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Summary 
Biological signals are short conserved regions in DNA, RNA, or 
Protein sequences which correspond to some structural and/or 
functional feature of the bio-molecules. Finding such signals has 
important applications in locating regulatory sites and drug target 
identification. Identification of biological signals such as motifs 
is a challenging problem because they can exist in different 
sequences in mutated forms. Despite extensive studies over last 
few years this problem is far from being satisfactorily solved. 
Most existing methods formulate signal finding as an intractable 
optimization problem and rely either on expectation 
maximization (EM) or on local heuristics. Another challenge is 
the choice of model: simpler models such as positional weight 
matrices (PWM) impose biologically unrealistic assumptions 
where as other harder models are difficult to parameterize. In this 
paper a conceptually simpler and biologically relevant model 
based on Kullback-Leibler divergence along with information 
entropy framework is proposed to measure the divergence of the 
biological signals. Both synthetic and real data are used to test 
applicability of the proposed model for finding motifs in DNA 
sequence. Our proposed model performs better than models 
based on PWM or Shannon entropy. 
Key words: 
Information entropy, Biological signal, Motif, Kullback-Leibler 
divergence. 

1. Introduction 

Information entropy, first introduced by Claude E. 
Shannon in his paper “A Mathematical theory of 
Communications” in 1948 describes information content 
of a signal or event [1]. Although, it was used for 
modeling communications in a channel, the mathematical 
concepts can also be applied to other fields such as living 
system [2]. 

The information in genomic sequences can be encoded as 
a string over the four letter language of nucleotide bases 
{A, C, G, T} and genes can be viewed as substrings of a 
DNA sequence. These substrings are used by living cells 
as the blueprints for making specific proteins that carry 
out all the functions of cellular life. While all the cells of 
an organism contain the same DNA sequences, different 
cells make radically different sets of proteins based on 

different conditions or needs. Embedded in the non-coding 
DNA (introns) of an organism are many control sequences 
that influence when a gene is expressed and which coding 
portions of the gene (exons) are spliced together to form 
the gene product. Commonly, the DNA region just 
upstream of a particular gene is thought to contain many 
short substrings or signals of DNA that do not actually 
encode any part of a protein, but act as controlling signal 
for the associated gene’s expression. These and other 
sequences that may be used to regulate gene expression 
are collectively known as regulatory signals [3]. A 
fundamental challenge in computational biology is to 
identify these important signals. Despite extensive studies 
over last few years the challenge of finding potential 
significant biological signals is far from being 
satisfactorily solved [4, 5, 6, 7, 8]. 

Shannon’s theory deals with information over a 
communication channel and provide tools which are based 
on measuring information in terms of bits or in terms of 
the minimal amount of complexity of structures needed to 
encode a given piece of information. The biological 
information encoded in DNA is transmitted through the 
process of transcription, translation and mutation and 
decoded as proteins. Shannon’s theory has been used to 
study genomic sequences by calculating the amount of 
information contributed by individual nucleotides during 
these encoding and decoding processes [9]. 

1.1 Entropy and biological Signals 

There are close parallels between the mathematical 
expressions for the thermodynamic entropy S, established 
by Ludwig Boltzmann in the 1870s and the Shannon 
information theoretic entropy H [1]. Information Theory is 
the mathematical theory of communication to find out the 
speed and quantity of information transmission. It uses 
statistical concepts of probability to compute the extra 
information (redundancy) necessary to counteract the 
distortion and losses that may occur during transmission 
from one information source to another. The theory uses 
entropy as the "measure of the rate of transfer of 
information in [that] message". 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 
 

 

148

Let ∑ be an alphabet of size N, for DNA ∑ = {A, C, G, T}.  

When a symbol is received from an alphabet of size N, 
where letters are sent with equal probability and the 
symbol is transmitted as a binary signal, then we must wait 

until all N2log bits of the symbol are sent before it is 
known with   certainty which symbol has been transmitted. 
Thus the information entropy contained in a symbol from 
an alphabet of size N  is N2log , under uniform 
probability distribution.  

Let ][A],...,p[Ap nn PrPr 11 ==  are the probabilities of 
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The measure of information (Shannon entropy) is 
mathematically, similar to that of disorder (Boltzmann 
entropy).  

2. Existing Modeling Approaches 

2.1 Models based on Positional Weight Matrix 

Positional weight matrices (PWM) are foundations to 
many biological problems and are commonly used to 
represent consensus sequences in phylogeny, structure 
prediction, motif finding, sequence alignment etc. It 
specifies the probability that a given base is observed at 
each index position of the sequence. Let t  be a set of 
DNA sequences, each of which is n  nucleotides long and 
l be the length of the unknown signal. Selecting one 
position in each of these t  sequences forms an 
array ),....,S,S(SS t21= , with 11 +−≤≤ lnSi . The l -mers 
starting at these positions can be compiled into an lt ×  
alignment matrix, whose th(i,j)  element is the nucleotide 

in the th
i )j(S 1−+  element in the thi  sequence. Based on 

the alignment matrix, the l×4 profile matrix can be 
computed whose th(i,j)  element holds the number of times 
nucleotide I appears in column j of the alignment matrix, 
where I varies from 1 to 4. A consensus string can be 
formed from the most frequent element in each column of 
the alignment matrix, which is the nucleotide with the 
largest entry in the profile matrix. [10] 

 
Let )(sP denotes the profile matrix corresponding to 
starting positions s , (j)M P(S)  denotes the largest count in 

column j of P(s) .Given starting positions s , the 

consensus score is ∑
=

=
l

j
(j)P(S)MA)Score(s,DN

1
, which 

measures the strength of a profile corresponding to the 
given starting positions. 

The Motif finding problem thus can be formulated as: 

Given a set of DNA sequences, find a set of l -mers, one 
from each sequence that maximizes the consensus score. 

Input: A nt × matrix of DNA, and l  the length of the 
pattern to find. 

Output: An array of t  starting positions ),...S,S(SS t21=  
maximizing A)Score(s,DN  

As an example, consider the Cyclic AMP receptor proteins 
(CRP) as a transcription factor of E.Coli. Its binding sites 
are DNA sequences approximately twenty-two in length. 
The following sequences,  



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 
 

 

149

TTGTGGC 
TTTTGAT 
AAGTGTC 
ATTTGCA 
CTGTGAG 
ATGCAAA 
GTGTTAA 
ATTTGAA 

TTGTGAT 
ATTTATT 
ACGTGAT 
ATGTGAG 
TTGTGAG 
CTGTAAC 
CTGTGAA 
TTGTGAC 

GCCTGAC 
TTGTGAT 
TTGTGAT 
GTGTGAA 
CTGTGAC 
ATGAGAC 
TTGTGAG 

taken from Stormo and Hartzell shows the 3-9 positions of 
the 23 CRP binding sites [11]. The following table 
indicates the PWM. 

A .35 .043 0 .043 .13 .83 .26 
C .17 .087 .043 .043 0 .043 .3 
G .13 0 .78 0 .83 .043 .17 
T .35 .87 .17 .91 .043 .087 .26 
 

Once a PWM is created, it can be used to score new 
sequences. An important assumption made here is that the 
base identity at any position does not depend on the base 
identity of any other position in the sequence. We can 
calculate the joint probability by multiplying all individual 
probabilities at each position. Molecular biologists 
determine the most frequent base at each position called a 
‘consensus’. The position 3 of the above PWM has 0% A, 
4.3%C, 78%G, and 17%T. If we make a consensus model 
of this position, we would call it ‘G’. This in turn means, 
when one looks into this site, 22% of the time it will not 
be correctly recognized. Yet, this method is extremely 
widespread in computational molecular biology. Models 
based on only consensus sequences as foundation is thus 
expected to make significant error in real biological 
predictions.  

Limitations: Existing algorithms based on PWM consider 
the most popular element in each column of the alignment 
matrix, and completely ignore the rest which are 
comparatively weak (probability of occurrence is less). 
From information entropy point of view all sequences 
(strong or weak) can contain different amount of 
information about the biological signal in various forms 
and thus can be a potential candidate for replacing the 
PWM model. 

2.2 Models based on Information Entropy 

Information Entropy describes the communication of 
symbols through a channel [12].  

The entropy ),...,( 1 nppH in Shannon’s formula has been 
obtained as: 

∑
=

−=
N

i
ii pp

1
2log             

  = The measure of information (Shannon entropy)  

Given a set of genomic sequences, the above formula can 
be used to rank each member sequence according to its 
information content. The information content is 
represented in bits which provides a universal scale and 
allows information from independent substrings to be 
summed together. This helps in evaluating each input 
sequence and takes care of weak signals which were 
completely ignored by earlier PWM model. For example a 
new sequence GGAGCCG is completely ignored since the 
probability of each position is lowest in the PWM. 
However, the information content of this sequence is equal 
to the information content of an existing sequence 
TTGTGAT that differs from the consensus sequence 
ATGTGAC at only two positions and occurs twice in the 
list of 23 sequences. 

Limitations: The model based on information entropy 
measures the information quantity; it says nothing about 
the quality of information. It may so happen that given 
two substrings in a sequence with equal quantity of 
information, one may contain biologically relevant 
information (e.g. motif) while the other does not. When 
the goal is to find signal of interest (e.g. motif) from 
voluminous biological data, accurate identification is 
difficult because they possess same quantity of 
information and are short size in the midst of noise. For 
example the sequences TTGTGAT and GGAGCCG have 
the same information content in spite of their wide 
distance from the consensus. (The sequence TTGTGAT 
differs at 2 positions where as GGAGCAG differs at all 7 
positions from the consensus). Thus we need a model that 
besides measuring the quantity of information can also 
distinguishes between relevant and irrelevant information. 

3. Proposed Model Using Shannon Entropy 
Along With Kullback-Leibler Divergence.  

3.1 Motivation from biological observation. 

When individual nucleotides are linked by condensation 
reactions, Nucleic - acid chains such as DNA/RNA 
sequences are formed. In condensation reaction a molecule 
of H2O is liberated when two nucleotides are joined. The 

'5  phosphate of the incoming nucleotide is linked to the 
'3   hydroxyl (-OH) group of the growing chain. The 

nucleic acid chain is thus extended in the 
'' 35 → directions. In living organisms, such reactions are 

catalyzed by polymerase enzymes and an incoming 
nucleotide building block has a chain of three phosphate 
groups that is cleaved to provide energy for the chain-
building reaction [13]. Hence, individual nucleotides are 
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more “pure” in the form of nucleotide composition. When 
they join the resulting chain of nucleotides become more 
stable than individual nucleotides by liberating H2O in the 
process of condensation reactions, there by moving to a 
lower entropy state. The biological motif, carry itself 
repeatedly in each of the sequences; can be viewed as a 
much more stable structure and is expected to have 
entropy different from other stretches of the sequence. 

3.2 Motivation from physical observation. 

If the energy distribution of a system is unbalanced, the 
laws of thermodynamics governs the direction of all 
physical changes taking place and with time, the energy 
within a system tends to become balanced and distributed 
in the most probable pattern. This "most probable pattern" 
is actually a state of equal energy among particles, as 
collisions cause bodies to exchange heat.   

Thermodynamic entropy is the measure of this disorder 
ness in a system. Lower the entropy more is the stability. 
Consequently, chaotic systems have a higher entropy 
value and the stable systems have lower entropy value. 
Motifs are short conserved regions in DNA, RNA, or 
Protein sequences which correspond to some structural 
and/or functional feature of the bio-molecules. Hence we 
may hope that, these “important” stretches of DNA will 
have entropy different from other stretches. These 
interesting simple repetitions are quite stable and are 
expected to have lower entropies. [14] 

3.3 Motivation from Kullback-Leibler divergence. 

In probability theory the Kullback–Leibler divergence is a 
non-commutative measure of the difference between two 
probability distributions [15]. KL divergence or Relative-
Entropy is an asymmetric dissimilarity measure between 
two probability distributions, p and q . It measures the 
added number of bits required for encoding events 
sampled from p  using q as a reference. Typically p 
represents the "true" distribution of data, observations, or a 
precisely calculated theoretical distribution. The measure q 
typically represents a theory, model, description, or 
approximation of p. 

Let a discrete distribution have probability function kp , let 
a second discrete distribution have probability function kq . 
Then the Relative-Entropy of p with respect to q, also 
called the Kullback-Leibler distance or divergence, 
defined by. 

)/q(ppd(p||q) kk

m

k
k ln

1
∑
=

=  

One of the properties of the relative entropy is that it is 
non-negative and is 0 if both distributions are equivalent 
(p=q).The smaller the relative entropy, the more similar is 
the distribution of the two variables [16]. This motivates 
that the measure based on KL divergence can be used to 
model the important aspects of interesting signals or 
significant patterns (e.g. motifs) in DNA sequences.  

D. Expectation from the proposed model: 

Our proposed model is able to measure the quantity of 
information entropy associated with a sequence and 
predicts a qualitative interpretation. This interpretation can 
be used to distinguish between relevant and irrelevant 
information. 

4. Method. 

This paper uses and extends the idea of using KL-
Divergence by incorporating information- entropy guided 
KL-Divergence based modeling. Our hypothesis is that 
short conserved regions of the bio-molecules are 
“important” stretches and can have entropy different from 
other stretches. 

4.1 Algorithm 

Step1. Given a set of sequences and length of an unknown 
signal, divide each sequence to get substrings of length 
equal to the given length of the signal. 

Step2. Compute the information entropy of all substrings 
obtained in Step 1.  

Step3. Choose those substrings that fall within a selected 
range of lower information entropies computed in step2. 

Step4. Find a consensus sequence of the set of substrings 
obtained in step3. 

Step5.Calculate the Kullback Leibler divergence for each 
substrings of step3 with respect to the consensus string 
obtained in step4. 

Step6. Keep those substrings that fall within a selected 
range of lower Kullback-Leibler divergence computed in 
step5. 

Step7. The consensus of the set of strings described in 
Step6 is the required signal. 
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5. Implementation 

As a proof of concept, we tested our method on various 
synthetic datasets. As the results on the synthetic data set 
are promising, we applied our method to transgenic data 
regions of E.Coli ECRDB70 database.  

The model was implemented using C++ in Windows 
environment. The analysis was carried out using 
MATLAB 7.1 and Bioinformatics Toolbox 2.1.1. Sample 
inputs from both synthetic data with implanted motif and 
using large datasets generated from Escherichia coli 
RegulonDB for testing the efficiency of the proposed 
model [17][18]. The synthetic data comprised of randomly 
generated DNA sequences of 81 characters length each 
with an implanted motif of length 15. The program was 
executed for finding the motifs from the random samples 
using the PWM model, information entropy model and the 
proposed entropy with Kullback-Leibler divergence model.  

6. Results and Discussion 

The three models were evaluated using the synthetic data 
with implanted motifs. For the first model, the PWM was 
computed from the 10 sample sequences. The consensus 
sequence from the PWM indicated   
“AAAAAAAAAAAAAAAA” as the motif whereas the 
implanted motif was “AAAAAAAAGGGGGGG”.  

In the second model, the information entropy was 
computed for each substring equal to the length 
(length=15) of the implanted motif as indicated in step1 of 
the algorithm. From the plot of Information entropy and 
Signal position in Fig.1, it is observed that the lower 
entropy range contains the implanted motif. There were 42 
probable motifs out of 806 signals within the lower 
entropy range of 2.97 to 3.24 bits. The consensus of these 
42 candidate motifs resulted in correctly predicting the 
implanted motif “AAAAAAAAGGGGGGG”.  

 

Figure-1 
Another set of synthetic data with randomly implanted 
motif “AGAGAGAGAGAGAGA” was tested against the 
same entropy model which resulted in 63 candidate motifs 
within the range of 2.97bits to 3.29bits out of the 806 
signals. The consensus of these candidate motifs resulted 
in correctly predicting the implanted motif 
“AGAGAGAGAGAGAGA”. The plot of entropy and 
sequence position is indicated in Fig-2. 

Figure-2 

However, the entropy model failed to predict the motif 
when a randomly generated motif 
“TAGCTTCATCGTTGA” was implanted in the sample 
sequences. As depicted in Fig-3, the lower entropy ranges 
3.23bits to 3.7bits contained 91 out of 806 sequences and 
the consensus generated was “AAAAAAGAAAAAGAA”.  
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Figure-3 

In the third model, the Kullback-Leibler divergence was 
computed for finding the implanted motif. The implanted 
motif “AGAGAGAGAGAGAGA” could be found as a 
consensus of the 34 candidate motifs out of 806 signals 
within the divergence range of 0.16 to 0.30 as indicated in 
Fig-4.  

 
Figure-4 

The Kullback-Leibler divergence could predict the random 
motif “TAGCTTCATCGTTGA” as 
“AATTTTCTTCATTTA” with matching at nine places as 
compared to only three matching in the entropy model. 67 
candidate motifs out of 806 signals were used for 
generating the consensus within the divergence range of 
0.44 to 0.46 as indicated in Fig-5. Selecting another 
divergence range of 0.45 to 0.46 could predict the motif as 
“TAGTTTCATCATTGA” with matching at thirteen 
places. 

 
Figure-5 

As the results on the various synthetic data sets are 
encouraging, the proposed model was tested on a real data 
set. The proposed model was tested using the transgenic 
data regions of the E.coli ECRDB70 database to predict 
the motifs. The motif is of length 9 and is a repressor 
signal present in the transgenic regions occurring at 12 
locations between the base pair positions 2342723 and 
3598553 [19]. The model could predict 9 out of the 12 
DnaA motifs using 533 candidate motifs out of 2852 
signals within the divergence range of 0.49 to 0.62 for 
generating the consensus (Fig-6). None of the motifs were 
observed in the higher ranges of divergence. 

 
Figure-6 

7. Performance Evaluation 

The performance of our model on the real data set was 
computed using the following standard parameters. 
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(a) Sensitivity: It is the percent of true motifs correctly 
predicted as true motifs. It measures how good our model 
in hitting the real motifs is. 

100*
FNTP

TP)y(SSensitivit n +
=  

(b) Specificity: It is the percent of non-motifs correctly 
predicted as non-motifs. It measures how good our model 
in hitting the non motifs. 

100*
FPTN

TN
)y(SSpecificit p +
=  

(c) Accuracy: It is percentage of correctly predicted motifs. 
It measures how much accurate is the model in correctly 
predicting the motifs. 

      100*
FNFPTNTP

TNTP)Accuracy(Acc +++
+

=  

The KL-Divergence model generated the consensus with 
an improved accuracy of 74% as compared to 57% in the 
model based only on Information entropy. The sensitivity 
and specificity of the KL-Divergence model were 75% 
and 72% respectively as compared to 33% and 59% in the 
model based on Information entropy. 

8. Summary and conclusion 

Comparison of models for Prediction of motif 
Dataset Model 

based 
on 

PWM 

Model 
based on 

Info. 
Entropy 

Model based 
on Proposed 

approach 

Synthetic data with 
implanted motif 

No Yes Yes 

Synthetic data with 
new implanted motif 

No Yes Yes 

Synthetic data with 
random motif 

No ~33% 
match 

~77% match

Real data with known 
motif 

No ~52% 
match 

~74% match

Yes: Model could predict the motif 
No: Model could not predict the motif 

 
When PWM is applied to all datasets, it failed to predict 
the motif. Information entropy and KL divergence could 
predict the motif accurately from the first two datasets as 
indicated in the above table. Better identification was 
observed from the third and fourth datasets because: 
The PWM based model ignores the weak signals since the 
model completely discards the bases with lower 
probability of occurrence. The model based on 
information entropy overcomes the deficiencies associated 
with the PWM model but fails to distinguish between 
signal and noise when the information contents are same.  

The proposed model based on information entropy along 
with Kullback-Leibler divergence successfully addresses 
the problem of distinguishing between the relevant and 
irrelevant information. We observe from the above test 
runs of the proposed algorithm that besides predicting the 
motifs which are correctly predicted by other methods it 
also predicts more effectively the motifs which are 
otherwise not correctly predicted by other models. 

We have presented a conceptually simple, and a very 
general approach based on information entropy along with 
Kullback-Leibler divergence for modeling biological 
signal. The efficacy of the proposed method was discussed 
on motif finding problem. One of the major advantages of 
this method is that it does not ignore any sequence 
whether weak or strong and takes into account all input 
sequences while finding the interesting regions. We plan 
to extend this work by increasing the real case examples 
and analyzing the relationship between the entropy of the 
target motif and the effectiveness of our approach. Also, 
other divergence measures can be explored and applied to 
this problem.  
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