
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

266

Manuscript received January 5, 2009

Manuscript revised January 20, 2009

ASIC Implementation and Analysis of Extrinsic EHW Based
Power and Area Optimised 8-Bit Asynchronous Parallel MAC

D.Dhanasekaran, and **Dr.K.Boopathy Bagan

*Assistant Professor, SVCE, Pennalur,Sriperumbudur-602105.
**Professor, Madras Institute of Technology, Chrompet, Chennai-44

ABSTRACT

In computing, especially in digital signal processing,
multiply-accumulate is a common operation that computes the
product of two numbers and adds that product to an accumulator.
 The VERILOG code for MAC operation is simulated
and synthesized in Vendors tool like XILINX ISE and ALTERA
QUARTUS II with different devices. Once the coding is error
free the schematic for MAC unit will be generated and the bit
stream to used to download is used as reference to get the
approximately the same circuit by the application of extrinsic
EHW using evolutionary algorithlm. This schematic obtained by
EHW is realized as ASIC using Microwind to get the layout
determining the area and power requirement. Depending on the
different reports obtained, the optimized device which requires
minimum area and less power consumption is identified.This can
be applied to any devices like FPGA or CPLD of any vendor.
Evolvable hardware (EHW) has attracted increasing attention
since the early 1990’s with the advent of easily reconfigurable
hardware, such as field programmable gate arrays(FPGA’s). It
promises to provide an entirely new approach to complex
electronic circuit design and new adaptive hardware. EHW has
been demonstrated to be able to perform a wide range of tasks
from pattern recognition to adaptive control. However, there are
still many fundamental issues in EHW that remain open.In this
paper it was more concentrated on the ASIC part rather than
EHW because EXTINSIC EHW was used.

1. INTRODUCTION

In computing, especially in digital signal processing,
multiply-accumulate is a common operation that computes
the product of two numbers and adds that product to an
accumulator.

 A A + B x C

Modern computers may contain a dedicated
multiply-add unit, or "MAC-unit", consisting of a
multiplier implemented in combinational logic followed
by an adder and an accumulator register which stores the
result when clocked. The output of the register is fed back
to one input of the adder, so that on each clock the output
of the multiplier is added to the register. Combinational
multipliers require a large amount of logic, but can
compute a product much more quickly than the method of
shifting and adding typical of earlier computers.

2 .MAC ALGORITHM

This application is simply the internals for a matrix
multiply.The application is setup to use a fully pipelined
32 bit integer multiplier, and a variable summation part.
This particular application was only designed with two
instances on the chip. The figure below shows the
components used in this application. In order to get two
multiply accumulates onto the FPGA the multiplier had to
be redesigned from its original form to compensate for the
fragmentation issue. As shown in the figure below the data
flow for the first instance of the multiply accumulate goes
from left to right, and the second instance flows right to
left. The multipliers were too large to fit on top of one
another or next to one another. Next, two instances of
multiplier were built,

Fig-1.1 MAC Algorithms

one with data flow left to right and the other with data flow
right to left. The adders, registers and summation parts do
not require redesigning since the computational parts of the
components are only one column wide.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

267

3. PARALLEL MAC

A parallel multiply accumulate array circuit, comprising:

 Fig-1.2 Parallel MAC

A plurality of n multipliers each coupled to
receive a first x-bit operand and a second x-bit operand
and generating a 2x-bit product; a first multiplexer
having n inputs coupled to receive n 2x-bit products
from said plurality of n multipliers and providing one 2x-
bit product output; a downshift circuit coupled to receive
said one 2x-bit product output, said downshift circuit for
downshifting y bits of said one 2x-bit product output; a
plurality of m accumulators each having an input
coupled to receive a downshifted output from said
downshift circuit, each of said accumulators for
accumulating a separate summed value; and a second
multiplexer including m inputs each coupled to receive
summed values from one of said plurality of m
accumulators and also having an output for supplying
one of said summed values. The circuit of claim 1 further
comprising an internal control circuit for controlling:
A select bus of said first multiplexer; a downshift adjust
bus of said downshift circuit; and an enable bus of said
plurality of m accumulators. The circuit of claim 1
wherein each of said accumulators comprise an adder
and a register. The circuit of claim 1 wherein a delay
register is coupled between said downshift circuit and
said plurality of m accumulators. The circuit of claim 1
wherein each of said plurality of n multipliers is a booth
multiplier. The circuit of claim 5 wherein a P register of
each booth multiplier is primed with a value (11 bits) so
that said downshift circuit rounds. The circuit of claim 1
wherein n=6, m=4, x=32, and y=12.The circuit of claim
1 wherein n=3, m=3, x=32, and y is programmable for
each clock cycle of said circuit of claim 1.The circuit of
claim 1 wherein each of said plurality of n multipliers
contains memory for storing data for downshift values
and accumulate enable information associated with said

first x-bit value and said second x-bit value.Within a
graphics card of a host computer system, a parallel
multiply accumulate array circuit, comprising: A
plurality of n multipliers each coupled to receive a first
x-bit operand and a second x-bit operand and generating
a 2x-bit product; a first multiplexer having n inputs
coupled to receive n 2x-bit products from said plurality
of n multipliers and providing one 2x-bit output; a
downshift circuit coupled to receive said one 2-x bit
output of said first multiplexer, said downshift circuit for
downshifting y bits of said one 2x bit output; a plurality
of m accumulators each having an input coupled to
receive a downshifted output from said downshift circuit,
each of said accumulators for accumulating a separate
summed value; and a second multiplexer including m
inputs each coupled to receive summed values from one
of said plurality of m accumulators and also having an
output for supplying one of said summed values.

4. POWER OPTIMISATION

An apparatus for performing multiplications with
reduced power includes an arithmetic logic unit and a
decode block for performing an equivalent of a multiply
instruction. A frequently-encountered multiply
instruction occurs between a variable and a known
constant. If the known constant is positive or negative
one, the decode block enables the arithmetic logic unit to
either add the variable to zero, or subtract the variable
from zero, in response to the sign bit of the known
constant. In response to a multiply and accumulate
instruction between a variable and a known constant of
positive or negative one, the decode block enables the
arithmetic logic unit to either add the variable to the
prior accumulated result or to subtract it there from, in
response to the sign bit of the known constant. In either
case, the high-speed multiplier is disabled and its power
saved.

5. FPGA:

Before the advent of programmable logic, custom logic
circuits were built at the board level using standard
components, or at the gate level in expensive
application-specific (custom) integrated circuits. The
FPGA is an integrated circuit that contains many (64 to
over 10,000) identical logic cells that can be viewed as
standard components. Each logic cell can independently
take on any one of a limited set of personalities. The
individual cells are interconnected by a matrix of wires
and programmable switches. A user's design is
implemented by specifying the simple logic function for
each cell and selectively closing the switches in the
interconnect matrix. The array of logic cells and
interconnect form a fabric of basic

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

268

Fig-1.3 FPGA

building blocks for logic circuits. Complex designs are
created by combining these basic blocks to create the
desired circuit.A field-programmable gate array is a
semiconductor device containing programmable logic
components called "logic blocks", and programmable
interconnects. Logic blocks can be programmed to
perform the function of basic logic gates such as AND,
and XOR, or more complex combinational functions such
as decoders or simple mathematical functions. In most
FPGAs, the logic blocks also include memory elements,
which may be simple

Fig-1.4 FPGA block diagram

flip-flops or more complete blocks of memories.A
hierarchy of programmable interconnects allows logic
blocks to be interconnected as needed by the system
designer, somewhat like a one-chip programmable
breadboard. Logic blocks and interconnects can be
programmed by the customer or designer, after the FPGA
is manufactured, to implement any logical function, hence
the name "field-programmable".FPGAs are usually slower
than their application-specific integrated circuit (ASIC)
counterparts, as they cannot handle as complex a design,
and draw more power. But their advantages include a
shorter time to market, ability to re-program in the field to
fix bugs, and lower non-recurring engineering costs.
Vendors can sell cheaper, less flexible versions of their

FPGAs which cannot be modified after the design is
committed. The designs are developed on regular FPGAs
and then migrated into a fixed version that more resembles
an ASIC. Another alternative are complex programmable
logic devices (CPLDs).

6.FLEXIBILITY

 eASIC’s Structured ASIC technology combines
the advantages of FPGA technology with those of
Standard Cell ASICs by adopting the best features of each
approach and avoiding their drawbacks. Thus, on one end,
eASIC adopted the way FPGAs program logic while
avoiding their inefficient approach to interconnect routing.
On the other end, eASIC adopted the Standard Cell
approach toward interconnect routing while avoiding the
expense of its rigid approach to logic definition.

Fig-1.5 FPGA flexibility

7. STANDARD CELL CHALLENGES

In today’s deep-submicron reality, when NRE costs are
skyrocketing, turnaround times are getting longer and
yield is a major challenge, Standard Cell ASICs are losing
ground as the preferred ASIC solution. Unless very high
volume is certain and very high performance is required,
design projects based on Standard Cell technology can not
be justified. It is not surprising, then, that the number of
ASIC design starts decreased drastically from about
10,000 in 1998 to about 3,500 in 2002 and less than 2000
in 2004. As process technology advances and mask costs
continue to increase exponentially, these issues will only
become worse and Standard Cell design starts will
decrease accordingly.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

269

8.FPGA CHALLENGES

Targeted toward the low end of the market, FPGAs have
the advantage of no upfront cost and of design flexibility
and re-programmability. But the major disadvantages of
FPGA technology stem from their programmable
interconnect approach, as described below. Programmable
interconnect relies on either pass transistors or active
buffers controlled by SRAM cells. Pass transistors add a
high resistance to the route, resulting in high and hard to
estimate propagation delay. Active buffers, on the other
hand, impose an extreme area penalty when deployed in
sufficient quantity to create a well-connected routing
network. Furthermore, interconnect delay becomes
proportionally worse with each process

Cell Type Colour

Buffer

Configuration SRAM

Multiplexer

LUT

Flip-Flop

Pass Transistor Switch

Buffered Switch

shrink, intensifying the penalty imposed by programmable
interconnect as technology progresses. In order to cope
with this problem, the semiconductor industry embraced
the solution of adding more metal layers. For Standard
Cell ASICs this is a practical technique, but for FPGAs
this solution has a major overhead. The additional metal
layers need to be programmably connected, requiring
diffusion-layer resources and decreasing the effective logic
density of the device.

9. eASIC ADVANTAGE

eASIC’s LUT-based logic and regular routing
grid are able to defeat the Standard Cell design issues
presented above. Direct-Write eBeam technology and
multi-design wafers allow eASIC to offer an NRE-free
cost model, avoiding the high fixed costs associated with
Standard Cell mask production. Because wafers can be

pre-manufactured through the Metal 6 layer, turnaround
times are drastically shorter. The eASIC fabric’s regular
structure reduces yield and reliability issues; each time
these issues are solved within one portion of the fabric, the
solution is then applied across the entire fabric. Moreover,
because the same fabric is used for every customer design,
eASIC is able to solve yield and reliability issues a single
time for all its customers. Finally, the use of coarse-
grained LUT-based logic helps to resolve the interconnect
delay issues that are intensifying at 90nm processes and
below. By combining LUT-based logic with metal-
configurable routing, eASIC is able to overcome FPGA
challenges as well. As depicted in the diagram below, the
majority of the diffusion area in an FPGA tile is consumed
by programmable routing buffers and their associated
SRAM. Because eASIC’s metal-configurable routing grid
exists entirely in the higher metal layers and requires no
diffusion-layer resources, eASIC enjoys a 25:1 density
advantage over FPGAs. This is the primary driver of
eASIC’s unit cost advantage over FPGA technology.
eASIC Fabric Density is ~25x of FPGA(Up to 95% of
FPGA silicon is spent on programmable interconnect)

 Fig-1.6 4x LUT4 Architecture Tile in eASIC Fabric
1,600 µ² @ 0.18µ

Fig-1.7 4X LUT4 Architecture Tile in FPGA* 35,462 µ²
@ 0.18µ

*Source: “Automatic Transistor and Physical Design of
FPGA Tiles from an Architectural Specification” -

K.Padalia, Jonathan Rose, et al.- FPGA2003 Conference

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

270

10. WORKING PRINCIPLE

 Look-up table (LUT) with N-input can be used to
implement any combinational function of N-inputs. LUT
is programmed with the truth table.

Fig-1.8 Working principle (LUT)

Fig-1.9 3 input LUT

11. MANUFACTURERS AND THEIR SPECIALTIES

 As of late 2005, the FPGA market has mostly
settled into a state where there are two major "general-
purpose" FPGA manufacturers and a number of other
players who differentiate themselves by offering unique
capabilities.Xilinx and Altera are the current FPGA
market leaders. Xilinx also provide free Linux design
software. Lattice Semiconductor provides both SRAM
and non-volatile, flash-based FPGAs..Actel has antifuse
and reprogrammable flash-based FPGAs, and also offers
mixed signal flash-based FPGAs. Atmel provides fine-
grain reconfigurable devices, as the Xilinx XC62xx were.
They focus on providing Atmel AVR Microcontrollers
with FPGA fabric on the same die. QuickLogic has
antifuse (programmable-only-once) products and heavily

focused on military applications. Achronix
Semiconductor has very fast FPGAs in development,
focusing on speeds approaching 2 GHz. MathStar offers
an FPGA-like device called an FPOA (field programmable
object array).

12. ADVANTAGES

Once used only for glue logic, FPGAs have
progressed to a point where system-on-chip (SoC) designs
can be built on a single device. The number of that have
traditionally been offered through ASIC devices only. This
article addresses some of the advantages of FPGA design
methodologies over ASICs, including early time-to-market,
easy transition to structured ASICs, and reduced NRE
costs.As FPGA devices progressed both in terms of
resources and performance, the latest FPGAs have come to
provide "platform" solutions that are easily customizable
for system connectivity, DSP, and/or data processing
applications. As platform solutions are becoming more and
more important, leading FPGA vendors are coming up
with easy-to-use design development tools. These platform
building tools accelerate time-to-market by automating the
system definition and integration phases of system on
programmable chip (SOPC) development. The tools not
only improve design productivity, but also reduce the cost
of buying these tools from 3rd party EDA vendors. Using
such tools, system designers can define a complete system,
from hardware to software, within one tool and in a
fraction of the time of traditional system-on-a-chip (SOC)
design.

13. ASIC DESIGN

An application-specific integrated circuit (ASIC) is an
integrated circuit (IC) customized for a particular use,
rather than intended for general-purpose use. For example,
a chip designed solely to run a cell phone is an ASIC.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

271

Fig-4.1 ASIC design flow

HardCopy
Design Flow Advantages

Full in-system
verification
using an FPGA

• Reduce risk of design re-spin
• Enable early software co-

design
• Lowest total development

cost

FPGA-like,
front-end
design flow

• Low-cost design environment
compared to other structured
ASICs or standard-cell ASIC
design flows

• Minimal design tools and
methodology learning curve

Seamless
migration

• No board re-spin needed
because of the same
intellectual property (IP) and
pin-out for both FPGA and
HardCopy devices

• Flexible production
choice using either FPGA or
HardCopy devices,
depending on volume and
product life

• Enable fast time-to-market
using an FPGA for early
production

Table 4.1 Design flow advantages

14. SWITCHING FROM ASIC DESIGN

 Although the underlying structure of FPGAs is
different than ASICs, There are softwares that provide
methodologies and features that enable ASIC designers to
successfully design for structured ASICs with high
performance and productivity. As FPGAs have evolved to
become closer in application space to ASICs, FPGA
design flows have become fundamentally similar to ASIC
design flows. Also, these softwares offer some innovative
technologies to speed system design and take advantage of
the programmable nature of FPGAs for in-system
verification.

15. HIERARCHICAL DESIGN

To support ASIC designers, software supports the
LogicLock block-based design methodology, which is
similar to the block-based design flows used in ASIC
design flows. Using the LogicLock methodology, you can
partition a design into several functional blocks and assign
them to individual team members for independent design,
optimization, and implementation. These blocks can then
be imported into a top-level system design while
maintaining design performance of the individual blocks.
Optimized blocks may be reused in subsequent projects
with the same performance

 4.5 ASIC Vs FPGA DESIGN FLOW

Fig-4.2 . FPGA and ASIC Design Flows Fundamentally
Similar

16. ADVANTAGES

There are many reasons for choosing an ASIC-based
solution over discrete components:Overall function and
performance often can be much better than the
corresponding discrete solution, especially concerning
power consumption. The product’s weight and size can
often be reduced considerably. For portable products both
of these parameters are important, and sometimes crucial,
advantages.ASIC solutions often involve a clearly better

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

272

product economy. Thanks to small size and packaging, an
ASIC gives automatic intellectual property
protection.Minimizing the total number of design
components leads to very high reliability, that is, low error
frequency. Also, an ASIC is rigorously tested before
delivery. This all results in considerably lower
maintenance costs.

17. ARCHITECTURE OF MICROWIND AND DSCH

Fig-5.1 Architecture of Microwind and DSCH

18. DSCH-SCHEMATIC EDITOR AND
SIMULATOR
18.1 INTRODUCTION
DSCH3 is the companion software for logic design. Based
on primitives, a hierarchical circuit is built and simulated.
Interactive symbols are used to friendly simulation, which
includes delay and power consumption evaluation.

Fig-5.2 DSCH3

18.2 FEATURES
User-friendly environment for rapid design of logic
circuits.Handles both conventional pattern-based
logic simulation and intuitive on-screen mouse-driven
simulation.Supports hierarchical logic design Built-in
extractor which generates a SPICE netlist from the
schematic diagram (Compatible with PSPICE™ and
WinSpice™)Current and power consumption analysis.

Generates a VERILOG description of the schematic for
layout editor.Immediate access to symbol properties
(Delay, fanout)Models and assembly support for 8051 and
PIC 16F84.Sub-micron,deep-
submicron,nanoscaletechnology support Supported by
huge symbol library.

19. SCHEMATICS

Fig-7.1 Xilinx FPGA basic schematic

Fig-7.2 Xilinx FPGA detailed schematic

7.2 XILINX CPLD

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

273

Fig-7.3 Xilinx CPLD basic schematic

Fig-7.4 Xilinx CPLD detailed schematic

 XILINX VIRTEX

Fig-7.5 Xilinx virtex basic schematic

Fig-7.6 Xilinx Virtex detailed schematic

20. LAYOUTS
8.1 TWO INPUT AND GATE

Fig-8.1 Two input AND gate

Total area occupied by the 2 input and gate = 2.45*10-9m2
 Total power consumed by the 2 input and gate = 1.510

mW

8.2 THREE INPUT AND GATE

Fig-8.2 Three input AND gate

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

274

Total area occupied by the three input and gate =
2.133*10-9 m2.Total power consumed by the three input
and gate = 2.272 mW

8.3 FOUR INPUT AND GATE

Fig-8.3 Four input AND gate

Total area occupied by the four input and gate = 2.332*10-

9 m2.Total power consumed by the four input and gate =
2.979 mW

8.4 INVERTER

Fig-8.4 Inverter

Total area occupied by the inverter = 578*10-12 m2
Total power consumed by the inverter = 9.274 mW

8.5 TWO INPUT OR GATE

Fig-8.5 Two input OR gate

Total area occupied by the two input or gate = 1.802*10-9
m2.Total power consumed by the two input or gate = 3.078
mW

8.6 THREE INPUT OR GATE

Fig-8.6 Three input AND gate

Total area occupied by the three input or gate = 2.067*10-9
m2.Total power consumed by the three input or gate =
3.811 mW

8.7 TWO INPUT XOR GATE

Fig-8.7 Two input XOR gate

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

275

Total area occupied by the two input xor gate = 1.122*10-9
m2.Total power consumed by the two input xor gate =
11.249 mW

8.8 FLIP FLOP

Fig-8.8 Flipflop

Total area occupied by the flip flop = 1.0465*10-8 m2
Total power consumed by the flip flop = 34.56 mW

8.9 LUT1

Fig-8.9 LUT1

Total area occupied by the LUT1 = 2.0935*10-12 m2
Total power consumed by the LUT1 = 9.274 mW

8.10 LUT2

Fig-8.10 LUT2

Total area occupied by the LUT2 = 2.597*10-9 m2
Total power consumed by the LUT2 = 1.561 mW

8.11 LUT3

Fig-8.11 LUT3

Total area occupied by the LUT3 = 3.127*10-9 m2
Total power consumed by the LUT3 = 2.979 mW

8.12 LUT4

Fig-8.12 LUT4

Total area occupied by the LUT4 = 3.657*10-9 m2
Total power consumed by the LUT4 = 3.686 mW

8.13 MUX

Fig-8.13 MUX

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

276

Total area occupied by the MUX = 2.4785*10-8 m2
Total power consumed by the MUX = 5.129 mW

9. REPORTS
9.1 DESIGN REPORT FOR FPGA
Source Parameters
Input File Name :
"SURFPGA.prj"
Input Format : mixed
Ignore Synthesis Constraint File : NO
Target Parameters
Output File Name :
"SURFPGA"
Output Format : NGC
Target Device : xc3s50-4-
vq100
Source Options
Top Module Name : SURFPGA
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
Safe Implementation : No
FSM Style : lut
RAM Extraction : Yes
RAM Style : Auto
ROM Extraction : Yes
Mux Style : Auto
Decoder Extraction : YES
Priority Encoder Extraction : YES
Shift Register Extraction : YES
Logical Shifter Extraction : YES
XOR Collapsing : YES
ROM Style : Auto
Mux Extraction : YES
Resource Sharing : YES
Asynchronous To Synchronous : NO
Multiplier Style : auto
Automatic Register Balancing : No
Target Options
Add IO Buffers : YES
Global Maximum Fanout : 500
Add Generic Clock Buffer(BUFG) : 8
Register Duplication : YES
Slice Packing : YES
Optimize Instantiated Primitives : NO
Use Clock Enable : Yes
Use Synchronous Set : Yes
Use Synchronous Reset : Yes
Pack IO Registers into IOBs : auto
Equivalent register Removal : YES
General Options
Optimization Goal : Speed
Optimization Effort : 1
Library Search Order :
SURFPGA.lso
Keep Hierarchy : NO

RTL Output : Yes
Global Optimization :
AllClockNets
Read Cores : YES
Write Timing Constraints : NO
Cross Clock Analysis : NO
Hierarchy Separator : /
Bus Delimiter : <>
Case Specifier : maintain
Slice Utilization Ratio : 100
BRAM Utilization Ratio : 100
Verilog 2001 : YES
Auto BRAM Packing : NO
Slice Utilization Ratio Delta : 5
HDL Synthesis Report
Macro Statistics
Multipliers : 1
 8x8-bit multiplier : 1
Adders/Subtractors : 7
 16-bit adder : 7
Registers : 9
 16-bit register : 1
 8-bit register : 8
Multiplexers : 1
 8-bit 8-to-1 multiplexer : 1

Advanced HDL Synthesis Report

Macro Statistics
Multipliers : 1
 8x8-bit multiplier : 1
Adders/Subtractors : 7
 16-bit adder : 7
Registers : 80
 Flip-Flops : 80
Multiplexers : 8
 1-bit 8-to-1 multiplexer : 8
Design Statistics
IOs : 31
Cell Usage :
BELS : 505
GND : 1
INV : 1
LUT1 : 3
LUT2 : 99
LUT3 : 38
LUT4 : 95
LUT4_D : 21
LUT4_L : 13
MUXCY : 105
MUXF5 : 30
MUXF6 : 8
VCC : 1
XORCY : 90
FlipFlops/Latches : 80

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

277

FD : 8
FDRE : 64
FDS : 8
Clock Buffers : 1
BUFGP : 1
IO Buffers : 30
IBUF : 14
OBUF : 16
MULTs : 1
MULT18X18 : 1

9.2 DESIGN REPORT FOR CPLD
Source Parameters
Input File Name :
"SURENCPLD1.prj"
Input Format : mixed
Ignore Synthesis Constraint File : NO
Target Parameters
Output File Name :
"SURENCPLD1"
Output Format : NGC
Target Device : XC9500XL
CPLDs
Source Options
Top Module Name :
SURENCPLD1
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
Safe Implementation : No
Mux Extraction : YES
Resource Sharing : YES
Target Options
Add IO Buffers : YES
MACRO Preserve : YES
XOR Preserve : YES
Equivalent register Removal : YES
General Options
Optimization Goal : Speed
Optimization Effort : 1
Library Search Order :
SURENCPLD1.lso
Keep Hierarchy : YES
RTL Output : Yes
Hierarchy Separator : /
Bus Delimiter : <>
Case Specifier : maintain
Verilog 2001 : YES
Other Options
Clock Enable : YES
wysiwyg : NO
HDL Synthesis Report
Macro Statistics
Multipliers : 1
 8x8-bit multiplier : 1
Adders/Subtractors : 7

 16-bit adder : 7
Registers : 9
 16-bit register : 1
 8-bit register : 8
Multiplexers : 1
 8-bit 8-to-1 multiplexer : 1
Advanced HDL Synthesis Report
Macro Statistics
Multipliers : 1
 8x8-bit multiplier : 1
Adders/Subtractors : 7
 16-bit adder : 7
Registers : 16
 Flip-Flops : 16
Multiplexers : 1
 8-bit 8-to-1 multiplexer : 1
Final Results
RTL Top Level Output File Name :
SURENCPLD1.ngr
Top Level Output File Name :
SURENCPLD1
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : YES
Target Technology : XC9500XL
CPLDs
Macro Preserve : YES
XOR Preserve : YES
Clock Enable : YES
wysiwyg : NO
Design Statistics
IOs : 31
Cell Usage :
BELS : 1737
AND2 : 733
AND3 : 9
AND4 : 4
GND : 1
INV : 219
OR2 : 444
OR3 : 6
XOR2 : 321
FlipFlops/Latches : 80
FD : 16
FDCE : 64
IO Buffers : 31
IBUF : 15
OBUF : 16

9.3 DESIGN REPORT FOR VIRTEX
Source Parameters
Input File Name :
"SUREN12345.prj"
Input Format : mixed
Ignore Synthesis Constraint File : NO

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

278

Target Parameters
Output File Name :
"SUREN12345"
Output Format : NGC
Target Device : xcv50-6-
bg256
Source Options
Top Module Name :
SUREN12345
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
Safe Implementation : No
FSM Style : lut
RAM Extraction : Yes
RAM Style : Auto
ROM Extraction : Yes
Mux Style : Auto
Decoder Extraction : YES
Priority Encoder Extraction : YES
Shift Register Extraction : YES
Logical Shifter Extraction : YES
XOR Collapsing : YES
ROM Style : Auto
Mux Extraction : YES
Resource Sharing : YES
Asynchronous To Synchronous : NO
Multiplier Style : lut
Automatic Register Balancing : No
Target Options
Add IO Buffers : YES
Global Maximum Fanout : 100
Add Generic Clock Buffer(BUFG) : 4
Register Duplication : YES
Slice Packing : YES
Optimize Instantiated Primitives : NO
Convert Tristates To Logic : Yes
Use Clock Enable : Yes
Use Synchronous Set : Yes
Use Synchronous Reset : Yes
Pack IO Registers into IOBs : auto
Equivalent register Removal : YES
General Options
Optimization Goal : Speed
Optimization Effort : 1
Library Search Order :
SUREN12345.lso
Keep Hierarchy : NO
RTL Output : Yes
Global Optimization :
AllClockNets
Read Cores : YES
Write Timing Constraints : NO
Cross Clock Analysis : NO
Hierarchy Separator : /
Bus Delimiter : <>

Case Specifier : maintain
Slice Utilization Ratio : 100
BRAM Utilization Ratio : 100
Verilog 2001 : YES
Auto BRAM Packing : NO
Slice Utilization Ratio Delta : 5
HDL Synthesis Report
Macro Statistics
Multipliers : 1
 8x8-bit multiplier : 1
Adders/Subtractors : 7
 16-bit adder : 7
Registers : 9
 16-bit register : 1
 8-bit register : 8
Multiplexers : 1
 8-bit 8-to-1 multiplexer : 1
Advanced HDL Synthesis Report
Macro Statistics
Multipliers : 1
 8x8-bit multiplier : 1
Adders/Subtractors : 7
 16-bit adder : 7
Registers : 80
 Flip-Flops : 80
Multiplexers : 8
 1-bit 8-to-1 multiplexer : 8
Final Register Report
Macro Statistics
Registers : 80
 Flip-Flops : 80
Final Results
RTL Top Level Output File Name :
SUREN12345.ngr
Top Level Output File Name :
SUREN12345
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO
Design Statistics
IOs : 31
Cell Usage :
BELS : 704
GND : 1
INV : 1
LUT1 : 2
LUT2 : 149
LUT3 : 36
LUT4 : 104
LUT4_D : 10
LUT4_L : 15
MULT_AND : 24
MUXCY : 173
MUXF5 : 27
MUXF6 : 8

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

279

VCC : 1
XORCY : 153
FlipFlops/Latches : 80
FD : 8
FDRE : 64
FDS : 8
Clock Buffers : 1
BUFGP : 1
IO Buffers : 30
IBUF : 14
OBUF : 16

10. DESIGN SUMMARY
10.1 AREA AND POWER DESIGN SUMMARY OF
FPGA:

 Table-10.1 AREA AND POWER DESIGN SUMMARY
OF FPGA

Total area occupied by the 8 bit mac layout using FPGA =
5297.53*10-9 m2 .Total power consumed by the 8 bit mac
layout using FPGA = 4.1998 mwatts.

10.2 AREA AND POWER DESIGN
SUMMARY OF CPLD:
CIRCUIT T

O
TA
L

AREA
OCCUP
IED
PER
CIRCU
IT (nm)

POWER
CONSU
MED
PER
CIRCUIT
(mwatts)

TOTAL
AREA
OCCUPI
ED
(nm2)

TOTAL
POWER
CONSU
MED
(mwatts)

LUT1 3 2.0935 .0015 6.2805 .004683

LUT2 99 2.597 .00272 257.103 .224928

LUT3 38 3.127 .002979 118.826 .113202

LUT4 95 3.657 .003686 347.415 .35017

INV 1 .578 .009274 .578 .009274

MUX 14
3

2.47845 .005129 3544.1835 .733447

XOR4 90 2.0647 .0011249 186.03 3.610929

FF 80 10.465 .03456 837.2 2.7648

Table-10.2 AREA AND POWER DESIGN SUMMARY

OF CPLD

Total area occupied by the 8 bit mac layout using CPLD =
2166.815*10-9 m2 .Total power consumed by the 8 bit mac
layout using CPLD = 10.935 mwatts

10.3 AREA AND POWER DESIGN SUMMARY OF
VIRTEX:
CIRCUI
T

TO
TA
L

AREA
OCCUPI
ED PER
CIRCUI
T (nm)

POWER
CONSU
MED
PER
CIRCUI
T
(mwatts)

TOTAL
AREA
OCCUPI
ED
(n)

TOTAL
POWER
CONSU
MED
(mwatts)

LUT1 2 2.0935 .0015 4.187 .004683

LUT2 149 2.597 .00272 386.9 .3385

LUT3 36 3.127 .002979 112.57 .107244

LUT4 129 3.657 .003686 471.725 .3833

INV 1 .578 .009274 .578 .009274

MUX 208 2.47845 .005129 5155.1 1.066

XOR4 153 2.0647 .0011249 171.66 1.721

FF 80 10.465 .03456 837.2 2.7648

Table-10.3 AREA AND POWER DESIGN SUMMARY
OF VIRTEX

Total area occupied by the 8 bit mac layout using
VIRTEX=7144.628*10-9 m2 .Total power consumed by
the 8 bit mac layout using VIRTEX=11.1587 mwatts

CONCLUSION:

 Thus the layout for 8 bit MAC has been produced from
the schematic obtained from Extrinsic EHW was mapped
for FPGA, VIRTEX and CPLD devices to find the
optimized resource consumption. ASIC solutions often
involve a clearly better product economy. Thanks to small
size and packaging, an ASIC gives automatic intellectual
property protection. Minimizing the total number of design
components leads to very high reliability, that is, low error
frequency. Also, an ASIC is rigorously tested before
delivery. This all results in considerably lower
maintenance costs. From the results we have obtained, it
was observed that VIRTEX FPGA is the best suited
device for producing the 8 bit Mac in terms of area. The

CIRCUI
T

TOT
AL

AREA
OCCU
PIED
PER
CIRCU
IT (nm)

POWER
CONSUM
ED PER
CIRCUIT
(mwatts)

TOTAL
AREA
OCCUPI
ED
(nm2)

TOTAL
POWER
CONSUM
ED
(mwatts)

AND2 733 2.45 .0015 1796 1.107

AND3 9 2.133 .00272 19.197 .02245

AND4 4 2.322 .002979 9.328 .0119

INV 219 .578 .009274 126.582 2.031006

OR2 444 1.802 .003078 800.088 1.366632

OR3 6 2.067 .003811 12.462 .022866

XOR2 321 1.122 .0011249 360.162 3.610929

FF 80 10.465 .03456 837.2 2.7648

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

280

layout produced by the VIRTEX device has occupied less
area when compared to the layouts produced by the other
FPGA and CPLD devices. Considering the power
consumption it was observed that ALTERA CYCLONE
FPGA is the best suited device for producing the 8 bit
MAC layout. The layout produced by the FPGA device
has consumed less power when compared to the layouts
produced by the VIRTEX and CPLD devices. Since the
MAC is the basic component in most of the DSP designs,
even a small saving in power or area will yield better
results at final entity design. It should also be noted that
the future is for using the property of reconfigurability in
any application to achieve the power and area
consumption by loading the necessary hardware on
demand directly making use of bit streams. It will be much
more efficient if this hardware is evolved rather than
conventional flow.

11. REFERENCES

[1] Gerald R. Clark (1999), “A Novel Function-Level EHW

Architecture within Modern FPGAs”, Proceedings of the
Congress on Evolutionary Computation (CEC 99), IEEE.

[2] Hollingworth G, Smith S and Tyrrell A (2000), “Safe
Intrinsic Evolution of Virtex Devices”, Proceedings of the
Second NASA/DoD Workshop on Evolvable Hardware,
IEEE, pp. 195-202.

[3] Hollingworth G, Smith S and Tyrrell A (1999), “Design of
Highly Parallel Edge Detection Nodes using Evolutionary
Techniques”, Proceedings of the 7th Euromicro Workshop on
Parallel and Distributed Processing, IEEE, pp. 35 – 42.

12. BIOGRAPHIES

1) Mr. D.Dhanasekaran is working as an Assistant Professor,

ECE dept. In Sri Venkataswara College Engg. College,

Pennalur,Sriperumbudur, affiliated to the Anna university. His

areas of interest include Evolvable Computing, reconfigurable

computing,VLSI signal processing and neural networks.

2) Dr. K.Boopathy Bagan completed his doctoral degree from

Anna university . He is presently working as a professor,

Information and Communication Department . In Madras

Institute of Technology, Chrompet, Chennai. His areas of interest

include VLSI signal processing, Genetic Algorithms and

evolvable hardware.

