
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

180

Manuscript received January 5, 2009

Manuscript revised January 20, 2009

An Experience with Three Scenario-Based Methods: Evaluation
and Comparison

Dejan Petkovic and Gitesh K. Raikundalia

School of Engineering and Science, Victoria University, PO Box 14428, Melbourne 8001, Australia

Summary
Scenario-based design is a family of methodologies that strives
to concretely describe systems during early stages of software
process activities. Sound theories behind proposed scenario-
based methods suggest a possibility of software process
improvement. This paper covers practical application of three
selected scenario-based design methods in regards to software
system analysis and design. Web browser systems, given that
most scenario-based methods are user-centred in nature and web
browser is user-centred software, are chosen as a development
target. Based on analysis, design and implementation the selected
scenario-based methods are evaluated and compared against each
other. Consequently, advantages of each scenario-based method
are discussed.
Key words:
Scenario-based design, scenario-based modeling, hierarchical,
scenario-based engineering process, SEP, scenarios with
functions and goals, user-oriented, user-centered

1. Introduction

Unfortunately at present, developed software systems still
suffer from many deficiencies. The cause of deficiencies
in a final software system in many cases is a lack of
adherence to software engineering principles. Much
software development failure arises due to poor
requirements elicitation and analysis and unsound
architecture decisions, leading to poor system design.

Although appropriate software lifecycles, design
paradigms and implementation paradigms may be chosen
by practitioners, final software product failure does occur.
Regrettably a sufficient number of software practitioners
disregard prescribed software engineering’s process sub-
activities, or place minimal importance on these, and rush
towards implementation. Implementation results are often
materialised with either failure to meet a project deadline,
unusable/unstable software product or inadequate software
testing leading to costly process of maintenance.

Various software design approaches have been proposed
that attempt to either improve design methods or in
themselves are ways of producing software. Amongst
these approaches, there is a set of techniques collectively

termed scenario-based design. Scenarios are basically
narrative descriptions of sequence of events, culminating
in achievement of a specific event. It is expected that
narratives, or stories, are understood by every one. Since
scenarios hold such basic properties, they allow inclusion
of every concerned party into software engineering
processes. Inclusion of future users and domain experts
provides accurate knowledge acquisition and
representation, thereby allowing agreement and
consistency of specifications the software system needs to
provide. Scenario-based design methods in general cover
most important activities leading to implementation:
requirements, analysis and design. Furthermore, scenario-
based techniques are extended to software architecture,
testing and reengineering.

In this paper, the practical application of three selected
scenario-based methods to software system development
is presented. Through practical application of three
scenario-based methods, the aim is to determine does the
scenario-based design offer any significant results to
software engineering. Selection is based on the criteria
that techniques cover at least analysis and design activities
leading to implementation. Selected methods are applied
to a design of a simple web browser, and each resulting
design is implemented. Results of scenario-based methods
are evaluated and compared against each other.

2. Scenario-Based Design

It is out of the scope of this paper to cover a topic of
scenario-based design in general, as well existing number
of proposed methods available in public domain. However,
for the interested readers, sound theory can be found in
publication by John M. Carroll [1] where benefits of
scenario use are discussed.

Further discussion about scenarios and scenario-based
design can be found in Carroll’s collaboration with Mary
Beth Rosson [2]. For readers who might be interested in
requirements engineering, work carried out by CREWS
(cooperative requirements engineering with scenarios)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

181

project [3, 15]. Other source for scenario-based
requirements engineering are works by Alistair Sutcliffe
and good starting point, besides a number of other
proposed methods, would be Sutcliffe’s publication on
analysis [4]. Efficient use of scenarios and prototypes
presented in work by Dzida and Freitag [16] may assists
with validation and verification of requirements.

Important aspect of software process is definition of
appropriate architecture and Rick Kazman et all [17, 18]
have published applicable means of using scenarios to
address architecture issues.

Except for above mentioned scenario-based references,
there are a substantial numbers of proposed methods that
are applicable to requirements, testing and architecture
definition. The three selected scenario-based methods we
have applied cover analysis and design, and are based on
works by Xiaoying Bai et all [6], Erik Mettala et all [8]
and Hermann Kaindl [9].

3. Scenario-Based Methods

Most of the proposed scenario-based methods focus only
on specific stages of the development lifecycle, such as
requirements engineering, architecture, system testing, etc.
Here we will describe the main points of the three selected
scenario-based design methods. Selected methods have
been chosen on the basis that they cover at least analysis
and/or design stages.

Scenario-Based Modelling
Scenario-Based Modelling [6] method is founded on the
ideas of hierarchical organisation and functional
composition/decomposition of scenarios. The method aims
to support modelling of user actions, system functions,
system data and system usages/internal processes. Three
types of design activities are distinguished in this scenario
method functional view, data view and usage view.

In first activity, functional view, scenarios are used to
model and represent both user actions and system
functions. In the functional view activity, scenarios are
arranged hierarchically into a scenario tree. Hierarchical
organisation creates a scenario model that is to be
equivalent to functionalities system provides.

The second activity is creation of a data view model. Data
is modelled by identifying and extracting information from
hierarchically organised scenarios created in the functional
view activity. Identified data is organised hierarchically,
once again, and associated with scenarios. The created
hierarchical data model represents data processed by the

system. Third activity, usage view, aims to model complex
system usages and internal processes. This is achieved by
identifying number of scenarios; scenarios that, when
executed together, result in achievement of specific
functionality. The usage view model is created by
grouping and sequentially ordering these scenarios using
control structures.

Scenarios with Goals and Functions
Idea of creating scenarios in such a way as to hold within
information about functions required to execute scenario
and information about scenarios purpose (users’ goals) can
be found in [7, 8]. Scenario is a sequence of actions
performed in order to achieve certain objective. Actions
contained within scenarios are accomplished by functions
of the system or by user interactions with the system.
These actions and interactions result in achievement of
user goals and validate usefulness of the system. The focus
of this method is on determining by what means goals of
users are achieved. Scenarios are tools used as the
intermediary link between goals of the user and functions
of the system.

Scenarios are modelled by combining (linking) them with
both user’s goals and functions which are required to
achieve these goals. Author prescribes simple yet effective
design sequences [8] for purposes of knowledge
acquisition through scenarios, leading to system design.
Combining scenarios, goals and functions, results in a
scenario-based model which shows, how functions of the
system will serve the goals of the user. Systematic design
process based on this scenario model drives the system
design. Design process is based on a traversal of set of
rules specified by three distinct sequences: by known
goals, by known functions or by known scenarios. The
resulting design consists of scenarios interlinked with
goals and functions.

Scenario-Based Engineering Process (SEP)
Authors [9] define SEP as “user-centred, architecture-
based, iterative and prototype-focused” process. Focus of
this method is on scenarios and scenarios’ task analysis.
Task analysis identifies new sets of tasks (smaller
scenarios). Task analysis in regards to software
engineering is a substantial field of research and good
starting points for interested reader are [12, 13].

SEP process [9, 10] strives to deliver system
analysis/design/development details for architecture-based
component reuse. To achieve the reuse, scenarios are
employed as a backbone to task analysis, and task analysis
as a backbone to Domain-Specific Software Architecture
(DSSA) [11] specification. All of created artefacts should

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

182

be stored in a database, or as SEP calls it “lessons learned
repository”, and updated accordingly.
SEP considers that each scenario is a limited domain in
itself, hence incremental design and implementation of
specific parts of the system should be done. As in
incremental processes, early scenarios should be
prototyped and directly implemented into the process.
Such views promote user involvement in validation and
verification of system requirements. This process is
supplemented with traditional object-oriented concepts
(analysis, design, class diagrams etc), or for that matter
any other concept development team is used to work with.

4. Application of Scenario-Based Methods

Scenario-Based Modelling
System modelling using scenarios starts by functional
decomposition of system requirements down to scenarios
(users’ point of view of system) and sub-scenarios
(system’s functions). Functionally related scenarios are
then grouped into scenario groups. These scenarios are
then hierarchically organised. Figure 1 shows hierarchical
scenario organisation in case of a simple web browser
system (connect, display, navigate, favourites, print, save
functionalities). Scenario group (SG) “Connect to
Internet” is shown and contains two scenarios with its
relevant sub-scenarios. When the hierarchical scenario tree
is expanded it contains 42 scenarios (excluding
exceptional and alternative cases).

Figure 1 Hierarchical scenario organisation

Functional view activity, a process based entirely on
notions of functional composition/decomposition of
scenarios is time consuming and cumbersome. The notion
that scenarios are understood by every stakeholder

involved in software process is true. However, other
existing techniques for analysis and design, such as use
cases and interaction diagrams would produce more
accurate design, in a shorter period of time. Next two
activities of this method, data view and usage view,
prescribed by authors, are insufficient in detail on how to
perform the steps within. Likewise, applying the data view
seemed nothing more then class modelling, which can be
achieved more efficiently using a standard object-oriented
approach, rather then by constructing scenarios in a
scenario model. In regards to the usage view, where a
number are scenarios is composed together to model
system states and processes – again using known means,
like state diagrams of finite state machines, would achieve
more efficient results.

Scenarios with Goals and Functions
Traversing prescribed design sequences, in collaboration
with the future user, (there are some known user goals,
known system functions and known scenarios) produced a
set of scenarios. Table 1 shows a structure of a procured
scenario during a design process. Except for actions
needed to achieve a certain scenario, required system
functions are linked to actions within, as well what user
goal the scenario achieves.

Table 1 Scenario with Goals and Functions
Scenario: Print

2. User selects a print
type to print the web
page.
By-Function: Select
Print Option

1. System displays a web page.
By-Function: Render Document

3. System checks the print option.
By-Function: Check Print Option.

4. System processes print request.
By-Function: Process Print Job.

5. System forwards print job to
printing machine.
By-Function: Initiate Print Job

Goal: Print Document
Goal: Print Text

Design sequences have proven to be effective indeed.
Starting a design sequence by knowing two basic user
goals; traversal of other sequences triggered creation of
new scenarios and identification of new system functions.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

183

In case of a simple web browser: user visits websites and
user prints documents – six scenarios have been
determined and all together 26 system functions have been
identified. To further the design specifications the method
involves the idea of functional representation to specify
required system functions [8, 14].

It could be said that procured scenarios depicted no more
then sets of functional requirements. However, efficient
use of scenarios in this approach can be thought of as a
valuable knowledge acquisition tool. In that way, a tool
that does offer good insight into the system needed to be
built. By using rules specified by design sequence of
known goals, known functions and known scenarios —
not only scenarios of use were elicited showing
user/system interaction. Observing the scenarios clarified
sequence of actions required to satisfy user’s goal. Every
action within a scenario had to have a function linked to it,
a function that needs to be developed and integrated in the
system. Scenarios are structured in such a way that on the
left side user’s actions/functions are specified and on the
right side are system’s responsibilities. Having a distinct
view of user’s actions gave a clear view of what is
required from the user, and therefore the possibility to
consider user interface design decisions.

Scenario-Based Engineering Process (SEP)
Applying SEP was a well defined, systematic design
practice – main activities within SEP were domain
analysis, DSSA [11] specification and application design.
Domain analysis started by identifying, in collaboration
with the user, a set of applications (required
functionalities) system needed to support. The next step
was creation of possible scenarios for each identified
application, followed by the process of task analysis of
each identified scenario. Scenarios and task analysis
produced 53 well specified artefacts that were a basis for
architecture definition and system application design.

Task analysis is the backbone of SEP and Table 2 shows
one of the results of applying task analysis to Browse
Websites application scenarios. In Table 2 the Search
Query scenario has undergone process of the task analysis.
Each identified sub-task has been refined further using
alike task analysis structure. Final result of task analysis
was a task model that provided information about required
functionalities and what is needed to accomplish these.
Scenarios combined with application of task analysis
produced a wealth of information that were relied upon
and employed in next stages of design activities. Inclusion
of a formal design technique, in this case object-oriented
concepts, assisted with specifics on how system should be
structured.

Table 2 Task Analysis of Search Query Scenario
Tasks
Analysis
of Scenario 7

Process Search Query

Objective search term forward by the system to
the internet search engine

Task
Responsibility

user and system

Precondition keyboard interface,
mouse interface,
internetwork connection

Input characters,numerals,
combination of both, mouse click,
keyboard event

Output web document displaying results of
search query

Task
Description

User enters characters or combination
of numerals and characters into the
system. User forwards entry to the
system by a mouse click or keyboard
“enter” key event.

System detects user action – either
mouse click or keyboard event and
validates user’s entry. System
validates if the entry is a search term
or a domain name.

System connects to internet search
engine and forwards the search term,
including application (agent)
identification. Internet search engine
returns search query results.

Sub-tasks 1. Detect user actions
2. Validate user entry.
3. Provide application

identification and forward
search term

5. Implementation and Results of Scenario-
Based Methods Designs

In general, scenario-based design methods in theory seem
highly applicable. However, they do suffer from lack of
diagrammatic representations of the system to be built.
Specifying and explaining behaviour of machines in
natural human language does not produce sufficient
information. Lack of diagrams is a major drawback to
system design and implementation. However
implementation differences between design results of each
selected three methods are substantial.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

184

Scenario-Based Modelling
From our experience Scenario-Based Modelling is no
more then a requirements generator. The output of a
design process, a number of functionally decomposed and
grouped scenarios that are hierarchically organised
provide developers with just that. A number of scenarios
holding descriptions of what system has to provide.
Essentially, the developer is left with a set of requirements.
Implementing requirements adds a time consuming burden
to software process, since design is non-existent. Trial-
and-error development is something to be avoided at all
costs. This scenario-based design method is good for
determining what functionalities are required for the
system and its use should stop there. Therefore, from our
experience it can hardly be used to model the system and
produce sufficient design that leads to implementation.

Scenarios with Goals and Functions
On the other hand, implementation of design by
Combining Scenario with Goals and Functions method is
far more effective. Implementation is somewhat easier due
to the clear structure of scenarios. Having a number of
scenarios that clearly state the user’s goal, and clearly state
how that goal is to be accomplished through execution of
actions is valuable. Each action in a scenario has a
function linked to it, a function that needs to be coded.
Identified functions are specified using functional
representation. Implementing such information at least
gives developers clearer and well defined set of operations
coupled with purpose. Figure 2 shows implementation of
scenario Print from previous Table 1. Each scenario was
implemented as a module since it was self-sufficient in its
own right.

Figure 2 Scenarios Goals and Functions result

Scenario-Based Engineering Process (SEP)
Scenario-Based Engineering Process is a well structured
requirements elicitation, task identification and software
system design method. From a development point of view,

scenarios give information about overall functionality that
developers can refer to. Task analysis gives information
that can be useful for specification of objects and methods.
However, the final product of SEP design that developer
refers to is a full class diagrams with well defined
attributes and operators. These diagrams themselves are an
abundance of information that developer needs. Figure 3
shows implementation result of storing a web address into
a web browser.

Figure 3 SEP implementation result

From implementation point of view, SEP design produced
well rounded information for developers. Of course,
combination with object-oriented concept assisted a great
deal. However, any other paradigm that designers and
developers are comfortable with can be used, since SEP is
flexible by nature in such sense. Consequently, it can be
determined that the main strength of SEP design is in
application of knowledge acquisition, using scenarios and
task analysis.

6. Scenario-Based Methods’ Design Process

Combining Scenarios with Goals and Functions is a user-
centred goal-oriented technique that ensured elicitation of
user goals and identification of required system functions.
The user was constantly involved in scenario creation.
Each scenario contained significant information that was
applicable to implement the design. Structure of scenarios
and information contained within clearly indicated user
and system actions. Each scenario held association with
user’s goal. From implementation point of view, scenarios
could be treated as modules that fulfil goals and actions
within provided required functions for a specific module.
On the other hand, interpretation of scenarios could be
done in object-oriented terms (e.g. applying sequence
diagrams, class modelling, etc) and implementation can be
done on same terms.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

185

Scenario-Based Engineering Process was a well defined
set of knowledge acquisition, architecture definition and
design activities. During the domain analysis activity,
knowledge acquisition was supported by scenarios, task
analysis and object-oriented analysis. The user defined
scenarios in own terms and was involved throughout the
domain analysis. Prototypes were used to convey design
ideas to the user and incorporated into the final system.
Furthermore design was supported by inclusion of
reusable concept of DSSA and strengths of object-oriented
design concepts.

Scenario-Based Modelling was a lengthy repetitive
process of obtaining scenarios by applying functional
decomposition to system requirements, then subsequently
scenarios themselves to identify basic system functions.
The user was not involved in scenario creation. The
method aims to create a system model, and instead a set of
system requirements was produced. Implementation based
on requirements turned into a build-and-fix process.

7. Conclusion

Instead of traditional design methods, scenario-based
design methodology was selected for system design as a
proof of concept and inquiry into alternatives to system
design. Work presented in this paper applied three
scenario-based methods to development of a simple web
browser system.

In regards to application of selected scenario-based design
methods, positive experience acquired is that methods do
concretely describe system to be built during early stages
of software process. Another fact is that user collaboration
is good, user felt positive about the outcome of software
project. Collaboration and scenario creation constantly
raised questions on design issues and promoted work
focus. Lack of diagrammatic representation is major
downfall. It is not feasible, using natural language, to
convey design ideas of complex subject such is a software
system. Therefore, scenario-based design ideas should be
used either as analysis method or as a supplement to
proven analysis/design techniques.

References

[1] Carroll J.M. (2000), Five reasons for scenario-based design,

Interacting with Computers, Volume 13, Number 1, pp. 43-
60

[2] Rosson M.B. & Carroll J.M. (2002), Scenario-Based Design,
Human-Computer Interaction Handbook: Fundamentals,
Evolving Technologies and Emerging Applications.
Lawrence Erlbaum Associates, 2002, pp. 1032-1050.

[3] http://crinfo.univ-paris1.fr/CREWS/Corps.htm
[4] Sutcliffe A. Scenario-Based Requirements Analysis, 1998
[5] Kazman, R.; Abowd, G..; Bass, L.; Clements, P. (1996),

Scenario-based analysis of software architecture. IEEE
Software pp47-55

[6] Bai, X. Tsai, W.T. Paul, R. Feng, K. Yu, L. (2002),
Scenario-based modeling and its applications., Proceedings
of the Seventh International Workshop on Object-Oriented
Real-Time Dependable Systems, pp253-260

[7] Kaindl, H. (1995), An integration of scenarios with their
purposes in task modeling. Proceedings of the 1st
conference on Designing interactive systems: processes,
practices, methods, & techniques, pp227 - 235

[8] Kaindl, H. (2000), A design process based on a model
combining scenarios with goals and functions. IEEE
Transactions on Systems, Man and Cybernetics, Part
A,Volume 30, Issue 5, pp537 – 551

[9] Mettala, E., Cook, D.J., Harbison, K. (1996), Application of
the Scenario-Based Engineering Process to the Unmanned
Ground Vehicle Project, ARPA96 (627-642)

[10] Priest, J.W. Burnell, L. Haddock, G. Silva, J. (1998),
Scenario-based systems design for quality engineering.
IEEE International Conference on Systems, Man, and
Cybernetics, pp4866-4871

[11] E. Mettala & M. Graham (1992), The Domain-Specific
Software Architecture Program., Technical Report
CMU/SEI-92-SR-009

[12] Johnson, P. Johnson, H. Waddington, R. Shouls, A. -Task-
related knowledge structures: analysis, modelling and
application. Proceedings of the Fourth Conference of the
British Computer Society on People and computers IV,
pp35 - 62

[13] Cuno Duursma, Olle Olsson, Ulf Sundin - Task Model
definition and Task Analysis process (1994) , research
project partially funded by the ESPRIT Programme

[14] Chandrasekaran, B. Goel, A.K. Iwasaki, Yumi (1993),
Functional Representation as Design Rationale, Computer
archive Volume 26, Issue 1, pp48-56

[15] http://sunsite.informatik.rwth-aachen.de/CREWS/crews-
sum.htm

[16] Dzida, W. & Freitag, R. (1998), Making use of scenarios
for validating analysis and design, IEEE Transactions on
Software Engineering Volume 24, Issue 12, pp1182 – 1196

[17] Kazman, R.; Abowd, G..; Bass, L.; Clements, P. (1996),
Scenario-based analysis of software architecture. IEEE
Software pp47-55

[18] Kazman, R.; Klein, M.; Clements, P. (2000), ATAM:
Method for architecture evaluation, CMU SEI Technical
Note CMU/SEI-2000-TR-004, ADA382629, Software
Engineering Institute, Pittsburgh, PA

