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Summary 
This paper proposes a new approach investigating the application 
of moment method to evaluate a set of candidate features and to 
select an informative subset to be used as input data for a neural 
network classifier. The first step (pre-processing) of proposed 
method takes into account the discriminative properties of 
invariant krawtchouk moments. The second step (recognition) is 
achieved by using multilayer feedforward neural network 
(MFNN) as a classifier with the stochastic back propagation as a 
learning algorithm. Finite vectors obtained as a result in the pre-
processing phase are then fed into the neural network system. 
We demonstrate experimentally that the choice of a kratchouk 
moment subset which contains sufficient and discriminative 
information about the input pattern is crucial in the convergence 
of the neural network training algorithm to a satisfactory 
performance level. The proposed method has been tested on the 
well known IFN/ENIT database of Arabic handwritten words. It 
produces excellent and encouraging result by reducing the 
computational burden of the recognition system and presenting a 
high recognition rate with good generalization ability. 
Key words: 
Method of moments, invariant krawtchouk moments, multilayer 
feedforward neural network, Arabic handwritten recognition 

1. Introduction 

Artificial neural networks, and especially multilayer 
perceptrons (MLP), have shown good capabilities in 
performing handwritten character recognition. However, 
their performance is strongly affected by the quality of the 
representation of the characters. This may require a large 
number of parameters to represent the character, which 
then results in difficulty in establishing the rules for 
recognition. In other words the MLPs become difficult to 
train. Moreover, the greater the size of network, the 
greater is the computation time. This can greatly restrict 
their practical use. So, it is necessary to perform efficient 
features extraction on the one hand, and to optimize the 
lay-out of the artificial neural network on the other hand. 
In fact, the choice of features to represent the patterns is of 
capital importance due to the fact that they affect several 
aspects of the pattern recognition problem such as 
accuracy, required learning time and necessary number of 
samples [1]. 

Different features have been used in the context of 
character recognition, of particular note, the Statistics-
based approaches are very important for their use of global 
information in an image for extracting features [2]. 
Especially orthogonal moments have been extensively 
employed for their shift, rotation, and scale invariance and 
high robustness in the presence of noise, in classification, 
recognition, target identification and scene analysis [2-5].  
In this paper, we focus on the discriminative power of 
Krawtchouk moments as a global features to characterize 
patterns and we then propose a new approach which 
extract:  (a) structural moments i.e. moments that can 
discriminate clearly the original object in the decision 
space, collecting the maximum of information needed for 
representing and reconstructing this object, (b) a reduced 
number of those moments in order to minimize the 
computation time and the computational complexity of the 
classifier, because the moment vector obtained determine 
the input size of the classifier (a MFNN in our case). If the 
vector size is reduced and predetermined and if moments 
extracted are greatly discriminative, the classifier performs 
well the task of decision. 
The proposed contribution for object recognition has two 
steps : preprocessing and recognition. In the first one, we 
propose a novel method that extracts optimal object 
features. For this, we introduce the Maximum Entropy 
Principle (MEP) as a selection criterion [6]. Our objective 
is to reduce the input dimensionality of the classification 
problem by eliminating features with low information 
content or high redundancy with respect to other features. 
The second step (recognition) is achieved by using 
multilayer feedforward neural network as a classifier with 
the stochastic backpropagation algorithm, where finite 
vectors obtained in the preprocessing phase are used as 
inputs to it. The method is tested using the well known 
IFN/ENIT database of handwritten words [19].  
In this work, a class of Krawtchouk moments is examined. 
Nevertheless, the presented results can be extended to 
other types of orthogonal moments [8], [9]. 
Our paper is organized as follows: in Section 2, some 
basic definitions are given to build-up necessary 
mathematical background, including Krawtchouk 
moments and their properties. Section 3 points out the 
discrimination power of Krawtchouk moment. Sections 4 
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and 5 present the optimal Moment selection method and 
our MFNN design. Finally, section 6 and 7 deal with the 
summary of important results and conclusions of the paper.  
  

2. Krawtchouk moment 

Krawtchouk moments are a set of moments formed by 
using krawtchouk polynomials as the basis function set. 
Krawtchouk polynomials, introduced by Mikhail 
krawtchouk [20],[22],are a set of polynomials associated 
with the binomial distribution. 
In this section, the definitions of krawtchouk and weighted 
krawtchouk polynomials are first provided followed by 
krawtchouk moments and krawtchouk moments invariants. 
 

2.1 krawtchouk polynomials 

The definition of the n-th order classical krawtchouk 
polynomial [21] is defined as: 
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The set of ( )1+N krawtchouk polynomials 
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Examples of krawtchouk polynomials up to the second 
order are 
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2.2 weighted krawtchouk polynomials 

The conventional method of avoiding numerical 
fluctuations for moment computations is by means of 
normalization by the norm. The normalized krawtchouk 
polynomials with respect to the norm ),;( NpxKn  is 
defined as: 
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The set of weighted Krawtchouk 
polynomials ),;( NpxKn is defined by: 
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Such that the orthogonality condition becomes 
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2.3 krawtchouk moments  

Krawtchouk moments have the interesting property of 
being able to extract local features of an image. The 
krawtchouk moments of order ( )mn +  in terms of 
weighted krawtchouk polynomials, for an image with 
intensity function, ),( yxf , is defined as 
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The parameters N and M are substituted with N-1 and M-1 
respectively to match the NxM pixel points of an image. 
The krawtchouk moment corresponding to 0== mn is 
the weighted mass of the image, i.e., 
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By solving (8) and (9) for ( )yxf , , the image intensity 
function can be written completely in terms of the 
krawtchouk moments, i.e., 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 
 

 

419

( ) ( )1,;)1,;(, 2

1

0

1

0
1 −−= ∑∑

−

=

−

=

MpykNpxkQyxf m

N

x

M

y
nnm  

 (11) 
One way of interpreting the above equation is that the 
image intensity function can be represented as a series of 
weighted krawtchouk polynomials weighted by the 
krawtchouk moments. If the moments are limited to order 
≤p< 2N-2, the series is truncated to  
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Where if { }1,...,2,1,0 −= NSN  (see (13) on the right of 
the page). Observe from (9) that krawtchouk moments are 
in fact the inner product of ( )yxf ,  and 

( ) ( )1,;1,; 21 −− NpykNpxk mn . Therefore, the 
appropriate selection of p1 and p2 enables local features at 
different positions of the image to be extracted by the 
lower order krawtchouk moments. Using parseval’s 
theorem it can be shown that 
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As the lower order krawtchouk moments store information 
of a specific region of interest of an image, the higher 
order moments store information of the rest of the image. 
Therefore, by Reconstructing the image from the lower 
order moments and discarding the higher order moments, 
a subimage can be extracted from the subject image. It is 
also evident that for each additional moment used in 
reconstructed image is reduced, that is 
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Where E is the square error and 0,0 mnQ the additional 
moment. It follows that, if all NxM moments are used, the 
image is perfectly reconstructed. For the rest of the paper, 
we assume the case of N=M. 

2.4 krawtchouk moment invariant 

If the geometric moments of an image with image 
intensity function ( )yxf ,  is defined using discrete sum 
approximation as 
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Then the standard set of geometric moment invariants, 
which are independent to rotation, scaling and translation 
[1] can be written as 
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 And nmμ  are the central moments defined in [1] as 
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The value of θ  according to (21) is limited 
to oo 4545 ≤≤− θ . 
The krawtchouk moments of 
( ) ( ) ( )[ ] ( ) ( )yxfywxwyxf ,,

~
2

1−=  can be written in terms of 
geometric moment as 
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Where { }pnka ,,  are coefficients determined by (1). Hence, 

nmQ is a linear combination of geometric moments, Mij, up 

to order mjandni == , weighted by 

coefficients { }pnka ,, . Notice that (23) transforms the no 

orthogonal geometric moments to form the orthogonal 
krawtchouk moments. Notice that the normalized image 
according to (17) does not fall inside the domain 
of [ ] [ ]1,01,0 −×− NN , as required by krawtchouk 
moments; therefore, it is modified to  
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Which can be written in terms of { }nmν  as 

∑∑
=

−−++
+

=
⎟
⎠
⎞

⎜
⎝
⎛×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

p
pq

qpmn
qp

m

q
nm

NN
q
m

p
n

0

1
22

0
)25(.

22
~ νν  

The centroid of the image is now shifted to ( ) ( )( )2,2 NN , 
and the image is scale-normalized such that ( )2~ 2

00 N=ν . 

Since in nmν~  is a linear combination of nmpq νν ,  for odd 

n and/or m does not vanish for symmetrical images; hence, 
(24) solves the symmetrical problem addressed by 
palaniappan et al. in [23]. The new set of moments can be 
formed by replacing the regular geometric moments 
{ }nmM  by their invariant counterparts { }nmν~ . From (23) 
we have  
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Note that the new set of moments is rotation, scale and 
translation invariant. We shall designate this set of 
moments as krawtchouk moment invariants in the rest of 
this paper. Some examples of them are 
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Where ( ) ( )[ ] 21
21 1,;1,; −−−=Ω NpmNpnnm ρρ . Note that, 

in our case, we set the parameters to p1=p2=0.5, so that the 
emphasis of the moments will be at the center of the image. 
This is consistent with the fact that (24) normalizes the 
image and shift the centroid to the center of the 
[ ] [ ]1,01,0 −×− NN   plane. 

3. Discrimination power of krawtchouk 
moments 

In this section we focus on the discrimination power of 
Krawtchouk moments, for this let’s consider a subset of 
1000 images representing the Arabic hand-written from 
the IFNENIT database. The projection of those words onto 
the Krawtchouk polynomials is investigated in order to 
provide an exploratory data analysis. 
figure 1 represents the projection of the Krawtchouk 
moment of two patterns representing the Arabic 
handwritten words:  

 ,    and  , 

on the 2-dimentional space formed by  
(Q00, Q20) (figure 1(a)), and by  (Q00, Q20) (figure 1(b)) 
respectively.  
We can easily see, from the presented figures, that this 
moments subspace clearly categories the input data into 
two classes representing each of the digits under study. 
Those simulations show that the investigated Krawtchouk 
moment highly discriminate the previous digits in the 
decision space. The next section deals with the selection of 
the subset of moment to represent the patterns under 
investigation in the input database.  

 

Figure1 projection of the Arabic handwritten words   , 

   and  ,  on the 2-
dimentional space formed by (Q00, Q20) (figure 1(a)), and by  (Q00, Q20) 

(figure 1(b)). 

4. Neural network design 

Neural network is widely used as a classifier in many 
handwritten character recognition systems [13], [14]. Also, 
due to the simplicity, generality, and good learning ability 
of neural networks, these types of classifiers are found to 
be more efficient [15]. In this paper, multilayer feed 
forward neural network (MFNN) is used to classify the 
patterns. In our algorithm, the stochastic gradient 
algorithm as a minimization procedure is used during the 
learning phase. The weights are updated on the basis of a 
single sample. With this procedure the parameter vector 
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fluctuates around an average trajectory, but usually 
converges considerably faster than regular gradient 
descent and second order methods on large training sets 
with redundant samples [7], [16].  
The input of the MFNN are feature vectors derived from 
the proposed feature extraction method described in the 
previous section.  The number of nodes in the output layer 
is set to the number of Arabic words classes. In order to 
avoid stagnation of the gradient descent method in local 
minima, we use the momentum technique in the weight 
update procedure. Experiments were conducted using the 
initial weight vectors that have been randomly chosen 
from a uniform distribution in (-1, 1), this weight range 
has been used in [17], [18]. 

5. Experimental results 

In order to illustrate our approach, The method is tested 
using the IFNENIT database of Arabic handwritten words 
[19], which has a training set of 26.459 city words with 
300 dpi binary handwritten words (town/village names). 
Figure 2(a) shows some examples randomly picked from 
the training set of IFNENIT database words. 

 
 

Figure 2. (a) Size-normalized examples from the IFNENIT database and 
(b) Training and test rates of the MFNN versus 30 iterations through 

26459 IFNENIT pattern training set with 140 hidden unit 

Table 1 shows optimal orders obtained by our moment 
extraction algorithm. In this study, the classifier error 
rate τ  (%) is considered as the number of 
misclassifications in the training (test) phase over the total 
number of training (test) images. 

Multilayer feedforward neural network with one hidden 
layer was trained to classify the patterns. 30 iterations 
through the entire training data were performed, for each 
session; the global learning rate ηwas decreased using the 
following schedule: 0.01 for the first iteration, 0.005 for 
the next three, 0.002 for the next seven and 0.0005 
thereafter. As shown in figure2(c) the test error rate 
stabilizes after around 20 passes at 3.21%. The error rate 
on the training set reaches 2.23 % after 25 passes. The 
most confusions are produced with the digits ‘4’ and ‘9’ 
(figure2 (b)). From Table 2 we can see that the proposed 
method with a considerably reduced MFNN input size, 
hidden layer (only one hidden layer) and hidden nodes 
(140) (see Table 2), can easily provide excellent results in 
terms of test error (3.21%), the same results in the 
literature are obtained with at least 2 hidden layer and 
more than 300 hidden unit in each layer (Table 3). 

Table 1 Some Arabic handwritten word in the feature subset database 
with the corresponding optimal number to represent each word obtained 

by moment extraction algorithm 

 
Arabic Word Resulting Optimal order θ  

13 

11 
12 

 

Table 2 Different test error rates obtained with different MFNN 
architectures, where the feature subset size is 66 corresponding to order 

10. 
architecture τ (%) on the Test set 

66,60,10 7.8 
66,90,10 5.62 
66,100,10 5.32 
66,120,10 4.75 
66,140,10 4.21 

 

Table 3 Test error rates of some methods reported in the literature 
[17].(HU : hidden Units) 

 
Methods τ (%) 

Pairwise linear classifier 8.5 
2-layer NN, 1000 HU 5.3 

2-layer NN, 1000 HU, [distortions] 4.6 
2-layer NN, 300 HU, [distortions] 4.2 

3-layer NN, 300+100 HU 4.1 
3-layer NN, 500+150 HU 3.5 
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6. Conclusion 

In this paper an efficient feature extraction technique is 
developed, based on the orthogonal moments using 
Invariant Krawtchouk moments. We have focused on the 
discrimination power of Invariants Krawtchouk moments.. 
We have shown that the proposed Krawtchouk moment 
extraction method with MFNN classifier reduce the 
computational burden of the recognition system in terms 
of the total number of layers and nodes, while showing an 
Improved performances in terms of recognition rate and 
generalization ability . Experimental results show that the 
recognition rate with only one layer and 140 nodes reaches 
3.21% on the test set of IFNENIT database. 
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