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ABSTRACT 

In computing, especially in digital signal processing, 
multiply-accumulate is a common operation that computes the 
product of two numbers and adds that product to an accumulator.
 The VERILOG code for MAC operation is simulated 
and synthesized in Vendors tool like XILINX ISE and ALTERA 
QUARTUS II with different devices. Once the coding is error 
free the schematic for MAC unit will be generated and the bit 
stream to used to download is used  as reference to get the 
approximately the same circuit by the application of extrinsic 
EHW using evolutionary algorithlm. This schematic obtained by 
EHW is realized as ASIC using  Microwind to get the layout 
determining the area and power requirement. Depending on the 
different reports obtained, the optimized device which requires 
minimum area and less power consumption is identified.This can 
be applied to any devices like FPGA or CPLD of any vendor. 
Evolvable hardware (EHW) has attracted increasing attention 
since the early 1990’s with the advent of easily reconfigurable 
hardware, such as field programmable gate arrays(FPGA’s). It 
promises to provide an entirely new approach to complex 
electronic circuit design and new adaptive hardware. EHW has 
been demonstrated to be able to perform a wide range of tasks 
from pattern recognition to adaptive control. However, there are 
still many fundamental issues in EHW that remain open.In this 
paper it was more concentrated on the ASIC part rather than 
EHW because EXTINSIC EHW was used. 

1. INTRODUCTION 

In computing, especially in digital signal processing, 
multiply-accumulate is a common operation that computes 
the product of two numbers and adds that product to an 
accumulator. 

                         A  A + B x C 

Modern computers may contain a dedicated 
multiply-add unit, or "MAC-unit", consisting of a 
multiplier implemented in combinational logic followed 
by an adder and an accumulator register which stores the 
result when clocked. The output of the register is fed back 
to one input of the adder, so that on each clock the output 
of the multiplier is added to the register. Combinational 
multipliers require a large amount of logic, but can 
compute a product much more quickly than the method of 
shifting and adding typical of earlier computers. 

 
2 .MAC ALGORITHM 
 
This application is simply the internals for a matrix 
multiply.The application is setup to use a fully pipelined 
32 bit integer multiplier, and a variable summation part. 
This particular application was only designed with two 
instances on the chip. The figure below shows the 
components used in this application. In order to get two 
multiply accumulates onto the FPGA the multiplier had to 
be redesigned from its original form to compensate for the 
fragmentation issue. As shown in the figure below the data 
flow for the first instance of the multiply accumulate goes 
from left to right, and the second instance flows right to 
left. The multipliers were too large to fit on top of one 
another or next to one another. Next, two instances of 
multiplier were built, 
 

 
Fig-1.1 MAC Algorithms 

 
one with data flow left to right and the other with data flow 
right to left. The adders, registers and summation parts do 
not require redesigning since the computational parts of the 
components are only one column wide.  
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3. PARALLEL MAC 
 
A parallel multiply accumulate array circuit, comprising: 

 
                   Fig-1.2 Parallel MAC 

A plurality of n multipliers each coupled to 
receive a first x-bit operand and a second x-bit operand 
and generating a 2x-bit product; a first multiplexer 
having n inputs coupled to receive n 2x-bit products 
from said plurality of n multipliers and providing one 2x-
bit product output; a downshift circuit coupled to receive 
said one 2x-bit product output, said downshift circuit for 
downshifting y bits of said one 2x-bit product output; a 
plurality of m accumulators each having an input 
coupled to receive a downshifted output from said 
downshift circuit, each of said accumulators for 
accumulating a separate summed value; and a second 
multiplexer including m inputs each coupled to receive 
summed values from one of said plurality of m 
accumulators and also having an output for supplying 
one of said summed values. The circuit of claim 1 further 
comprising an internal control circuit for controlling: 
A select bus of said first multiplexer; a downshift adjust 
bus of said downshift circuit; and an enable bus of said 
plurality of m accumulators. The circuit of claim 1 
wherein each of said accumulators comprise an adder 
and a register. The circuit of claim 1 wherein a delay 
register is coupled between said downshift circuit and 
said plurality of m accumulators. The circuit of claim 1 
wherein each of said plurality of n multipliers is a booth 
multiplier. The circuit of claim 5 wherein a P register of 
each booth multiplier is primed with a value (11 bits) so 
that said downshift circuit rounds. The circuit of claim 1 
wherein n=6, m=4, x=32, and y=12.The circuit of claim 
1 wherein n=3, m=3, x=32, and y is programmable for 
each clock cycle of said circuit of claim 1.The circuit of 
claim 1 wherein each of said plurality of n multipliers 
contains memory for storing data for downshift values 
and accumulate enable information associated with said 

first x-bit value and said second x-bit value.Within a 
graphics card of a host computer system, a parallel 
multiply accumulate array circuit, comprising: A 
plurality of n multipliers each coupled to receive a first 
x-bit operand and a second x-bit operand and generating 
a 2x-bit product; a first multiplexer having n inputs 
coupled to receive n 2x-bit products from said plurality 
of n multipliers and providing one 2x-bit output; a 
downshift circuit coupled to receive said one 2-x bit 
output of said first multiplexer, said downshift circuit for 
downshifting y bits of said one 2x bit output; a plurality 
of m accumulators each having an input coupled to 
receive a downshifted output from said downshift circuit, 
each of said accumulators for accumulating a separate 
summed value; and a second multiplexer including m 
inputs each coupled to receive summed values from one 
of said plurality of m accumulators and also having an 
output for supplying one of said summed values. 

 
4. POWER OPTIMISATION 
 
An apparatus for performing multiplications with 
reduced power includes an arithmetic logic unit and a 
decode block for performing an equivalent of a multiply 
instruction. A frequently-encountered multiply 
instruction occurs between a variable and a known 
constant. If the known constant is positive or negative 
one, the decode block enables the arithmetic logic unit to 
either add the variable to zero, or subtract the variable 
from zero, in response to the sign bit of the known 
constant. In response to a multiply and accumulate 
instruction between a variable and a known constant of 
positive or negative one, the decode block enables the 
arithmetic logic unit to either add the variable to the 
prior accumulated result or to subtract it there from, in 
response to the sign bit of the known constant. In either 
case, the high-speed multiplier is disabled and its power 
saved. 
 
5. FPGA:  
 
Before the advent of programmable logic, custom logic 
circuits were built at the board level using standard 
components, or at the gate level in expensive 
application-specific (custom) integrated circuits.  The 
FPGA is an integrated circuit that contains many (64 to 
over 10,000) identical logic cells that can be viewed as 
standard components.  Each logic cell can independently 
take on any one of  a limited set of personalities.  The 
individual cells are interconnected by a matrix of wires 
and programmable switches.  A user's design is 
implemented by specifying the simple logic function for 
each cell and selectively closing the switches in the 
interconnect matrix.  The array of logic cells and 
interconnect form a fabric of basic  
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Fig-1.3 FPGA 

building blocks for logic circuits.  Complex designs are 
created by combining these basic blocks to create the 
desired circuit.A field-programmable gate array is a 
semiconductor device containing programmable logic 
components called "logic blocks", and programmable 
interconnects. Logic blocks can be programmed to 
perform the function of basic logic gates such as AND, 
and XOR, or more complex combinational functions such 
as decoders or simple mathematical functions. In most 
FPGAs, the logic blocks also include memory elements, 
which may be simple  

Fig-1.4 FPGA block diagram 

flip-flops or more complete blocks of memories.A 
hierarchy of programmable interconnects allows logic 
blocks to be interconnected as needed by the system 
designer, somewhat like a one-chip programmable 
breadboard. Logic blocks and interconnects can be 
programmed by the customer or designer, after the FPGA 
is manufactured, to implement any logical function, hence 
the name "field-programmable".FPGAs are usually slower 
than their application-specific integrated circuit (ASIC) 
counterparts, as they cannot handle as complex a design, 
and draw more power. But their advantages include a 
shorter time to market, ability to re-program in the field to 
fix bugs, and lower non-recurring engineering costs. 
Vendors can sell cheaper, less flexible versions of their 

FPGAs which cannot be modified after the design is 
committed. The designs are developed on regular FPGAs 
and then migrated into a fixed version that more resembles 
an ASIC. Another alternative are complex programmable 
logic devices (CPLDs). 

6.FLEXIBILITY 

 eASIC’s Structured ASIC technology combines 
the advantages of FPGA technology with those of 
Standard Cell ASICs by adopting the best features of each 
approach and avoiding their drawbacks. Thus, on one end, 
eASIC adopted the way FPGAs program logic while 
avoiding their inefficient approach to interconnect routing. 
On the other end, eASIC adopted the Standard Cell 
approach toward interconnect routing while avoiding the 
expense of its rigid approach to logic definition. 

 
 

Fig-1.5 FPGA flexibility 

7. STANDARD CELL CHALLENGES 

In today’s deep-submicron reality, when NRE costs are 
skyrocketing, turnaround times are getting longer and 
yield is a major challenge, Standard Cell ASICs are losing 
ground as the preferred ASIC solution. Unless very high 
volume is certain and very high performance is required, 
design projects based on Standard Cell technology can not 
be justified. It is not surprising, then, that the number of 
ASIC design starts decreased drastically from about 
10,000 in 1998 to about 3,500 in 2002 and less than 2000 
in 2004. As process technology advances and mask costs 
continue to increase exponentially, these issues will only 
become worse and Standard Cell design starts will 
decrease accordingly. 
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8.FPGA CHALLENGES  

Targeted toward the low end of the market, FPGAs have 
the advantage of no upfront cost and of design flexibility 
and re-programmability. But the major disadvantages of 
FPGA technology stem from their programmable 
interconnect approach, as described below. Programmable 
interconnect relies on either pass transistors or active 
buffers controlled by SRAM cells. Pass transistors add a 
high resistance to the route, resulting in high and hard to 
estimate propagation delay. Active buffers, on the other 
hand, impose an extreme area penalty when deployed in 
sufficient quantity to create a well-connected routing 
network. Furthermore, interconnect delay becomes 
proportionally worse with each process  

Cell Type Colour 
 

Buffer  
 
Configuration SRAM  

 
Multiplexer  

 
LUT  

 
Flip-Flop  

 
Pass Transistor Switch  

 
Buffered Switch  

shrink, intensifying the penalty imposed by programmable 
interconnect as technology progresses. In order to cope 
with this problem, the semiconductor industry embraced 
the solution of adding more metal layers. For Standard 
Cell ASICs this is a practical technique, but for FPGAs 
this solution has a major overhead. The additional metal 
layers need to be programmably connected, requiring 
diffusion-layer resources and decreasing the effective logic 
density of the device.  

9. eASIC ADVANTAGE 

eASIC’s LUT-based logic and regular routing 
grid are able to defeat the Standard Cell design issues 
presented above. Direct-Write eBeam technology and 
multi-design wafers allow eASIC to offer an NRE-free 
cost model, avoiding the high fixed costs associated with 
Standard Cell mask production. Because wafers can be 

pre-manufactured through the Metal 6 layer, turnaround 
times are drastically shorter. The eASIC fabric’s regular 
structure reduces yield and reliability issues; each time 
these issues are solved within one portion of the fabric, the 
solution is then applied across the entire fabric. Moreover, 
because the same fabric is used for every customer design, 
eASIC is able to solve yield and reliability issues a single 
time for all its customers. Finally, the use of coarse-
grained LUT-based logic helps to resolve the interconnect 
delay issues that are intensifying at 90nm processes and 
below. By combining LUT-based logic with metal-
configurable routing, eASIC is able to overcome FPGA 
challenges as well. As depicted in the diagram below, the 
majority of the diffusion area in an FPGA tile is consumed 
by programmable routing buffers and their associated 
SRAM. Because eASIC’s metal-configurable routing grid 
exists entirely in the higher metal layers and requires no 
diffusion-layer resources, eASIC enjoys a 25:1 density 
advantage over FPGAs. This is the primary driver of 
eASIC’s unit cost advantage over FPGA technology. 
eASIC Fabric Density is ~25x of FPGA(Up to 95% of 
FPGA silicon is spent on programmable interconnect) 

  

 Fig-1.6 4x LUT4 Architecture Tile in eASIC Fabric  
1,600 µ² @ 0.18µ  

 

  

 
 
 
 
 
 

 
 

Fig-1.7 4X LUT4 Architecture Tile in FPGA* 35,462 µ² 
@ 0.18µ 

*Source: “Automatic Transistor and Physical Design of 
FPGA Tiles from an Architectural Specification” - 

K.Padalia, Jonathan Rose, et al.- FPGA2003 Conference 
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10. WORKING PRINCIPLE 
 
 Look-up table (LUT) with N-input can be used to 
implement any combinational function of N-inputs. LUT 
is programmed with the truth table. 
 

 
Fig-1.8 Working principle (LUT) 

 
 

 
Fig-1.9 3 input LUT 

 
11. MANUFACTURERS AND THEIR SPECIALTIES 
 
 As of late 2005, the FPGA market has mostly 
settled into a state where there are two major "general-
purpose" FPGA manufacturers and a number of other 
players who differentiate themselves by offering unique 
capabilities.Xilinx and Altera are the current FPGA 
market leaders. Xilinx also provide free Linux design 
software. Lattice Semiconductor provides both SRAM 
and non-volatile, flash-based FPGAs..Actel has antifuse 
and reprogrammable flash-based FPGAs, and also offers 
mixed signal flash-based FPGAs. Atmel provides fine-
grain reconfigurable devices, as the Xilinx XC62xx were. 
They focus on providing Atmel AVR Microcontrollers 
with FPGA fabric on the same die. QuickLogic has 
antifuse (programmable-only-once) products and heavily 

focused on military applications. Achronix 
Semiconductor has very fast FPGAs in development, 
focusing on speeds approaching 2 GHz. MathStar offers 
an FPGA-like device called an FPOA (field programmable 
object array).  

12. ADVANTAGES 

Once used only for glue logic, FPGAs have 
progressed to a point where system-on-chip (SoC) designs 
can be built on a single device. The number of that have 
traditionally been offered through ASIC devices only. This 
article addresses some of the advantages of FPGA design 
methodologies over ASICs, including early time-to-market, 
easy transition to structured ASICs, and reduced NRE 
costs.As FPGA devices progressed both in terms of 
resources and performance, the latest FPGAs have come to 
provide "platform" solutions that are easily customizable 
for system connectivity, DSP, and/or data processing 
applications. As platform solutions are becoming more and 
more important, leading FPGA vendors are coming up 
with easy-to-use design development tools. These platform 
building tools accelerate time-to-market by automating the 
system definition and integration phases of system on 
programmable chip (SOPC) development. The tools not 
only improve design productivity, but also reduce the cost 
of buying these tools from 3rd party EDA vendors. Using 
such tools, system designers can define a complete system, 
from hardware to software, within one tool and in a 
fraction of the time of traditional system-on-a-chip (SOC) 
design. 

13. ASIC DESIGN 

 
An application-specific integrated circuit (ASIC) is an 
integrated circuit (IC) customized for a particular use, 
rather than intended for general-purpose use. For example, 
a chip designed solely to run a cell phone is an ASIC. 
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Fig-4.1 ASIC design flow 

 
HardCopy 
Design Flow Advantages 

Full in-system 
verification 
using an FPGA 

• Reduce risk of design re-spin 
• Enable early software co-

design  
• Lowest total development 

cost  

FPGA-like, 
front-end 
design flow 

• Low-cost design environment 
compared to other structured 
ASICs or standard-cell ASIC 
design flows  

• Minimal design tools and 
methodology learning curve 

Seamless 
migration 

• No board re-spin needed 
because of the same 
intellectual property (IP) and 
pin-out for both FPGA and 
HardCopy devices  

• Flexible production 
choice using either FPGA or 
HardCopy devices, 
depending on volume and 
product life  

• Enable fast time-to-market 
using an FPGA for early 
production  

Table 4.1 Design flow advantages 

14. SWITCHING FROM ASIC DESIGN 

 Although the underlying structure of FPGAs is 
different than ASICs, There are softwares that provide 
methodologies and features that enable ASIC designers to 
successfully design for structured ASICs with high 
performance and productivity. As FPGAs have evolved to 
become closer in application space to ASICs, FPGA 
design flows have become fundamentally similar to ASIC 
design flows. Also, these softwares offer some innovative 
technologies to speed system design and take advantage of 
the programmable nature of FPGAs for in-system 
verification. 

15. HIERARCHICAL DESIGN 

To support ASIC designers, software supports the 
LogicLock block-based design methodology, which is 
similar to the block-based design flows used in ASIC 
design flows. Using the LogicLock methodology, you can 
partition a design into several functional blocks and assign 
them to individual team members for independent design, 
optimization, and implementation. These blocks can then 
be imported into a top-level system design while 
maintaining design performance of the individual blocks. 
Optimized blocks may be reused in subsequent projects 
with the same performance 

 4.5 ASIC Vs FPGA DESIGN FLOW 

Fig-4.2 . FPGA and ASIC Design Flows Fundamentally 
Similar  

16. ADVANTAGES 

There are many reasons for choosing an ASIC-based 
solution over discrete components:Overall function and 
performance often can be much better than the 
corresponding discrete solution, especially concerning 
power consumption. The product’s weight and size can 
often be reduced considerably. For portable products both 
of these parameters are important, and sometimes crucial, 
advantages.ASIC solutions often involve a clearly better 
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product economy. Thanks to small size and packaging, an 
ASIC gives automatic intellectual property 
protection.Minimizing the total number of design 
components leads to very high reliability, that is, low error 
frequency. Also, an ASIC is rigorously tested before 
delivery. This all results in considerably lower 
maintenance costs.  

17. ARCHITECTURE OF MICROWIND AND DSCH 

 
Fig-5.1 Architecture of Microwind and DSCH 

 
18. DSCH-SCHEMATIC EDITOR AND 
SIMULATOR   
18.1 INTRODUCTION 
DSCH3 is the companion software for logic design. Based 
on primitives, a hierarchical circuit is built and simulated. 
Interactive symbols are used to friendly simulation, which 
includes delay and power consumption evaluation. 
 

 
Fig-5.2 DSCH3 

 
18.2 FEATURES  
User-friendly environment for rapid design of logic 
circuits.Handles both conventional pattern-based 
logic simulation and intuitive on-screen mouse-driven 
simulation.Supports hierarchical logic design Built-in 
extractor which generates a SPICE netlist from the 
schematic diagram (Compatible with PSPICE™ and 
WinSpice™)Current and power consumption analysis. 

Generates a VERILOG description of the schematic for 
layout editor.Immediate access to symbol properties 
(Delay, fanout)Models and assembly support for 8051 and 
PIC 16F84.Sub-micron,deep-
submicron,nanoscaletechnology support Supported by 
huge symbol library. 
 
19. SCHEMATICS            

 

Fig-7.1 Xilinx FPGA basic schematic 
 

 
 

Fig-7.2 Xilinx FPGA detailed schematic 

 

7.2 XILINX CPLD 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 

 

273

 

Fig-7.3 Xilinx CPLD basic schematic 

 
 

Fig-7.4 Xilinx CPLD detailed schematic 

 XILINX VIRTEX 

 

Fig-7.5 Xilinx virtex basic schematic 

 

Fig-7.6 Xilinx Virtex detailed schematic 
 
20. LAYOUTS 
8.1 TWO INPUT AND GATE 

 
Fig-8.1 Two input AND gate 

Total area occupied by the 2 input and gate = 2.45*10-9m2 
 Total power consumed by the 2 input and gate = 1.510 

mW 
 
8.2 THREE INPUT AND GATE 

 
 

Fig-8.2 Three input AND gate 
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Total area occupied by the three input and gate = 
2.133*10-9 m2.Total power consumed by the three input 
and gate = 2.272 mW 
 
8.3 FOUR INPUT AND GATE 

 
Fig-8.3 Four input AND gate 

 
Total area occupied by the four input and gate = 2.332*10-

9 m2.Total power consumed by the four input and gate = 
2.979 mW 
 
8.4 INVERTER 

 

 
 

Fig-8.4 Inverter 
 
Total area occupied by the inverter = 578*10-12 m2 
Total power consumed by the inverter = 9.274 mW 
 
 
 
 
 
 
 
 
 

8.5 TWO INPUT OR GATE 

 
Fig-8.5 Two input OR gate 

 
Total area occupied by the two input or gate = 1.802*10-9 
m2.Total power consumed by the two input or gate = 3.078 
mW 
 
8.6 THREE INPUT OR GATE 

 
 

Fig-8.6 Three input AND gate 
 
Total area occupied by the three input or gate = 2.067*10-9 
m2.Total power consumed by the three input or gate = 
3.811 mW 
 
8.7 TWO INPUT XOR GATE 

 
Fig-8.7 Two input XOR gate 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 

 

275

Total area occupied by the two input xor gate = 1.122*10-9 
m2.Total power consumed by the two input xor gate = 
11.249 mW 
 
8.8 FLIP FLOP 

 
Fig-8.8 Flipflop 

 
Total area occupied by the flip flop = 1.0465*10-8 m2 
Total power consumed by the flip flop = 34.56 mW 
 
8.9 LUT1 

 
Fig-8.9 LUT1 

 
Total area occupied by the LUT1 = 2.0935*10-12 m2 
Total power consumed by the LUT1 = 9.274 mW 
 
8.10 LUT2 

 
Fig-8.10 LUT2 

 

Total area occupied by the LUT2 = 2.597*10-9 m2 
Total power consumed by the LUT2 = 1.561 mW 
 
8.11 LUT3 

 
Fig-8.11 LUT3 

 
Total area occupied by the LUT3 = 3.127*10-9 m2 
Total power consumed by the LUT3 = 2.979 mW 
 
8.12 LUT4 

 
Fig-8.12 LUT4 

 
Total area occupied by the LUT4 = 3.657*10-9 m2 
Total power consumed by the LUT4 = 3.686 mW 
 
8.13 MUX 

 
Fig-8.13 MUX 
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Total area occupied by the MUX = 2.4785*10-8 m2 
Total power consumed by the MUX = 5.129 mW 
 
9. REPORTS 
9.1 DESIGN REPORT FOR FPGA 
Source Parameters 
Input File Name                          : 
"SURFPGA.prj" 
Input Format                                      : mixed 
Ignore Synthesis Constraint File      : NO 
Target Parameters 
Output File Name                              : 
"SURFPGA" 
Output Format                                   : NGC 
Target Device                                    : xc3s50-4-
vq100 
Source Options 
Top Module Name                             : SURFPGA 
Automatic FSM Extraction               : YES 
FSM Encoding Algorithm                 : Auto 
Safe Implementation                          : No 
FSM Style                                          : lut 
RAM Extraction                                 : Yes 
RAM Style                                         : Auto 
ROM Extraction                                 : Yes 
Mux Style                                          : Auto 
Decoder Extraction                            : YES 
Priority Encoder Extraction             : YES 
Shift Register Extraction                   : YES 
Logical Shifter Extraction                 : YES 
XOR Collapsing                                : YES 
ROM Style                                         : Auto 
Mux Extraction                                  : YES 
Resource Sharing                              : YES 
Asynchronous To Synchronous        : NO 
Multiplier Style                                  : auto 
Automatic Register Balancing          : No 
Target Options 
Add IO Buffers                                  : YES 
Global Maximum Fanout                 : 500 
Add Generic Clock Buffer(BUFG)  : 8 
Register Duplication                           : YES 
Slice Packing                                          : YES 
Optimize Instantiated Primitives        : NO 
Use Clock Enable                                   : Yes 
Use Synchronous Set                             : Yes 
Use Synchronous Reset                         : Yes 
Pack IO Registers into IOBs              : auto 
Equivalent register Removal          : YES 
General Options 
Optimization Goal                          : Speed 
Optimization Effort                        : 1 
Library Search Order                    : 
SURFPGA.lso 
Keep Hierarchy                               : NO 

RTL Output                                    : Yes 
Global Optimization                       : 
AllClockNets 
Read Cores                                      : YES 
Write Timing Constraints             : NO 
Cross Clock Analysis                     : NO 
Hierarchy Separator                      : / 
Bus Delimiter                                  : <> 
Case Specifier                                 : maintain 
Slice Utilization Ratio                    : 100 
BRAM Utilization Ratio                : 100 
Verilog 2001                                    : YES 
Auto BRAM Packing                     : NO 
Slice Utilization Ratio Delta          : 5 
HDL Synthesis Report 
Macro Statistics 
# Multipliers                                      : 1 
 8x8-bit multiplier                             : 1 
# Adders/Subtractors                       : 7 
 16-bit adder                                      : 7 
# Registers                                         : 9 
 16-bit register                                   : 1 
 8-bit register                                     : 8 
# Multiplexers                                   : 1 
 8-bit 8-to-1 multiplexer                   : 1 
 
Advanced HDL Synthesis Report 
 
Macro Statistics 
# Multipliers    : 1 
 8x8-bit multiplier                               : 1 
# Adders/Subtractors                         : 7 
 16-bit adder                                        : 7 
# Registers                                         : 80 
 Flip-Flops                                         : 80 
# Multiplexers                                  : 8 
 1-bit 8-to-1 multiplexer                    : 8 
Design Statistics 
# IOs                                  : 31 
Cell Usage : 
#      BELS                               : 505 
#      GND                                : 1 
#      INV                                   : 1 
#      LUT1                                : 3 
#      LUT2                                : 99 
#      LUT3                                : 38 
#      LUT4                                : 95 
#      LUT4_D                           : 21 
#      LUT4_L                           : 13 
#      MUXCY                           : 105 
#      MUXF5                            : 30 
#      MUXF6                            : 8 
#      VCC                                 : 1 
#      XORCY                           : 90 
#      FlipFlops/Latches           : 80 
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#      FD                                    : 8 
#      FDRE                               : 64 
#      FDS                                  : 8 
#      Clock Buffers                  : 1 
#      BUFGP                            : 1 
#      IO Buffers                       : 30 
#      IBUF                                : 14 
#      OBUF                              : 16 
#      MULTs                            : 1 
#      MULT18X18                   : 1 
 
9.2 DESIGN REPORT FOR CPLD 
Source Parameters 
Input File Name                      : 
"SURENCPLD1.prj" 
Input Format                         : mixed 
Ignore Synthesis Constraint File     : NO 
Target Parameters 
Output File Name                     : 
"SURENCPLD1" 
Output Format                        : NGC 
Target Device                        : XC9500XL 
CPLDs 
Source Options 
Top Module Name                      : 
SURENCPLD1 
Automatic FSM Extraction             : YES 
FSM Encoding Algorithm               : Auto 
Safe Implementation            : No 
Mux Extraction                    : YES 
Resource Sharing                 : YES 
Target Options 
Add IO Buffers                     : YES 
MACRO Preserve                : YES 
XOR Preserve                      : YES 
Equivalent register Removal          : YES 
General Options 
Optimization Goal                    : Speed 
Optimization Effort              : 1 
Library Search Order                 : 
SURENCPLD1.lso 
Keep Hierarchy                    : YES 
RTL Output                         : Yes 
Hierarchy Separator             : / 
Bus Delimiter                      : <> 
Case Specifier                      : maintain 
Verilog 2001                        : YES 
Other Options 
Clock Enable                        : YES 
wysiwyg                               : NO 
HDL Synthesis Report 
Macro Statistics 
# Multipliers                                           : 1 
 8x8-bit multiplier                                     : 1 
# Adders/Subtractors                          : 7 

 16-bit adder                                           : 7 
# Registers                                             : 9 
 16-bit register                                        : 1 
 8-bit register                                          : 8 
# Multiplexers                                          : 1 
 8-bit 8-to-1 multiplexer                               : 1 
Advanced HDL Synthesis Report 
Macro Statistics 
# Multipliers                                           : 1 
 8x8-bit multiplier                                     : 1 
# Adders/Subtractors                                        : 7 
 16-bit adder                                           : 7 
# Registers                                             : 16 
 Flip-Flops                                             : 16 
# Multiplexers                                          : 1 
 8-bit 8-to-1 multiplexer                               : 1 
Final Results 
RTL Top Level Output File Name    : 
SURENCPLD1.ngr 
Top Level Output File Name           : 
SURENCPLD1 
Output Format                      : NGC 
Optimization Goal                : Speed 
Keep Hierarchy                   : YES 
Target Technology               : XC9500XL 
CPLDs 
Macro Preserve                    : YES 
XOR Preserve                      : YES 
Clock Enable                      : YES 
wysiwyg                               : NO 
Design Statistics 
# IOs                                 : 31 
Cell Usage : 
#      BELS                               : 1737 
#      AND2                           : 733 
#      AND3                           : 9 
#      AND4                           : 4 
#      GND                            : 1 
#      INV                            : 219 
#      OR2                            : 444 
#      OR3                            : 6 
#      XOR2                           : 321 
# FlipFlops/Latches                   : 80 
#      FD                             : 16 
#      FDCE                           : 64 
# IO Buffers                                        : 31 
#      IBUF                                            : 15 
#      OBUF                                          : 16 
  
9.3 DESIGN REPORT FOR VIRTEX 
Source Parameters 
Input File Name                      : 
"SUREN12345.prj" 
Input Format                         : mixed 
Ignore Synthesis Constraint File     : NO 
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Target Parameters 
Output File Name            : 
"SUREN12345" 
Output Format                      : NGC 
Target Device                        : xcv50-6-
bg256 
Source Options 
Top Module Name                      : 
SUREN12345 
Automatic FSM Extraction             : YES 
FSM Encoding Algorithm               : Auto 
Safe Implementation                  : No 
FSM Style                            : lut 
RAM Extraction                       : Yes 
RAM Style                            : Auto 
ROM Extraction                      : Yes 
Mux Style                             : Auto 
Decoder Extraction                   : YES 
Priority Encoder Extraction          : YES 
Shift Register Extraction            : YES 
Logical Shifter Extraction           : YES 
XOR Collapsing                       : YES 
ROM Style                            : Auto 
Mux Extraction                       : YES 
Resource Sharing                     : YES 
Asynchronous To Synchronous         : NO 
Multiplier Style                     : lut 
Automatic Register Balancing         : No 
Target Options 
Add IO Buffers                       : YES 
Global Maximum Fanout                : 100 
Add Generic Clock Buffer(BUFG)    : 4 
Register Duplication                 : YES 
Slice Packing                        : YES 
Optimize Instantiated Primitives     : NO 
Convert Tristates To Logic           : Yes 
Use Clock Enable                     : Yes 
Use Synchronous Set                  : Yes 
Use Synchronous Reset                : Yes 
Pack IO Registers into IOBs          : auto 
Equivalent register Removal          : YES 
General Options 
Optimization Goal                    : Speed 
Optimization Effort                  : 1 
Library Search Order                 : 
SUREN12345.lso 
Keep Hierarchy                       : NO 
RTL Output                           : Yes 
Global Optimization                  : 
AllClockNets 
Read Cores                           : YES 
Write Timing Constraints             : NO 
Cross Clock Analysis                 : NO 
Hierarchy Separator                  : / 
Bus Delimiter                        : <> 

Case Specifier                       : maintain 
Slice Utilization Ratio              : 100 
BRAM Utilization Ratio               : 100 
Verilog 2001                         : YES 
Auto BRAM Packing                    : NO 
Slice Utilization Ratio Delta        : 5 
HDL Synthesis Report 
Macro Statistics 
# Multipliers                                           : 1 
 8x8-bit multiplier                                     : 1 
# Adders/Subtractors                                    : 7 
 16-bit adder                                           : 7 
# Registers                                             : 9 
 16-bit register                                        : 1 
 8-bit register                                         : 8 
# Multiplexers                                          : 1 
 8-bit 8-to-1 multiplexer                               : 1 
Advanced HDL Synthesis Report 
Macro Statistics 
# Multipliers                                           : 1 
 8x8-bit multiplier                                     : 1 
# Adders/Subtractors                                    : 7 
 16-bit adder                                           : 7 
# Registers                                             : 80 
 Flip-Flops                                          : 80 
# Multiplexers                                          : 8 
 1-bit 8-to-1 multiplexer                               : 8 
Final Register Report 
Macro Statistics 
# Registers                                             : 80 
 Flip-Flops                                           : 80 
Final Results 
RTL Top Level Output File Name       : 
SUREN12345.ngr 
Top Level Output File Name           : 
SUREN12345 
Output Format                        : NGC 
Optimization Goal                    : Speed 
Keep Hierarchy                       : NO 
Design Statistics 
# IOs                                 : 31  
Cell Usage : 
#      BELS                               : 704 
#      GND                            : 1 
#      INV                            : 1 
#      LUT1                           : 2 
#      LUT2                           : 149 
#      LUT3                           : 36 
#      LUT4                           : 104 
#      LUT4_D                        : 10 
#      LUT4_L                        : 15 
#      MULT_AND                      : 24 
#      MUXCY                         : 173 
#      MUXF5                          : 27 
#      MUXF6                         : 8 
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#      VCC                            : 1 
#      XORCY                         : 153 
# FlipFlops/Latches                  : 80 
#      FD                             : 8 
#      FDRE                           : 64 
#      FDS                            : 8 
# Clock Buffers                      : 1 
#      BUFGP                         : 1 
# IO Buffers                         : 30 
#      IBUF                           : 14 
#      OBUF                           : 16 
 
10. DESIGN SUMMARY 
10.1 AREA AND POWER DESIGN SUMMARY OF 
FPGA:  

 Table-10.1 AREA AND POWER DESIGN SUMMARY 
OF FPGA 

 
Total area occupied by the 8 bit mac layout using FPGA = 
5297.53*10-9 m2 .Total power consumed by the 8 bit mac 
layout using FPGA = 4.1998 mwatts. 
 
10.2 AREA AND POWER DESIGN  
SUMMARY OF CPLD: 
CIRCUIT T

O
TA
L 

AREA 
OCCUP
IED 
PER 
CIRCU
IT (nm) 

POWER 
CONSU
MED 
PER 
CIRCUIT 
(mwatts) 

TOTAL 
AREA 
OCCUPI
ED 
(nm2) 

TOTAL 
POWER  
CONSU
MED 
(mwatts) 

LUT1 3 2.0935 .0015 6.2805 .004683 

LUT2 99 2.597 .00272 257.103 .224928 

LUT3 38 3.127 .002979 118.826 .113202 

LUT4 95 3.657 .003686 347.415 .35017 

INV 1 .578 .009274 .578 .009274 

MUX 14
3 

2.47845 .005129 3544.1835 .733447 

XOR4 90 2.0647 .0011249 186.03 3.610929 

FF 80 10.465  .03456 837.2 2.7648 

 
Table-10.2 AREA AND POWER DESIGN SUMMARY 

OF CPLD 
 
Total area occupied by the 8 bit mac layout using CPLD = 
2166.815*10-9 m2 .Total power consumed by the 8 bit mac 
layout using CPLD = 10.935 mwatts 
 
10.3 AREA AND POWER DESIGN SUMMARY OF 
VIRTEX: 
CIRCUI
T 

TO
TA
L 

AREA 
OCCUPI
ED PER 
CIRCUI
T (nm) 

POWER 
CONSU
MED 
PER 
CIRCUI
T 
(mwatts) 

TOTAL 
AREA 
OCCUPI
ED 
(n) 

TOTAL 
POWER 
CONSU
MED 
(mwatts) 

LUT1 2 2.0935 .0015 4.187 .004683 

LUT2 149 2.597 .00272 386.9 .3385 

LUT3 36 3.127 .002979 112.57 .107244 

LUT4 129 3.657 .003686 471.725 .3833 

INV 1 .578 .009274 .578 .009274 

MUX 208 2.47845 .005129 5155.1 1.066 

XOR4 153 2.0647 .0011249 171.66 1.721 

FF 80 10.465  .03456 837.2 2.7648 

Table-10.3 AREA AND POWER DESIGN SUMMARY 
OF VIRTEX 

 
Total area occupied by the 8 bit mac layout using 
VIRTEX=7144.628*10-9 m2 .Total power consumed by 
the 8 bit mac layout using VIRTEX=11.1587 mwatts 
   
CONCLUSION: 

 Thus the layout for 8 bit MAC has been produced from 
the schematic obtained from Extrinsic EHW was mapped 
for  FPGA, VIRTEX and CPLD devices to find the 
optimized resource consumption. ASIC solutions often 
involve a clearly better product economy. Thanks to small 
size and packaging, an ASIC gives automatic intellectual 
property protection. Minimizing the total number of design 
components leads to very high reliability, that is, low error 
frequency. Also, an ASIC is rigorously tested before 
delivery. This all results in considerably lower 
maintenance costs. From the results we have obtained, it 
was observed  that VIRTEX FPGA is the best suited 
device for producing the 8 bit Mac in terms of area. The 

CIRCUI
T 

TOT
AL 

AREA 
OCCU
PIED 
PER 
CIRCU
IT (nm) 

POWER 
CONSUM
ED PER 
CIRCUIT 
(mwatts) 

TOTAL 
AREA 
OCCUPI
ED 
(nm2) 

TOTAL 
POWER  
CONSUM
ED 
(mwatts) 

AND2 733 2.45 .0015 1796 1.107 

AND3 9 2.133 .00272 19.197 .02245 

AND4 4 2.322 .002979 9.328 .0119 

INV 219 .578 .009274 126.582 2.031006 

OR2 444 1.802 .003078 800.088 1.366632 

OR3 6 2.067 .003811 12.462 .022866 

XOR2 321 1.122 .0011249 360.162 3.610929 

FF 80 10.465  .03456 837.2 2.7648 
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layout produced by the VIRTEX device has occupied less 
area when compared to the layouts produced by the other 
FPGA and CPLD devices.         Considering the power 
consumption it was observed that ALTERA CYCLONE 
FPGA is the best suited device for producing the 8 bit 
MAC layout. The layout produced by the FPGA device 
has consumed less power when compared to the layouts 
produced by the VIRTEX and CPLD devices. Since the 
MAC is the basic component in most of the DSP designs, 
even a small saving in power or area will yield better 
results at final entity design. It should also be noted that 
the future is for using the property of reconfigurability in 
any application to achieve the power and area 
consumption by loading the necessary hardware on 
demand directly making use of bit streams. It will be much 
more efficient if this hardware is evolved rather than 
conventional flow. 
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