
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

197

Real-time programming platforms in the mainstream
environments

*Husein A. Al Ofeishat and **Ahmad A. Al-Rababah,

*Al-Balqa Applied University, Computer Engineering Department.Jordan

**Applied Science University, Software Engineering Department, Faculty of IT,
Amman, Jordan 11931

Abstract

 The functionality of a real-time system is
divided into separate run able entities, referred to
as tasks. The term real –time system refers to
generally-rendered system as processing unit
having a set of input & output. There exists a group
of notions closely intertwined when speaking of
real-time system. The term embedded system
refers to equipment or devices not classified as
standalone general–purpose computer architectures
but whose functionality resembles that of dedicated
computer architectures. while stand alone general-
purpose computer architectures designed to run a
commonly used set of application ,there is large
diversity of embedded system architectures, where
as essentially one general- purpose computer
architectures. In this paper, a description of
existing mainstream general-purpose real-time
programming platforms is presented.

Keywords: Real-time systems, embedded system,
QNX, Neutrino, Java.

1. Introduction

 The system functions by performing its tasks
and responding to external asynchronous events.
the time leg between event occurrence and
realization of the required behavior is bounded .the
logical correctness of a real-time system is based
on both the correctness of the output and the ability
to satisfy the repined time bounds. The term real-
time operating system refers to general-purpose
operating system with imposed response-time

constrains. Failure to satisfy the time constraints
results in system malfunction [1,9].

 Depending on the hardware architecture, the
system may be able to support multitasking, that is
the process of scheduling and switching tasks,
making use of the hardware capabilities or
emulating concurrent processing using the
mechanism of task context switching [2]. The real-
time system grants access to system recourse that
the tasks may use. The access policy may require
that specific recourse be used by only one task at a
time. The access policy is controlled by
synchronization mechanisms. With respect to
tasks, real-time systems provide the functionality
of scheduling and synchronization.

 Synchronization is delegated to the kernel, the
core entity of the system. The kernel is responding
for ensuring the recourse allocation policy
realization of context switching [2,10]. Scheduling
is delegated to the scheduler, one of the parts of the
kernel. The scheduler is responsible for
determining which task to run next multitasking
system. The algorithm that is used in this process is
referred to as the scheduler algorithm. The non-
preemptive scheduler, also referred to as
cooperative scheduler, realizes the scheduling
policy which requires that the processor be
explicitly freed up by the tasks. Higher-priority
task waiting for execution is queued until the
currently running lower-priority task is complete.

The preemptive scheduler realizes the scheduling
policy which requires that’s the currently running

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

198

lower-priority task be suspended when higher-
priority task waits execution.

The fixed-priority scheduler realizes the scheduling
policy referring to the priorities assigned to tasks at
system design stage. In the fixed-priority
scheduling policy, the priority of each periodic task
is fixed with respect to other tasks. The rate-
monotonic algorithm implements the fixed-priority
policy and is used in scheduling periodic and
independent tasks. The algorithm is preemptive
and assigns higher priorities to tasks with shorter
periods.
The algorithm is stated optimal by the rate-
monotonic theorem. The priority mechanism is
often supported by the hardware and exhibits
latency by prioritizing the interrupt handling
system. The dynamic priority scheduler realizes the
scheduling policy allowing for run-time
modification of the priorities assigned to task at the
system design stage. In contrast to fixed-priority
algorithms, in dynamic-priority schemes the
priority of each periodic task with respect to that of

the other tasks changes as tasks are released and
completed.

The earliest-deadline-first algorithms used
deadlines as criterion for taking scheduling
decisions rather than execution time. The task that
is ready for execution and has the earliest deadline
is assigned the higher priority [3].

 Strictly fixed-priority schedulers exhibit priority
inversion problem. Contemporary fixed-priority
solutions account for auxiliary dynamic priority
assignment protocols resolving this problem.

2. Real-Time Programming Environments

 The ready-made real-time system solution
usually comprises a microkernel realizing the
scheduler functionality. The microkernel is also
assigned the functionality of the recourse allocate
and the synchronizer. This design principle is
followed by the QNX/Neutrino real-time operating
system. A fairly original solution is the real-time
extension to the Java Virtual Machine which,
together with base platform components,

Process 1

Hard ware
Interrupts

Network
Management

Scheduler

Inter Process
Communicatio

Interrupt
Redirecto

Network
manager

Process 2

Network Media

Fig.1 the QNX Microkernel

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

199

constitutes a portable and reliable real-time
general-purpose programming environment.

 The QNX/Neutrino operating system design
philosophy aims at implementation of the POSIX
standard independent of the UNIX system structure
[4,9]. The POSIX features that are not
implemented in the microkernel are provided by
optional process and libraries. The Neutrino
solution realizes the microkernel architecture for
the sake of better scalability to a wider range of
applications. It provides multitasking, threads,
priority-driven, Preemptive scheduling and fast
context- switching. [5].

 The architecture of the QNX/Neutrino system
allows for tailoring its configuration involving
projects consisting of a few modules as well as
complex solution. The microkernel is designed to
manage process treating them as a group of
cooperating tasks rather than introducing heretical
dependencies. The tasks interact with each other
through the coordinating kernel. The architecture
assumes message-based inter process
communication as the fundamental design
principle. The routing of all messages between all

threads throughout the entire system is handled by
the kernel [5]. The process management as well as
inter process communication functionality is
implemented in the microkernel. This is depicted in
Fig.1.

 In addition, the functionality spans low-level
network communication and first-level interrupt
scheduling. The scope of implementation of the
POSIX standard spans the range of the thread
synchronization primitives, scheduling service
using standard algorithm and standard set of timer
services. The kernel process is designed not to be
scheduled for execution. The kernel process is
executed only when being explicitly called by
thread or in response to a hardware interrupt.

The services of the QNX/Neutrino system are
realized as standard processes. The microkernel
functionality is dedicated to fundamental
scheduling and synchronization services solely.
This design philosophy, depicted in Fig.2,
effectively eliminates the border between a user
application and a system application, allowing for
better and more comprehensible extensibility of
standard system structure. Since the device drives
also follow this design principle. They may be
developed and debugged like any other application

Process Manager File Manager

S o f t w a r e B u s

Network Manager GUI Manager Application
Manager

Microkernel

Fig.2 Functionality delegation in QNX Neutrino [6].

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

200

[6]. Neutrino is fully preempted able, even while
passing messages between processes. It resumes
the message pass where it left off before
preemption. The functionality of the Neutrino
microkernel is designed to span lightweight
processing, leaving out the heavy weight
processing to external processes. Neutrino and
process manager may be configured to realize
concurrent environments as a group of cooperating
thread , a group of single-thread cooperating
processes or a group of multi-thread cooperating
process . The money management unit mechanism
is provided as means of memory protection
between the processes [6].

 The message passing mechanism is the
fundamental means of inter process
communication used in the QNX/Neutrino
operating system. Message is realized as chunks of
bytes passed from one process to another. The data
contained in the message is interpreted only by its
sender and its receiver. The message passing
mechanism is used as means of synchronizing
exaction of process. Processes are viewed upon as
a group of entities each of whose changes its state
as it sends or receive message .The changes of state
and process priorities are the criteria by which the
Neutrino kernel schedules processes. The
aforementioned mechanism is used in a similar
way as means of synchronizing exaction of thread.
A scheduling decision is made whenever that
execution state of any threads changes. Threads are
scheduled globally across all processes. The
Neutrino kernel realizes the functionality needed to
support threads, message passing, timers, interrupt
handlers and basic synchronization mechanisms [6]

 Even thread is assigned a priority. The
scheduler selects the next thread to run by looking
at the priority assigned to even thread this is ready
to be executed. The thread with the higher priority
is selected to run. Each thread is assigned one of
the possible 32 priorities. The priority assignment
mechanism incorporates priority inheritance. The
QNX-Neutrino operating system implements
FIFO, round-robin and adaptive scheduling

algorithms, using them interchangeably to run the
system threads. The POSIX-standard thread-level
synchronization primitives, including mutual
exclusion locks and semaphores, and provided. The
implemented interrupt mechanism supports priority
assignment and preempting. The interrupt latency
is minimized by maximizing the time with in
which the interrupts are fully enabled [6].

3. Java

 The Java environment process attributes that
make it a powerful platform to develop embedded
real-time applications. The most crucial is dynamic
class loading and built-in multi-threading with
language-level synchronization mechanism. On the
other hand, the behavior of Java standard
synchronization mechanisms is not guaranteed to
be deterministic, which is mandatory in real-time
applications. A number of solutions have been
developed to port the standard Java platform to use
in embedded real-time programming. The major
solution is developed as the Real-timer
specification for Java. The real time specification
augments the existing standard Java platform with
the real-time functionality [7]:

1- Real-time thread is provided whose
scheduling attributes are more carefully
defined than is the scheduling for ordinary
Java threads.

2- Tools and mechanisms are provided to
allow writing program not using the Java
standard platform automatic garbage
collection mechanism.

3- The asynchronous event handler class is
provided to allow for programming
interrupts.

4- The mechanism of asynchronous transfer of
control is provided to support control flow
change between cooperating threads.

5- The mechanism object memory allocation
control is provided.

6- The mechanism of direct memory access is
provided.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

201

 The limitation of the standard Java platform
involving memory management sandbox is
addressed by including mechanisms allowing byte-
level memory access. This solution is an
indispensable approach as the possibility of
inserting system native calls to Java programs
reduces the programs reduces the program
portability and is not as secure as bytecode.The
Raw Memory Access physical memory, mapping
objects into RAM or flash memory, manipulating
virtual memory, implementing device drives and
access to memory-mapped devices. The
functionality if the thread class is extended for real-
time applications by introducing the Real Time
Thread class. The extended thread class cooperates
with scheduler class which may implement an
arbitrary scheduling algorithm other that the base
algorithms, which is preemptive and priority-based
[7].

 The real-time specification for Java (RTSJ)
requires that the priority-based scheduling be
implemented as it is universally used in
commercial real-time systems. Moreover, priority-
based scheduling is implemented also by the
standard java virtual machine (JVM).The 10
possible task priorities implemented in the standard
JVM are extended to 28. The specification requires
that the introduced priorities be scheduled using
the strict fixed-priority preemptive scheduling
algorithm. The specification indicates the priority
inheritance protocols as the default for locks
between real-time threads, allows priority ceiling
emulation protocols for priority inversion
resolution and provides for other protocols [8] .

 The RTSJ provides room for implementation to
support other schedulers. The specification does
not define the way the new schedulers are
integrated with the system. It only provides the
possibility that an implementer may design
alternate and defines scheduler interfaces that are
general enough to support a wide variety of
scheduling algorithms. The most convenient way
to implement real-time task in Java is to extend the
thread class to support real-time functionality. This

design approach is accounted for by the
specification. The standard Java virtual machine
monitors exhibit the priority inversion problems.
These maybe resolved by means of the priority
inheritance and priority ceiling and protocols. The
priority in inheritance protocols does not prevent
deadlock when a chain of blocking is formed. The
priority ceiling protocols avoid this by assigning a
priority ceiling to each semaphore associated with
a critical section, but it’s more complement to
implement. The standard Java monitors are not
guaranteed to be deterministic in respect of the
queuing policy [7,8]

 The specification extends the Symantec of the
synchronized key word to avoid the priority in
versions problems and require that the queues be
priority scheduled. The monitor control super class
abstract monitor control policy and the monitor
policy is implemented by its subclasses. The
specification is complaint with the standard Java
virtual machine as task synchronization is naturally
ported to real-time by the synchronize statement
extension. Many real-time systems are event-
driven, taking actions in response to event
occurrences in handler routines. The particular
design in which the event handlers are
implemented as separate threads is maintainable
and comprehensible. Moreover, the handler threads
may be taken account for by the scheduler
algorithm similarly as other threads. Speaking of
the standard Java Virtual Machine. This approach
is inefficient. In terms of the real-time system
latency. The time lag between an event occurrence
and execution of the corresponding handler may
appear long because of the necessary resource
allocation associated with thread creation [7,8]. An
even is not synchronized with the execution of a
particular task and may be generated by any other
task or by the hardware. Synchronous exceptions
allow a thread to be synchronously interrupted by
another.

 The real-time specification introduces two
classes, one of which supports the event
functionality, the other the functionality of an event

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

202

handler. Objects of the A sync Event class
resemble a POSIX single or a hardware interrupt
and are associated a set of handlers. Objects of the
A sync Event Handler class are associated a
scheduling parameters object that control the
handler execution [7, 8]. Synchronous event
handlers are an attempt to capture the advantages
of creating threads to service evens without taking
performance penalty. The standard Java platform
has efficient mechanisms for handling user –
interaction events, but lacks a general-purpose
mechanism for associating events that happen out
side the Java environment with method invocation
inside the environment. The RTSJ introduces
happenings as a pathway between events outside
the Java platform and asynchronous event
handlers. A asynchronous transfer of control is
mechanism that lets a thread through an exception
into another thread throw exception in to another
thread and is an improvement over the standard
Java Virtual Machine thread. Interrupt mechanism.
The standard Java Virtual Machine Garbage
collection mechanism (GC) is a separate thread
that is executed when the system is being idle.
Once, the garbage collection is started, it must be
exacted until completion, and must not be stopped
or preempted at the risk inconsistent state of the of
the system heap.

 The real-time equivalent of the standard GC
mechanism is scheduled as other tasks, may be
preempted by a higher-priority task. Unbounded
garbage collection pauses must not take place in
real-time applications [7, 8] . one of the solution
provided by the real time specification of a pre
allocation memory pool for real-time object in
depend it of the recourse allocation policy inherent
to standard Java virtual machine . The specification
opted for not relying on special implementation of
the garbage collection mechanism to resolve the
secluding problems that occur .rather it is assumed
that a particular implementation of the real-time
Java virtual machine may introduce an arbitrary
GC mechanism. In turn, the specification
introduces new memory mechanism that is never
delayed by garbage collection. The first tool for

avoiding garbage collection is no-heap, real-time
threads. The threads of this class are not allowed to
access memory in the heap. Since there is no inter
action between no-heap threads and garbage
collection or compaction, no-heap threads may
preempt the garbage collector with out waiting for
the garbage collector to reach a consistent state.
Ordinary thread and heap-using , real-time thread
maybe delayed by garbage collection while
creating object in the heap and are preempted by
the garbage collector until it reaches a consistent
state if activated while the Garbage collector is
running. No-heap, real-time, threads are not
effective by these timing problem [7,8] . by it self
support, for no-heap , real-time threads is in
insufficient as it restricts the thread classes to
elementary data type. The specification defines two
new types of memory that are free from garbage
collection. These are [7,8]:
1- Immortal memory which contain object that

are never garbage collected.
Object allocated with in immortal memory remain
in use until the JVM terminates .the memory is also
shared by all other thread.

 2- Scoped memory which has specified lifetime.
object allocated from a memory scope stay
allocated until the scope no longer active .most the
scope becomes in active, all the object stored with
in it are freed .the memory area abstract class
support scope and immortal memory .the garbage
collector class provides methods for getting
information about the GC mechanism behavior,
including information about the introduce latency
and recourse reclamation rate. Immortal memory
has its counterpart approaches in the large class of
real-time systems that allocate all resource at single
initialization phase and subsequently run
indefinitely without allocating or freeing any
resources. The immortal memory mechanism there
fore resembles the C or a assembly language
programming paradigm. Scoped memory functions
like a stack for object. Upon entering a memory
scope, the thread starts allocating object beginning
from that scope. it continues allocating object until
it enters a nested scope or exit from the scope.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

203

Once the threads exit the scope , the object
allocating with in the scope are no longer
accessible and the JVM is free to recover the
memory use [7,8].

4. Comparative Analysis

 The main stream real-time QNX programming
platform implement a set of the POSIX standard,
currently dedicated to C and Ada programming
languages. The real-time specification for Java is
an extension of the existing standard java
programming platform. The POSIX-dedicated real-
time programming platforms are observed to
exhibit better efficiency than the counter part Java
solutions due to the inherent binding to system-
closed C/Ada code. Java solutions in term offer
stronger type semantics and better program
execution security. Both QNX and Java real-time
platform aim at portability of the provided
functionality. In QNX, this is achieved through
POSIX compliance. Java is portability /oriented by
its natures. the standard POSIX implementation
solutions is more suitable for static solution , in
with the number of tasks present in the particular
real-time system in known in advance this due to
the lack of the dynamic thread creation facility . In
QNX, the portability of the POSIX standard is
extended by the architecture of the system which
allows for the dynamic creation and registering of
new modules, in depend it of how closely they
integrate with the system. The real-time Java
platform is suitable for dynamic solution, as
dynamic thread creation is achieved through object
creation. The core synchronization mechanism of
the QNX/Neutrino system is message passing. The
real time Java platform achieves synchronization
mainly through monitor classes and the
synchronized statement. The message passing
mechanism may appear more difficult to handle
than the monitor based solutions. The main
structuring unit of the C programming language is
functions. The modules them self are not so well
formalized as are the classes in the Java
programming language. The signaling

synchronization mechanism may thus appear more
suitable for advanced programmers. The real-time
Java platform offers then inheritance class and
interfaces hierarchy to logically group task.

 The package mechanisms result in more formal
structuring of the solutions. In the POSIX
implementation, the mechanism responsible for
asynchronous transfer of control is implemented by
means of the message passing mechanism. The
real-time Java platform integrates the
asynchronous events handling with the exception
mechanism.

 5. Conclusion

 The main stream real-time QNX programming
platform maybe regarded as reference POSIX
implementation of a real-time system. The
QNX/Neutrino microkernel separate the core
scheduling and interrupt handling functionality
from the higher level process, allowing for there
dynamic creation and registering. An important
aspect indicating the future development of the
QNX real-time system is its integration with both
the C and Java programming languages, the later
being augmented with a dedicated virtual machine.
The real-time specification for Java appears as
attractive in view of real time programming
platforms due to the strong object – orientation and
semantics of the Java programming language.

However, certain limitation of the specification
may be the partial process of integration of the
real-time enabled Java with the standard Java
platform classes.

6. References

[1] P.A. Laplant, Real-time Systems : Design and

Analysis, Ontario, NJ : John Wiley &
Sons,2004.

[2] R. Grehan, Moot, and I.Cyliax, Real-time
Programming : A Guide to 32-bit Embedded,
Ontario,MA : Addison Wesley, 1998.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

204

[3] M. Joseph, Real- time Systems : Spécification,
Vérification and Analysis , London, England :
Prentice Hall Int., 1996.

[4] M.G. Harbour, ‘ Real-time POSIX : An
Overview ‘ VV Conex 93 International
Conférence, Moscu, Spain, June,1993.

[5] QNX Software Systems Ltd., QNX System
Architecture, Ontario, Canada : QNX Software
Systems Ltd., 1997.

[6] QNX Software Systems Ltd., ONX Neutrino
Real-time Operating System : System
Architecture, Ontario, Canada : QNX Software
Systems Ltd ., 2002

[7] P.C. Dibble, Real-time Java Platform
Programming, CA : Prentice Hall PTR,2002.

[8] M.Higuera-Toledano, V. Issarny,M.Banatre,
G.Cabillic.J. Lesot, and F. Parain,’ Java
Embeddede Real-Time Systems : an Overview
of Existing Solutions ‘, Third IEEE
International Symposium on Object-Oriented
‘Real-Time Distributed Computing , NEWport
Beach, California, arch, 2000.

[9] A. Silberschatz, P. Baer Galvin, and G., Gagne
Operating System Concepts with Java , 2006)

[10] C. Venkateswara Penumuchu. Simple Real-
time Operating System: A Kernel Inside View
for a Beginner, 2007)

