentice. Proc. 7th International Joint
Conference on AI, pp. 1044-1052.

[24] Letovsky, S. 1988. Plan Analysis of Programs. Ph.D. Thesis.
Yale University.

[25] Müller, H.A. 1996. Understanding Software Systems Using
Reverse Engineering Technologies Research and Practice.
Tutorial presented at 18th International Conference on
Software Engineering, Berlin, Germany.

[26] Bahrami, A. 1999. Object Oriented System Development
using the Unified Modeling Language. Boston: McGraw-
Hill.

[27] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. &
Lorenson, W. 1991. Object-Oriented Modeling and Design.
Englewood Cliffs, NJ: Prentice-Hall.

[28] Mohd Najib, M.K. & Abdullah, M.Z. 2005. KONSIS: Set
Komponen Bagi Membangunakan Sistem Pemahaman
Aturcara. Prosiding Persidangan Kebangsaan Sains
Pengaturcaraan 2005, pp. 202-210.

Nor Fazlida is a lecturer in Department of
Computer Science, Faculty of Computer
Science and Information Technology,
Universiti Putra Malaysia. She obtained Ph.D.
focus on Program Analysis and Program
Understanding System from Universiti
Kebangsaan Malaysia in 2007. Her research
interests include reverse engineering,

software maintenance and program debugging.

