
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

316

Manuscript received January 5, 2009

Manuscript revised January 20, 2009

Ternary Tree & FGK Huffman Coding Technique

Dr. Pushpa R.Suri † and Madhu Goel ††,

Department of Computer Science & Applications, Kurukshetra University, Kurukshetra, India

Summary
In this paper, the focus is on the use of ternary tree over binary
tree. First of all, we give the introduction of Huffman’s coding.
Then adaptive Huffman coding is discussed. Here, a one pass
Algorithm developed by FGK (Fallar, Gallager, Knuth) for
constructing adaptive Huffman codes for binary trees is
implemented to ternary tree. In this paper, we are using the same
set of symbols and try to draw Ternary tree which results in
using minimum numbers of nodes (internal), minimizing path
length, fast implementation, efficient memory, fast compression
ratio, and in error detecting & error correcting.

Keywords
Ternary tree, Huffman’s Algorithm, Adaptive Huffman coding,
FGK algorithm, prefix codes, compression ratio, error detecting
& correcting

1. INTRODUCTION

Ternary tree or 3-ary tree is a tree in which each node has
either 0 or 3 children (labeled as LEFT child, MID child,
RIGHT child).

In computer science & information theory, Huffman
coding [2] is an entropy encoding used for loosless data
compression. The term refers to the use of a variable
length code table has been derived in a particular way
based on the estimated probability of occurrence for each
possible value of the source symbol. Huffman coding [14]
uses a specific method for choosing the representation for
each symbol, result in a prefix- free code (sometimes
called “prefix codes”) that is the bit string representing
some particular symbol is never a prefix of the bit
representing any other symbol that expresses the most
common characters using shorter strings of bits than are
used for less common source symbols. Huffman coding
suffers from the fact that the uncompressed need have
some knowledge of the probabilities of the symbols in the
compressed files.

Huffman coding basically divided in to two categories: -

1. Static Huffman coding
2. Adaptive/ dynamic Huffman coding

Static Huffman coding suffers from the fact that the
uncompressed need have some knowledge of the
probabilities of the symbol in the compressed files. This
can need more bits to encode the file. If this information is
unavailable compressing the file requires two passes.
FIRST PASS find the frequency of each symbol and
construct the Huffman tree. SECOND PASS is used to
compress the file. [10] We already use the concept of
static Huffman coding using ternary tree And we conclude
that representation of Static Huffman Tree using Ternary
Tree is more beneficial than representation of Huffman
Tree using Binary Tree in terms of number of internal
nodes, Path length [11], height of the tree, in memory
representation, in fast searching and in error detection &
error correction.

Now here we try to use the concept of adaptive Huffman
coding using ternary tree. Faller, Gallager, first conceived
adaptive Huffman coding [3] independently. Knuth
contributed improvements to the original algorithm, and
the resulting algorithm is referred to as algorithm FGK.
All of these methods are defined- word schemes that
determine the mapping from source messages to code-
words on the basis of a running estimate of the source
message probabilities. The code is adaptive, changing so
as to remain optimal for the current estimates. In this way,
the adaptive Huffman codes responds to locality, in
essence, the encoder is learning the characteristics of the
source. The decoder must learn along with the encoder by
continually updating the Huffman tree so as to stay in
synchronization with the encoder. Here we are given the
concept of error detection and error correction. And the
main point is that, this thing is only beneficial in
TERNARY TREE neither in binary tree nor in other
possible trees.

2. WHY WE USE ADAPTIVE HUFFMAN
CODING

The key idea is to build a Huffman tree that is optimal for
the part of the message already seen, and to recognize it
when needed, to maintain its optimality. Adaptive
Huffman [8] determines the mapping to code words using
a running estimate of the source symbols probabilities.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

317

1. It gives effective exploitation of locality. For

example suppose a file starts out with the series
of a character that are not repeated again in the
file. In static Huffman coding that character will
be low down on the tree because of its low
overall count, thus taking lots of bits to encode.
In adaptive Huffman coding, the character will
be inserted at the highest leaf possible to be
decoded, before eventually getting pushed down
the tree by higher frequency characters.

2. Only one pass over the data.

3. Overhead, in static Huffman, we need to transmit

someway the model used for compression that is
the tree shape. This costs about 2n bits in a clever
representation. As we will see, in adaptive
schemes the overhead is nlogn.

3. CODING TECHNIQUE
3.1 Adaptive Huffman Coding using Ternary Tree

FGK algorithm in Adaptive Huffman coding [7] uses
binary tree, is extended to ternary tree.

In this section we discuss the one-pass algorithm FGK
using ternary tree. The two main disadvantages of static
Huffman’s algorithm are its two-pass nature and the
overhead required to transmit the shape of the tree. In this
paper we explore alternative one-pass methods, in which
letters are encoded “on the fly”. We do not use a static
code based on a single ternary tree, since we are not
allowed an initial pass to determine the letter frequencies
necessary for computing an optimal tree. Instead the
coding is based on a dynamically varying Huffman tree.
That is, the tree used to process the t+1 st letter is a
Huffman tree with respect to μt the sender encodes the
t+1 st letter ai in the message by sequence 00, 01 and 11
that specifies the path from root to leaf. The receiver then
recovers the original letter by the corresponding traversal
of its copy of the tree. Both sender and receiver then
modify their copies of the tree before the next letter is
processed so that it becomes a Huffman tree μ(t+1).

μt = a1t, a2t …… ait
The first t letters in the message

KEY POINTS USED IN FGK ALGORITHM

1. Neither the tree nor its modification needs to be
transmitted, because the sender and receiver use
the same modification algorithm and thus always
have equivalent copies of the tree.

2. Dynamic Huffman codes [4] have one important
property called sibling property. In sibling
property, a ternary tree with p leaves of non
negative weights is a Huffman tree if and only if
The p leaves have non negative weights w1,
w2,…………..wp and weight of each internal
node is the sum of all its three children and The
nodes can be numbered in non-decreasing order
by weight, so that nodes 3j+1, 3j, 3j-1 are
siblings and their common parent node is higher
in the numbering. The node numbering
corresponds to the order in which the nodes are
combined by Huffman’s algorithm: node 1,2 and
3 are combined first, node 4, 5 and 6 combined
second and so on…

 Algorithm FGK

The concept of FGK Algorithm binary tree is exerting to
ternary tree. The Algorithm is as

1. The basis for algorithm FGK is the sibling
property (Gallager 1978). A ternary code
tree with non-negative weights has the sibling
property if each node (except the root) has a
sibling and sibling can be numbered in order of
non decreasing weights the parent of a node is
higher in the numbering.

2. A ternary prefix code is a Huffman code if and

only if the code has the sibling property.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

318

�Note that node numbering corresponds to the order in
which the nodes are combined by Huffman’s algorithm,
first nodes 1, 2 and 3 the nodes 4, 5, 6 …….

3. In Algorithm FGK, both encoder and decoder

maintain dynamically changing Huffman code
[6] trees. For each symbol the encoder sends the
codeword for that symbol in current tree and then
update the tree.

The problem is to change quickly the tree optimal after t
symbols (not necessarily distinct) in to the tree optimal for
t+1 symbols.

If we simply increment the weight of the t+1th
symbols and of all its ancestors, the sibling property
may not no longer be valid - we must rebuilt the tree

no more ordered by nondecreasing weight

� Suppose next symbol is “b”
� if we update the weigths...
� ... sibling property is violated!!
� This is no more a Huffman tree

The solution can be described as a two-phase process.

First phase: Original tree is transformed in another valid
Huffman tree for the first t symbols that has the property
that simple increment process can be applied successfully.

Second phase: Increment process as described previously
-- The first phase starts at the leaf of the t+1th symbol
-- We swap this node and all its sub-tree, but not its
numbering, with the highest numbered node of the same
weight
-- New current node is the parent of this latter node.
� The process is repeated until we reach the root

� After the increasing process there is no node with

previous weight that is higher numbered.

� First phase
� Node 2: nothing to be done
� Node 4: to be swapped with node 5
� Node 8: to be swapped with node 9
� Root reached: stop!

� Second phase is applied

EXAPMLE 1:
 Construct the FGK tree for the message
(e eae de eabe eae dcf) with ternary tree.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

319

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

320

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

321

3.3 Coding Technique For Ternary Tree

In Huffman Coding [12] the main work is to label the
edges. Huffman Coding uses a specific method for
choosing the representation for each symbol, resulting in a
prefix - free code (some times called "Prefix Codes") i.e.
the bit string representing some particular symbol is never
a prefix of the bit string representing any other symbol
that expresses the most common characters using shorter
strings of bits that are used for less common source
symbols. The assignment entails labeling the edge from
each parent to its left child with the digit 00, and the edge
to the mid child with 01 and edge to the right child with
11. The code word for each source letter is the sequence
of labels among the path from the root to the leaf node
representing that letter. Only Huffman Coding is able to
design efficient compression method of this type.
Huffman Coding is such a widespread method for creating
prefix-free codes that the term "Huffman Code" is widely
used as synonym for "Prefix Free Code".

We will give a coding using variable length strings that is
based on the Huffman Tree T for weighted data item as
follows: -

Fig1

The Huffman Code [13] for Ternary Tree assigns to each
external node the sequence of bits from the root to the
node. Thus the above Tree T determines the code for the
external nodes: -

G: 00 I: 0100 C: 0101

F: 0111 D: 1101 A: 1111

E: 110000 B: 110001 H: 110011

Table - 1

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

322

This code has "Prefix Property" i.e. the code of any item
is not an initial sub string of the code of any other item.
This means that there cannot be any ambiguity in
decoding any message using a Huffman Code.

3.4 Compression Ratio (Fixed length code verses
Huffman length code)

For example no. 1,
The number of fixed length code word bits= 4 bits (here
in ternary tree, each symbol is represented by two bits,
therefore for 7 symbols, number of fixed length code
word bits are 4)

Average codeword length: -
Lave= l1p1+l2p2……………+lnpn
Lave= is a measure of the compression ratio.

Word Probability
e 8/21 = .38095
a 3/21 = .14285
sp 5/21 = .23809
b 1/21 = .04761
d 2/21 = .09523
f 1/21 = .04761
c 1/21 = .04761

Lave=2 × .38095 + 4 × .147285 + 4 × .23809
+ 6 × .04761 + 6× .09523 + 8 × .04761
+ 8 × .04761

=. 7619+. 5891+. 9523+. 2856+. 5713+. 3808+. 3808

=3.9218

In the above example,
7 symbols =4 bits (fixed length code representation)
Lave (Huffman) = 3.9218 bits
Compression ration = 4/3.9218= 1.02

3.5 Error detecting & Error Correcting

When this coding technique is applied in the
message using ternary tree, then the number of
transmitted bits is always even in number that is
very beneficial in error detecting.

Error occurring during transmission is detected by
following cases: -

Case 1: -Number of bits changed by addition or
deletion of a bit.

Case 2: - Prefix property is violated

Case 3: - Sequence of bits does not exist as
described in the labeling of edges in the coding
technique.

If one of the cases occurs, accordingly can be
corrected.

While In binary tree, the number of transmitted bits
for a message can be either odd or even; therefore
there is a difficulty in error detecting and in error
correcting.

This thing is only beneficial in TERNARY TREE
neither in binary tree nor in other possible trees.

3.6 Benefits Of FGK Ternary Algorithm Over
FGK Binary Algorithm

Here, we are using some message e eae de eabe eae
dcf and then point out some comparison.

Ternary Adaptive FGK Binary Adaptive FGK

1. The FGK tree for the

message " e eae de eabe

eae dcf " in ternary form is

The FGK tree for the

message " e eae de

eabe eae dcf " in

binary form is

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

323

2. Numbers of nodes (Internal

+ External) in this Æ 12

Numbers of nodes

(Internal + External)

in this Æ 15

3. Number of internal node

nodes Æ 4

Number of internal

nodes in this Æ 6

4. Path length Æ45 Path length Æ 61

5. Height of the tree Æ5 Height of the tree Æ 8

6. Memory space used using

sequential representation

less as compared to Binary.

Memory space used

using sequential

representation more as

compared to Ternary.

7. Memory Space using

linked list representation

less as compared to Binary.

Memory Space using

linked list

representation more as

compared to Ternary.

8. Searching fast. Searching slow

 4. CONCLUSION

We can conclude that representation of Huffman Tree
using Adaptive Ternary FGK Algorithm is more
beneficial than representation of Huffman Tree using
Adaptive Binary FGK Algorithm in terms of number of
internal nodes, Path length, height of the tree, in memory
representation, in fast searching and in error detection &
error correction.

ACKNOWLEDGEMENTS

The author Madhu Goel would like to thank Kurukshetra
University Kurukshetra for providing me University
Research Scholarship. .

REFERENCES

[1] BENTLEY, J. L., SLEATOR, D. D., TARJAN,
R. E., AND WEI, V. K. A locally adaptive data
compression scheme. Commun. ACM 29,4 (Apr.
1986), 320-330.

[2] DAVID A. HUFFMAN, Sept. 1991, profile
Background story: Scientific American, pp. 54-
58

[3] ELIAS, P. Interval and recency-rank source
coding: Two online adaptive variable-length
schemes. IEEE Trans. InJ Theory. To be
published.

[4] FALLER, N. An adaptive system for data
compression. In Record of the 7th Asilomar
Conference on Circuits, Systems, and Computers.
1913, pp. 593-591.

[5] GALLAGER, R. G. Variations on a theme by
Huffman. IEEE Trans. Inj Theory IT-24, 6
(Nov.1978), 668-674.

[6] HUFFMAN, D. A. A method for the
construction of minimum redundancy codes. In
Proc. IRE 40(1951), 1098-1101.

[7] KNUTH, D. E, 1997. The Art of Computer
Programming, Vol. 1: Fundamental Algorithms,
3rd edition. Reading, MA: Addison-Wesley,
pp. 402-406

[8] KNUTH, D. E. Dynamic Huffman coding. J.
Algorithms 6 (1985), 163-180.

[9] MCMASTER, C. L. Documentation of the
compact command. In UNIX User’s Manual, 4.2
Berkeley Software Distribution, Virtual VAX- I
Version, Univ. of California, Berkeley, Berkeley,
Calif., Mar. 1984. ,

[10] PUSHPA R. SURI & MADHU GOEL, Ternary
Tree & A Coding Technique, IJCSNS International
Journal of Computer Science and Network Security,
VOL.8 No.9, September 2008 pp-

[11] ROLF KLEIN, DERICK WOOD, 1987, on the
path length of Binary Trees, Albert-Lapwings
University at Freeburg.

[12] ROLF KLEIN, DERICK WOOD, 1988, On the
Maximum Path Length of AVL Trees,
Proceedings of the 13th Colloquium on the Trees
in Algebra and Programming, p. 16-27, March
21-24.

[13] SCHWARTZ, E. S. An Optimum Encoding with
Minimum Longest Code and Total Number of
Digits. If: Control 7, 1 (Mar. 1964), and 37-44.

[14] TATA MCGRAW HILL, 2002 theory and problems

of data structures, Seymour lipshutz, tata McGraw hill
edition, pp 249-255

[15] THOMAS H. CORMEN, 2001 Charles e. leiserson,
Ronald l. rivest, and clifford stein.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

324

Dr. Pushpa Suri is a reader in the department of
computer science and applications at Kurukshetra
University Haryana India. She has supervised a number of
PhD students. She has published a number of research
papers in national and international journals and
conference proceedings.

Mrs. Madhu Goel has
Master’s degree (University
Topper) in Computer Science.
At present, She is pursuing her
PhD As University Research
Scholar in Computer Science.
Her area of research is
Algorithms and Data Structure
where she is working on
Ternary search tree structures.

