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Summary 
Wireless communication systems suffer from the destructive 
effects of channel fading. In this paper we propose a nonlinear 
signal processing method for diversity combining based on a 
Hammerstein type filter to mitigate the fading effects. In the 
present work, frequency selective Rayleigh fading channels in 
presence of additive white gaussian noise (AWGN) are 
considered and BPSK modulation is employed. Comparison of 
simulation results based on our proposed technique with the 
results obtained when linear equalizing filters are employed, 
shows that our technique leads to a considerably better BER 
performance at higher SNRs. We also show that our method has 
a lower complexity than the linear structure. Especially, we do 
not use any memory in our system that is a valuable advantage 
in many practical applications.  
Key words: 
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1- Introduction 

In wireless communication networks, fading phenomenon 
imposes serious limitations upon the system performance. 
Diversity techniques as means of achieving high capacity 
communication systems and combating fading effects have 
been the subject of interest for many years [1], [2]. Space, 
frequency, time and coding diversities, and also the 
combination of two or more of these, have been investigated 
by many authors and used in different systems.  
At the receiver,  the multiple received signals are combined. 
Various combining techniques have been proposed for flat 
and frequency selective fading channels [2]-[6]. In 
presence of additive white gaussian noise, Maximal ratio 
combining (MRC) is the optimum diversity receiver for 
flat fading channels, which is a linear technique [2]. 
In frequency selective channels, the transmitted signal is 
corrupted by intersymbol interference (ISI) as well as noise. 
Hence, in these channels, the optimum receiver is based on 
maximum likelihood sequence estimation (MLSE) method 
[1]. However, MLSE is a nonlinear method with a high 
computational complexity that increases exponentially with 
the channel memory length. As an alternative to MLSE, 
suboptimum receivers for frequency selective channels have 
been proposed and used. Linear and decision feedback 
equalizers (DFE) are the most common techniques [1]. 
Linear equalizer is simply a linear transversal filter with a 

limited number of taps, and therefore it is classified as a low 
complexity technique. Also in DFE, linear transversal filters 
are employed as feedforward and feedback blocks. 
Furthermore, in single-input multiple-output (SIMO) 
frequency selective channels, linear and decision feedback 
equalizers can be employed in each diversity branch [1]. 
Other nonlinear equalization techniques have also been 
proposed. In [7] and [8], techniques using neural networks 
have been presented. In [9] and [10], another method of 
equalization based on Volterra series expansion is reported. 
However the techniques mentioned above suffer from high 
computational complexity. 
In this work we offer a low complexity, memoryless 
combining technique for SIMO frequency selective Rayleigh 
fading channels, which is based on Hammerstein type filter. 
Hammerstein filter is a nonlinear polynomial filter used in 
many applications such as system identification [11], [12], 
[13]. Hammerstein decision feedback equalization (HDFE) 
has been employed in fiber-wireless channel to compensate 
for nonlinear distortion in the electrical-to-optical converter 
[14], [15]. HDFE has also been proposed for GSM receivers 
as an alternative to the existing methods [16]. Moreover blind 
HDFE has been proposed in order to enhance the spectral 
efficiency of the system [17]. In these works, single-input 
single-output (SISO) model is assumed for their 
communication systems. 
This paper is organized as follows. In section 2 we present 
the system model. Section 3 introduces our nonlinear 
Hammerstein diversity combining technique. Our simulation 
results and discussions are presented in section 4. The 
complexities of nonlinear and linear techniques are compared 
in section 5, before concluding the paper in section 6. 

2- System Model 

The equivalent low-pass discrete time model of the system, is 
illustrated in Fig. 1. In this work we employ BPSK 
modulation, and the transmitted sequence ( ) { }1,1 −+∈nx  is 
drawn from an i.i.d. source with equi-probable symbols.  
The SIMO channel consists of M  diversity branches. Each 
branch is assumed to be a frequency selective Rayleigh 
fading channel, modeled by a tapped delay line with L  taps. 
Hence the channel tap gains can be presented by an LM ×  
matrix as: 



400                     IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009  

Lhh 111 ,, K

Lhh 221 ,,K( )nx

( )nx̂( )nz

( )ny I 1

( )nyI 2

( )ny MI

( )nyQ 1

( )nyQ 2

( )ny MQ

( )nw1

( )nw2

( )nwM

( )ny 1

( )ny 2

( )ny M
MLM hh ,,1 K

( )nY ( )nY~  
 

Fig. 1  System model. 
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where jih  is the complex Rayleigh distributed random gain 

of the jth tap of the ith channel: 
 

jiQjiIji hjhh += . (2) 

 
jiIh and  jiQh are the real and the imaginary component of 

the channel gain respectively. These two components are 
independent, zero mean, gaussian random variables with 
variance 2

hσ . Furthermore, the tap gains are assumed 
uncorrelated and normalized to unity, i.e. : 
 

{ } ljorkiforhhE klij ≠≠=∗ 0 , (3) 
and: 
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In this work the channel fading is assumed sufficiently slow, 
such that the tap gains do not vary during one data frame. We 
also assume that the M  frequency selective channels have 
identical power delay profiles (PDP). PDP is the profile of the 
mean square values of the tap gains. Two examples of 
exponentially decaying profiles used in our simulations will 
be shown in Fig 5. 
The received signal from the ith channel which is corrupted 
by ISI and noise is given by: 
 

( ) ( ) ( ) Miforniwjnx
L

j
jihniy ,,2,11

1
K=++−

=

=∑ , (5) 

 
where ( )nw i  is the additive white complex gaussian noise at 
the ith receiver branch: 
 

)()()( nwjnwnw iQiIi += . (6) 
 

( )nw iI and ( )nw iQ  are uncorrelated, zero mean, gaussian 

random variables with variance 2
wσ . Equation (5) can be 

expressed in matrix form: 
 

( ) ( ) ( )nnn WXHY += , (7) 
 
where H  is the channel matrix and ( )nY  , ( )nX and ( )nW  
are the received data vector, the transmitted data vector and 
the noise vector respectively. These vectors are defined as 
follows:  

 
( ) ( ) ( )[ ]TY nynyn MK1= , (8) 

( ) ( ) ( ) ( )[ ]TX 11 +−−= Lnxnxnxn K , (9) 

( ) ( ) ( )[ ]TW nwnwn MK1= . (10) 
 

As shown in Fig. 1, the receiver consists of two correlators 
banks, namely, inphase and quadrature correlators. The 
complex received signal )(nyi  from each branch is applied to 
both correlators. The outputs of the inphase and quadrature 
correlators are the real part ( )( )ny iI  and the imaginary part 

( )( )ny iQ  of )(nyi  respectively. According to equations (2) 
and (6), we can write: 
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We define the 12 ×M  real vector ( )nY~  as: 
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This model is very convenient for computational purposes, as 
we deal with real values only. It is in fact similar to having 

M2  real diversity branches. As shown in Fig. 1, ( )nY~ is the 
input to the diversity combining filters. Then, the output of 
the combiner, ( )nz , is applied to a hard detector for making 
the output decision ( )nx̂ . In section 3 we will propose our 
new approach for nonlinear Hammerstein technique. 
However, since we need to compare our results with the 
linear structure, a brief review of linear technique is presented 
here.  
Linear Diversity Combining Technique (LDC) is shown in 
Fig. 2. In this technique, a linear transversal filter with qeL  
taps is employed for each diversity branch. These filters are 
designed based on the minimum mean square error (MSE) 
criterion. The output ( )nzi  of the ith filter is: 
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where kig  is the kth coefficient of the ith filter. The output of 
the linear combiner can then be written as: 
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Equation (15) can be expressed in matrix form: 
 

( ) ( )nnz L
T
L YG= , (16) 

 
where LG  is a 12 ×eqML  vector that consists of 
coefficients kig , and ( )nLY  is a 12 ×eqML  vector that define 
as follows: 
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Fig. 2   Linear Diversity Combining Technique (LDC). 

 
where ( )nY~  is defined in equation (12). We can obtain the 
coefficients of LDC by using the MSE criterion: 
 

L
1

LL PRG −=
opt

, (18) 

where LP is the crosscorrelation vector: 

 
( ) ( ){ }nxnE LL YP = , (19) 

and LR  is the autocorrelation matrix: 

 
( ) ( ){ }nnE T

LLL YYR = . (20) 

3- Nonlinear Hammerstein Combining Technique 

3-1 Combiner Model 

In this section we introduce our memoryless nonlinear 
Hammerstein Diversity Combining technique (HDC), which 
is based on utilization of nonlinear Hammerstein type filters. 
Nonlinearity of the optimum receiver in frequency selective 
channels, is the motivation of this idea. As show in Fig. 3, in 
this approach a Hammerstein filter of order D , is employed 
for each diversity branch. The output polynomial of the ith 
filter is: 
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where kiĝ  is the kth coefficient of the output polynomial of 
the ith filter, and ( )nyi

~  is defined by equation (13).  
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Fig. 3   Hammerstein Diversity Combining Technique (HDC).
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Note that since our system is memoryless, no delay term 
appears in equation (21). Also note that only odd powers 
exist in the summation of equation (21). We will prove in the 
next subsequent section that the terms corresponding to the 
even powers are equal to zero. 
The filters outputs are summed to produce the combiner 
output ( )nz , i.e. : 
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Equation (22) can be expressed in matrix form: 

 
( ) ( )nnz H

T
H YG= , (23) 

 
where HG  is a ( ) 11 ×+DM  vector that consists of 
coefficients kiĝ , and ( )nHY  is a ( ) 11 ×+DM  vector that 
define as follows: 
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where ( )npY~  is defined as the pth power of ( )nY~ : 
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M
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( )nz is an estimate of the transmitted symbol ( )nx . Our goal 

is to find the coefficients kiĝ  such that the mean square 
error is minimized. 
 

3-2 Calculation of the Coefficients  
 

The coefficients of the Hammerstein filters are found from 
the training mode by using the MSE criterion. As shown in 
Fig. 4, the transmitter sends a training sequence that is  
 
assumed to be known to the receiver as the desired signal 

)(nd . The error signal is defined as difference between the 
desired and estimated values:  
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Fig. 4  Training mode. 
 

The cost function is defined as below: 
 

( ){ }neE 2=ζ , (27) 
 

where { }.E  denotes the statistical expectation. The 
coefficients are computed such that to minimizeζ . 
Using equations (23) and (26) in (27), we get: 
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Expanding the right-hand side of (28), we obtain: 
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If we define the ( ) 11 ×+DM  crosscorrelation vector: 

 
( ) ( ){ }nxnE HH YP = , (30) 

 
and the ( ) ( )11 +×+ DMDM  autocorrelation matrix: 
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H
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and ( ){ } 12 =nxE , we obtain: 
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This is a quadratic function of vector HG  with a single global 
minimum [18]. To minimizeζ , we need to have: 
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These equations may collectively be written as: 

 
0=∇ζ , (34) 

 
where ∇  is the gradient operator. From equations (32) and 
(34) and using the gradient properties we can write: 

 
.22 0PGR HHH =−=∇ ζ  (35) 

 
Finally, the coefficients of Hammerstein filters are obtained 
by solving (35): 

 
H

1
HH PRG −=

opt
, (36) 
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assuming that HR  is invertible. 
 

3-3 Analysis of the Coefficients 
 

In this section we prove that the even coefficients in equation 
(22) are equal to zero. To do so, we consider the case 
where 2=M , 3=D , and the channel memory length 2=L , 
and assume real channel and noise for simplicity. However, 
these assumptions do not change the generality and our proof 
is valid for all cases.  
In this case the two received signals are: 
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Also, from our basic assumptions in this work, we have: 
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where ... vzn  is a none-zero value. From equations (37)-(39), 
it is easy to show that: 
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For real values of channel and noise we have: ( ) ( )nyny 11
~ = , 

and ( ) ( )nyny 22
~ = . Hence, equation (24) becomes: 
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Substituting equations (40) and (42) in (31), the following 
form for the autocorrelation matrix is obtained: 
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where the blocks of the matrix are alternatively zero and 
none-zero. It is easy to show that the inverse matrix 1

HR −  has 
also a similar form. 

On the other hand, substituting equations (41) and (42) in 
(30), the following form for the crosscorrelation vector is 
obtained: 
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If we substitute 1
HR −  and HP  in equation (36), we have: 
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Hence, the even coefficients of the filter are zero. This proof 
can be easily generalized for arbitrary values of M , D  and L . 

3-4 Approximated Coefficients 
  

Equations (18) and (36) imply that some statistical averages 
must be known for calculating the filters in HDC and LDC 
techniques. In practice we suppose that our random processes 
are ergodic, and therefore replace the statistical averages by 
the corresponding time averages. So, if we assume that the 
number of the training bits is lN , HP  , HR , LP  , and LR  
are estimated as : 
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By replacing these estimated values in equations (18) and 
(36), we obtain an approximation for the coefficients of the 
filters. 

4- Simulation Results and Discussions 
 

In this section the average error rate is evaluated numerically 
for HDC and LDC techniques and the results are compared. 
To make use of the advantages of both diversity systems, a 
hybrid combining technique is also proposed. 
The simulations are performed for two different frequency 
selective Rayleigh channels with exponentially decaying 
power delay profiles shown in Fig. 5. These are the examples 
of common profiles used in wireless communication channels 
[2]. We generate 100,000 random realizations of the channel 
and obtain the average BER results by Monte Carlo 
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simulations. We also use a 100-bit sequence for training 
mode. 

4-1- Average BER Performance 

In Fig. 6, the average BER versus SNR is shown for HDC 
and LDC techniques with the channel profile (a). In these 
simulations, which are performed for three different number 
of diversity branches { }4,3,2∈M , we choose the order of 
Hammerstein filter 5=D  and the number of linear filter 
taps 5=eqL . Fig. 7 shows the results of similar simulations 
which are performed for the channel profile (b). In these 
simulations the number of diversity branches are { }4,3∈M , 
and we choose 5=D , and 7=eqL . From these figures, we 
observe that at higher SNRs HDC has a considerable better 
performance than LDC. For example, for 4=M , when 
the dBSNR 40= , the average BER of HDC is 10,000 times 
lower than LDC, which is a valuable advantage of our 
proposed technique. However, the disadvantage of HDC at 
low SNRs, is due to the inherent property of all nonlinear 
systems at low signal to noise ratios. Examples of these 
behaviors are observed in decision feedback equalizers, and 
FM modulators, in which their superiority over linear 
techniques appears when SNR is above a threshold.  
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Fig. 5  Two examples for channel PDP. 

To prove the validity of the above comparison when the 
number of taps in LDC is increased, we evaluate the average 
BER of this technique for different number of taps 

{ }13,9,7,5∈eqL  and 3=M  for the channel (b). As can be 
seen from Fig. 8, the performance dose not change considerably 
when Leq  is increased. Hence, increasing the number of taps 
in LDC, does not change the superiority of HDC. 
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Fig. 6  Average BER performance for 

 the channel (a). 
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Fig. 7  Average BER performance for 

 the channel (b). 
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Fig. 8  The effect of increasing the number of taps in LDC (channel b). 
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To see the effect of the polynomial order D  on the 
performance of HDC, simulations are performed for three 
different values of { }7,5,3∈D  and 3=M  for the channel (b). 
The results of these simulations are presented in Fig. 9. As 
can be seen from this figure, when 5>D , the system 
performance dose not change notably. Hence, in this work we 
choose 5=D . 

4-2- Hybrid Technique 

Considering the results, we conclude that HDC system has a 
better performance at higher SNRs, while at lower SNRs the 
performance of LDC system is better. To make use of the 
advantages of both systems, we propose a hybrid technique. 
In this technique as shown in Fig. 10, a simple estimator 
estimates the value of SNR at the training mode. The 
receiver is then switched to LDC or HDC mode, according to 
the estimated SNR. By this method we can obtain a 
satisfactory performance at all SNRs. 

5- Comparison of HDC and LDC Complexities 

LDC technique is known as a low complexity system. In this 
section we compare the complexity of HDC and LDC 
techniques and show that HDC has a considerably less 
complexity. 

5-1- Memory Usage 

HDC is a memoryless system. This property provides many 
benefits, like low cost, low power consumption and low 
hardware complexity. On the other hand, LDC technique 
requires )1(2 −× eqLM  memories. Especially, for long 
impulse response channels (high values of eqL ) and high 
values of M , the number of required memories is significant, 
and therefore the cost and the complexity of the system are 
increased. 
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Fig. 9  The effect of increasing polynomial order in HDC (channel b). 
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Fig. 10  Hybrid technique. 

 

5-2- Computational Complexity 

The computational complexity of HDC and LDC techniques 
is proportional to the number of coefficients of their filters. 
To present a quantitative comparison for computational 
complexity, we define the complexity ratio as: 
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From the equations (18) and (36), Cxr becomes: 
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If we assume that the number of diversity branches is the 
same for both techniques, we have: 

 

)1(
2
+

=
D

L
Cxr eq . (52) 

 
As an example, for 5=D  and 13,9,7=eqL , the complexity 
ratio is 33.4,3,33.2=Crx  respectively. This means that the 
computational complexity of HDC is 33.4,3,33.2  times 
lower than LDC respectively. This is a significant advantage 
for HDC technique, especially for long impulse response 
channels. 

5-3- Equipments 

Another valuable advantage of HDC technique over LDC is 
that in this system, we need a lower number of diversity 
branches. As we can observe from Figs. 6 and 7, at higher 
SNRs the performance of HDC for a lower number of 
diversity branches M , is even better than LDC performance 
with a higher values of M . From Fig. 6 we observe that the 
performance of HDC for the channel (a) with 3=M , is better 
than the performance of LDC with 4=M  
when dBSNR 5.27≥ . Also we observe that in this case the 
performance of HDC with 2=M  is better than the 
performance of LDC with 4=M  when dBSNR 38≥ . 
Hence, we can save the number of diversity branches, by 
using HDC technique. Consequently the number of antennas 
(in spatial diversity), correlators and other equipments 
required in the receiver are decreased. 
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Table 1: Comparison of HDC with 5=D and LDC with 7=qL  for the channel (b) 
 Average 

BER 
Number of 
coefficients 

Number of 
Diversity 
branches 

Number of 
correlators 

Memory 
usage 

HDC at SNR = 25 dB 8.8 e -6  
18 

 
3 

 
6 

 
0 HDC at SNR = 31 dB 1.6 e -7 

HDC at SNR = 40 dB 8.1 e -9 
LDC at SNR = 25 dB 1.65 e-7  

84 
 

6 
 

12 
 

72 LDC at SNR = 31 dB 1.6 e -7 
LDC at SNR = 40 dB 1.5 e -7 
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Fig. 11  Average of BER of HDC with 5=D  and 3=M  and LDC 

with 7=qL  and 6=M  for the channel (b) 

 
At the end of this section, we consider a demonstrative 
example. In Fig. 11, the results of our simulation for HDC 
with 3=M  and 5=D  are compared with LDC with 6=M  
and 7=eqL  for the channel (b). Conclusions obtained from 
this comparison are summarized in Table 1. 

6- Conclusion 

In this paper we introduced a nonlinear low complexity 
memoryless combining technique based on Hammerstein 
type filters. We employed BPSK modulation and assumed 
frequency selective Rayleigh fading channels. The 
performance of our proposed system was evaluated for 
different number of diversity branches and polynomial orders. 
Comparison of our simulation results with the results that we 
obtained from linear combining technique, shows that: 
i) At higher SNRs, the average BER performance of HDC 

is superior to LDC. 
ii) HDC provides a considerable low complexity technique 

as it needs less number of diversity branches, memories 
and computations than LDC. 

iii) To make use of the advantages of both HDC and LDC 
systems, a hybrid combining technique was proposed. 
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