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Summary 
This paper analyzes an embedded architecture of torus network 
with the hypercube pertinent to parallel architecture. The product 
generated from torus and hypercube networks show how good 
interconnection network can be designed for parallel computation. 
The advantages of hypercube network and torus topology are 
used for product network known as Torus embedded hypercube 
network. A complete design analysis and comparison of this 
network with various other networks is given using network 
parameters.  
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1. Introduction 

   Massively parallel computing systems are placing a 
major emphasis on scalable networks with small diameters 
and bounded node degree. The hypercube is a network 
with a small network diameter, high connectivity and 
simple routing procedures. However, the node degree 
grows logarithmically with number of vertices making it 
difficult to build scalable architectures using the hypercube 
[1, 2]. On the other hand, Torus is a network with constant 
node degree and has a highly scalable architecture but has 
larger network diameter [1, 3]. The advantages of these 
two architectures can be combined by embedding the torus 
and hypercube networks to give rise to a torus embedded 
hypercube network as suggested in [4]. Such a 
combination results in a system which can be implemented 
with small node degrees, which implies a reduction in 
hardware cost per node. Also, a constant node degree 
results in a system that is scalable without having to 
modify the individual nodes [4]. 
   Louri and Sung in [4] have reported a comparison 
between the torus embedded hypercube, which they refer 
to as OMMH, and the hypercube network. Based on their 
comparison, they conclude that the torus embedded 
hypercube is superior to the hypercube network.  
However, we feel that a more detailed and elaborate 
comparison of torus embedded hypercube network with 

other proposed networks would provide with more 
decisive conclusions and would be of great use in selecting 
network architectures for future high speed computations. 
  In this paper, we compare the torus embedded 
hypercube with other proposed and popular 
interconnection networks by considering the node degree, 
network diameter, total number of links and topological 
network cost.  
 
2. Theoretical Consideration 
 
2.1  Embedding Properties 
 
   In this section, we discuss the embedding of the torus 
and the hypercube networks to obtain the torus embedded 
hypercube network. While combining the torus and the 
hypercube network, several concurrent torus networks are 
used in the architectural design as shown in Fig.1. The 
black circles represent nodes in the individual torus. The 
ellipse drawn over the group of identical nodes of the 
concurrent torus form a hypercube. These nodes are 
connected according to the hypercube configuration while 
the torus configuration lies along with it [3, 4, 5]. 
   Note that nodes of the hypercubes with similar 
addresses will be the nodes of individual torus.   

          
 

Fig. 1. Concurrent torus network. 
    
   Let l x m be the size of concurrent torus network and N 
be the number of nodes connected in the hypercube. Then 
the  torus  embedded hypercube network will be of size 
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( l, m, N ). Nodes with identical positions in the torus 
networks will form a group of N number of nodes.  These 
nodes will be connected in the hypercube configuration. 
Such nodes can be addressed with three components; row 
number i and column number j of torus appended with the 
address of node k of hypercube. 
   Hence, a (l, m, N)–torus embedded hypercube network 
will have l x m x N number of nodes and a node will be 
addressed as (i, j, k) where 0 ≤ i < l, 0 ≤ j < m and 0 ≤ k < 
N. Thus, the data routing functions of hypercube and torus 
are combined together for two nodes in torus embedded 
hypercube network.  
   Combining the data routing functions of torus and 
hypercube provides with the routing functions of the torus 
embedded hypercube [4] as  
 
Th1( i, j, k) = ( i,  ( j+1)  mod  m,  k )            (1) 
Th2( i ,j, k) = ( i,  ( m+j-1)  mod  m,  k )          (2) 
Th3( i, j, k) = (( i+1)  mod  l,  j,  k )             (3) 
Th4( i, j, k) = (( l+i-1)  mod  l,  j,  k )            (4) 
TCd ( kn-1.....kd+ 1 kd  kd-1.....k0 )  
              = ( kn-1...kd+ 1  dk   kd-1.....k0 )      (5) 
 
  We provide an example for the above discussion in the 
APPENDIX with a torus of size 2x2 and a 3-cube 
hypercube. For a (2, 2, 8) torus embedded hypercube 
network derived from that example,   
 

 
 

Fig. 5. A (2,2,8)-Torus Embedded Hypercube Network 
 

a node with a five bit address has its left most bit 
representing row number, the next bit representing column 
number and the remaining bits representing the address of 
the hypercube as shown in Fig. 5.                         
    Table-I demonstrates the data routing function of the 
torus embedded hypercube network. Data routing between 
a source node and a destination node by applying the data 
routing functions given in equations (1), (2), (3), (4) and 

(5) is shown in this table. The numbers written above the 
arrow mark in Table-I indicates the appropriate data 
routing function applied. 
 

         Table-I 
Results of Intermediate Nodes Crossing to Establish  

a Data Routing Path 
 

 
 
 
2.2 Scalability of Torus Embedded Hypercube Network 

 
   The torus embedded hypercube network is highly 
scalable.  Scalability can be achieved in two ways [4]. 
Firstly, the dimension of the hypercube can be increased 
by keeping the size of concurrent torus same but 
increasing the number of concurrent toruses accordingly. 
Secondly, dimension of torus is expanded by keeping the 
size of the hypercube constant.  Since node configuration 
is not required, scaling up the system using the latter 
method is preferable over the former. 
   The efficiency of the torus embedded hypercube 
network is evaluated using network parameters such as 
node degree, network diameter, total number of links in 
the network and topological network cost. The definitions 
of these network parameters can be found in [1,4]. It may 
be noted that the node degree has to be as less as possible 
because if the numbers of links are increased the number 
of I/O ports also increases per node. This results in greater 
cost of the network because of higher link complexity 
 
3. Comparison Results and Discussions 
 
3.1 Node degree  

 
   Table-II and Fig.6 gives the comparison of node degree 
as a function of the number of processors of various other 
popular networks [6, 7, 8, 9, 10] along with the torus 
embedded hypercube for parallel architecture. 
 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 
 

 

244

 

Table-II 
Results of Node Degree Analysis  

 

 
 
 

 
 

Fig. 6. Node degree analysis 
 
   The comparison shows that the n-cube hypercube and 
OMIN-hypercube interconnection networks are expensive 
and not suitable for parallel architecture. For these two 
networks, the node degree increases dramatically as the 
system expansion takes place. Obviously the cost per node 
also increases tremendously for these two networks as the 
system is scaled up.  
 
3.2 Network diameter 
 
   Table-III and Fig. 7 gives the comparison of network 
diameter as a function of the number of processors of 
various other popular networks along with the torus 
embedded hypercube network . 
    
   It is preferred to have a network with a network 
diameter of minimum value. The result of comparison 
shows that OMIN-mesh network has the largest network 

diameter. Further, for this network, the network diameter 
increases tremendously as the system is scaled up. 

 
Table-III 

Results of Network Diameter Analysis 
 

 
 
 

  
 

 Fig. 7. Network diameter analysis 
 
   Worth to mention that due to their inferior performance 
as per the last two comparisons, the OMIN hypercube and 
OMIN mesh networks have been dropped from further 
comparisons 
 
3.3  Total number of links 
     
    Table-IV shows the number of links with respect to 
the scaling of the parallel architecture for the different 
networks considered. Since the node degree is preferred to 
be as low as possible, the total number of links is also 
expected to be as small as possible.  
     
   With reference to Fig. 8, it is observed that torus            
embedded hypercube offers larger number of links than the 
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other networks under comparison. This is because every 
node of torus is a hypercube configuration and hence a 
larger number of links get reflected. 
 

Table-IV 
Results of No. of Links Analysis 

 

 
 
 

 
 

Fig. 8. Number of links analysis 
 

3.4  Topological Network cost 
 

    The topological network cost analysis result is given 
in Table-V and Fig. 9. From this comparison, it is observed 
that the torus embedded hypercube network has a low 
network cost. Though this network cost is more than that 
of the n-cube hypercube, it has to be noted that the torus 
embedded hypercube has better values for all the other 
network parameters considered. 
   
 
 
 

 

Table-V 
Results of Network Cost Analysis 

 

 
 
 

 
 

Fig. 9 . Network cost analysis 
 
4. Conclusion 
 
   We have analyzed a torus embedded hypercube 
network and compared its network parameters with other 
networks. The results show that torus embedded 
hypercube interconnection network is highly scalable and 
any further configuration of existing nodes is not required.    
Due to the concurrent existence of multiple torus and 
hypercubes, this network provides a great architectural 
support for parallel processing. The parallel algorithms 
that have been designed for the hypercube and the torus 
interconnection networks can be combined together with 
minor modifications and applied on this embedded 
network. The growth of the network is observed to be 
more efficient. 
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   Our comparison of network parameters have shown 
that as far as node degree, network diameter and number 
of link is concerned; the torus embedded hypercube has a 
clear advantage over the other networks. As far as the 
network cost is considered, the n-cube hypercube seems to 
be the most economical with the torus embedded 
hypercube being the second best. However, considering 
the better performance of the torus embedded hypercube in 
terms of the other network parameters other than the 
network cost, we conclude that the torus embedded 
hypercube could be considered as the best candidate for 
future high speed and capacity computational systems.  
 

APPENDIX 
 

  To provide with an example, consider an eight 
concurrent torus network of size 2x2 each which forms 4 
hypercubes with each hypercube containing 8 individual 
nodes. From the earlier discussion, this results in a (2, 2, 
8)- torus embedded hypercube network with 2x2x8 = 32 
nodes [4, 5].  
 

 
 

Fig. 2.   A (2, 2)- concurrent meshes of torus  network. 
 
  A diagrammatic representation of the above example is 
given in Fig. 2. As shown in this figure, a (2, 2, 8)-torus 
embedded hypercube network can be derived in which N 
nodes (with respect hypercube) of Node i (with respect to 
concurrent torus) are connected in a hypercube 
configuration. 
  As is well known, the data routing functions of torus 
network [1] are 

 
T1 (i,  j) = ( i, ( j+1) mod m )           (1.a) 
T2 (i, j)  = ( i, ( j-1) mod m )          (1.b) 
T3 (i,  j) = (( i+1) mod l, j )            (1.c) 
T4 (i,  j) = (( i-1) mod l, j )   (1.d) 

 
where i and j are row and column numbers respectively.  
According to these data routing functions, the following 

permutation cycles can be generated for a 2 X 2 torus 
network as given in Fig. 3 and in equations 1.a to 1.d.     
      

        
 

Fig. 3.  A 2 X 2 torus network. 
    . 

T1 = (0  1) ( 2  3)                     
T2 = (3  2) ( 1  0)  
T3 = (0  2) ( 1  3)            
T4 = (3  1) ( 2  0)       

 
    The data routing function of hypercube network [1] is  
 
Cd  (kn-1.....kd+ 1   kd   kd-1.....k0 ) = (kn-1...kd+ 1  dk             
kd-1.....k0 )                                     (2)  
 
   for   d = 0, 1, ….n-1  where kj  for (j = 0 to n-1) is 
the binary representation of node address k and n = 
log2(N) where N  is the total number of nodes in the 
hypercube.   

            
 

       Fig. 4.    A 3-cube hypercube 
 

   According to the above hypercube data routing 
function the following permutation cycles are generated 
for a 3-cube structured network as shown in Fig. 4 and 
equation (2).. 
 

C0 = (0  1) ( 2  3) (4  5) (6  7) 
C1 = (0  2) ( 1  3) (4  6) (5  7) 
C2 = (0  4) ( 1  5) (2  6) (3  7) 
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