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Summary 
Networks in the real world have a variety of structures and they 
are different in many respects. Among them, in both natural and 
artificial networks, they often show scale-free as the result of 
optimization of growth. An important feature of many complex 
networks is the structure and performance. Such networks with 
desirable properties become important in a variety of 
applications such as in supply chain networks, computer and 
transportation networks etc. 
In this paper we present a methodology of evolutionary design of 
optimized networks in which the structure of a network is 
designed to optimize various performance measurements. We 
propose a methodology in which a complex system optimizes its 
network structure in order to optimize its overall object function. 
Especially these in turn depend on two critical measures of the 
network performances, congestion and economy in terms of 
design cost. In this paper, we use the genetic algorithm (GA) as a 
tool of optimization. 
We also propose some methodologies to investigate the 
properties of evolved networks. The objective functions of GA 
are the combination of the congestion function which is defined 
by node betweenness and the density of links. We show that an 
evolutionary optimization process can account for the observed 
regularities displayed by most networks. Using a graph 
theoretical case study, we show that when design cost is 
paramount the Star network emerges and when congestion is 
important the dense network is found. When congestion and 
design cost requirements are both important to varying degrees, 
other classes of networks such as the network with multiples 
hubs including scale-free emerge. Four major types of networks 
are encountered: (a) sparse exponential-like networks, (b) sparse 
scale-free networks, (c) star networks and (d) highly dense 
networks. The evolutionary consequences of these results are 
outlined. 
Key words: 
Traffic network, Congestion, Optimal network, Genetic 
algorithm 

1. Introduction 

One of the outstanding problems in complex adaptive 
systems found in engineering, biology, ecology, 
economics, sociology, and so on, is explaining and 
predicting the emergence of self-organized network 
structures with very interesting properties [1]. Recently, 
there have been attempts to propose mechanisms for the 
emergence of the scale-free topologies for such networks. 
Barábasi and Albert have suggested preferential 
attachment as a mechanism and these results provide 

valuable insights into the structure of the scale-free 
networks [2]. An important feature of many complex 
systems, both natural and artificial, is the structure and 
organization of their interaction networks with interesting 
properties. Such networks are found in a variety of 
applications such as in supply chain networks, computer 
and communication networks etc. Networks in the real 
world a variety of structures and they are different in many 
respects. However, the questions of why and how the 
different network configurations emerge, what is the 
significance of these different topologies, why do we find 
similar topologies in diverse applications, and what, if any, 
is the common underlying governing principle remain to 
be investigated further. 
 We propose a general conceptual framework for self-
organization of a network by evolutionary adaptation, 
modeled after Darwin, in which the system’s, i.e. the 
network’s (We use these terms interchangeably in this 
paper), objective is to maximize its chances of overall 
survival by adapting its configuration according to the 
environmental pressure. The basic premise is that 
networks found in nature today exhibit certain 
characteristic configurations and properties because the 
same helped them survive the test of time and natural 
selection. A network typically serves to transport material, 
energy, and/or information; thus the idea of survival, in all 
the discussion to follow, is a general one to mean 
performance towards achieving the design objectives of 
the network. Therefore, the novel hypothesis is that 
although human-engineered networks such as supply 
chains or communication networks have not necessarily 
‘emerged’ by evolutionary adaptation, the underlying 
design principles that led to their creation could be very 
similar to those that caused natural networks to evolve to 
their present forms. The universality of scale-free and 
other features found in a variety of networks, natural or 
otherwise, lends support to this view. The proposed 
framework seeks to shed light on these principles and their 
guiding influence on network evolution. We will illustrate 
how the external environment, which imposes or demands 
certain survival objectives, critically determines the 
optimal configuration. These insights can be valuable for 
the study and analysis of all networks under various 
service environments. In this spirit, the framework applies 
equally to natural as well as human-engineered networks.  
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We use two objectives, network congestion and 
design cost and they are often conflicting, requiring a 
trade-off in the design. We use the term congestion as a 
measure of the effectiveness of the information flow over 
the network to accomplish its functions. By design cost we 
mean the link density and we want to minimize it. As 
noted, these are often conflicting objectives. For example, 
in the design of engineered systems such as chemical 
plants, automobiles etc., as one tries to minimize the 
congestion of the system while keeping the costs down, 
robustness suffers and vice versa. Design and control 
engineers are instinctively aware of this compromise. Just 
as in real-life cost or economic constraints are an 
unavoidable reality, in nature, too, there are such cost 
constraints. We summarize all the above ideas in the 
following postulates of our theory for self-organization of 
complex systems by evolutionary adaptation:  
(i) For complex systems such as complex networks, 

nature adapts the system configuration (i.e. topology) 
via the processes of evolution and natural selection so 
as to maximize an overall survival fitness function 
under a given environmental selection pressure. 

(ii) The overall survival fitness function consists of both 
short and long-term survival components. These 
components are dependent on two important measures 
determined by the configuration - the efficiency and 
robustness of the system towards performing its 
functions or objectives. Efficiency governs the short-
term survival, whereas robustness impacts the long-
term survival. 

(ii) Depending on the system’s functional goal and its 
survival environment, nature chooses to optimize for 
efficiency, robustness or both under cost constraints, 
for ‘average case’ or ‘worst-case’ survival. 

2. A Graph Theoretic Formulation 

Consider a system, i.e. a network, consisting of several 
individual members or nodes. Let us assume that the 
survival of this hypothetical system depends on the ability 
of each node to communicate or interact with all other 
nodes in an efficient and robust manner. The interactions 
can be through the exchange of material, energy, and/or 
information. As long as a node is connected to another 
node, it can communicate with it and pass on messages to 
others who are part of the overall connectivity. Therefore, 
the communication between a pair of nodes need not be 
direct but could occur via one or more intermediate nodes. 
The set of nodes in direct communication can change, thus 
the system is adaptive. An example of such a system 
would be a supply chain, where the interaction of the 
different nodes via direct links facilitates the transfer of 
goods for some economic purpose. This adaptive system 

can be modeled as a graph G  of n  vertices and e  edges. 
The vertices represent the nodes and an edge indicates 
direct communication between the nodes it connects. 
Before we proceed any further we would like to lay down 
the essential concepts and definitions of our graph 
theoretic framework. In this paper, we use the terms 
network and graph, nodes and vertices, interchangeably.  

We know that Internet topology is scale-free, as was 
confirmed by Barábasi and his team [1]. To state this 
simply, the nodes of a scale-free network are not 
connected randomly (i.e., evenly). Scale-free networks 
include many ‘very connected’ nodes, and hubs of 
connectivity shape the way the network operates. The ratio 
of very connected nodes to the number of nodes in the rest 
of the network remains constant as the network changes in 
size. 

Unlike scale-free networks, random connectivity 
distributions are another large classification of networks 
characterized by evenly connected nodes. Before Barábasi 
and his team made their discovery about Internet 
connectivity, researchers presumed the Internet was a 
random network without well-connected nodes, or that the 
number of well-connected nodes was statistically 
insignificant. Although not all nodes in a random 
connectivity type of network are connected to the same 
degree, most have a small average number of connections. 
Also, as a randomly distributed network grows, the 
relative number of very connected nodes decreases.  

Although the differences between these two 
classifications of networks is significant, it is worth 
mentioning that both scale-free and randomly distributed 
networks can be found in ‘small world’ networks. A 
small-world network does not require many hops to get 
from one node to another. The science behind this idea is 
there are only six degrees of separation between any two 
people, or nodes in this case, in the world; so, in both 
scale-free and randomly distributed networks, with or 
without very connected nodes, it may not take many hops 
for a node to make a connection with another node. 
However, in a scale-free network, many transactions 
would be channeled through a well-connected hub.  

These two types of networks also handle traffic 
congestion differently. Because the Internet is scale-free, a 
malfunctioning router automatically prompts Internet 
protocols to bypass the missing nodes by sending packets 
to other routers. If the malfunctioning router carries a large 
amount of traffic, its absence places a significant burden 
on its neighbors. Although routers do not break down 
because of too much traffic, if they do, they simply create 
a queue and process as many packets as they can and drop 
the rest. Therefore, too much traffic sent to a router results 
in a denial-of-service attack, and. Only a small percentage 
of the packets can be processed. Because the sender of lost 
packets does not get a confirmation that its message 
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arrived, the sender re-sends the packets again, which only 
increases the congestion. Therefore, the removal of several 
large nodes could easily create a disastrous disruption on 
the Internet [3]. It should be noted that random networks 
do not handle traffic congestion in the same way. Thus, it 
has been concluded that the handling of traffic congestion 
depends on the network topology. 

From a users' point of view, the problem lies in the 
links of a network. For example, in order to connect the 
Internet, a user pays an Internet service provider (ISP). If 
the user has several PCs, connecting to the Internet 
through different ISPs would be ideal from the viewpoint 
of traffic. But this solution is unrealistic because of the 
cost. In this sense, users are limited by the constraint of 
links.  

Our goal in this study is to find a network structure 
that can prevent congestion with the least number of links. 
In order to reach this goal, we apply our knowledge of 
optimal information transmission in organizations [4] to 

actual networks such as the Internet. We use the genetic 
algorithm (GA), which can alleviate traffic congestion 
under the constraint of the number of links. 

In this paper, a network is modeled as a graph with 
the objective to send traffic without congestion. In this 
model, a node represents network equipment and a link 
represents a network cable between two nodes. We 
assume new traffic is created at randomly chosen nodes 
and sent to randomly chosen nodes. 

 

 

3. The Evolutionary Optimization Model 

We take an undirected graph G  having a fixed 
number of nodes n  and links defined by the binary 
adjacency matrix }{ ijaA = , nji ≤≤ ,1 . Given a pair of 

nodes i  and j , 1=ija  if node i  and j  is linked and 

0=ija  otherwise. The adjacency matrix A  is nn×  

matrix because of award for all nodes and a symmetry 
matrix because of an undirected graph.  

3.1 Initial networks 

The first generated network is shown in Fig. 2. The 
average link number per node is 7, and this obeys a 
Poisson distribution. In other words, this network is a 
random network. We generated ten random networks that 
resemble this and applied the genetic algorithm.  

3.2 Genetic algorithm 

In this study, the system uses the genetic algorithm to 
generate an optimized network structure [5]. We used the 

(a) Scheme of network           (b) A degree distribution  

Fig. 2 The initial network and degree distribution. 

Fig. 1 The basic scheme of the genetic algorithm for optimizing networks. 
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MGG model for the change of generations [6]. But, in this 
study, we chose two better matrices for a next generation. 

The first, networks were generated by a specified 
probability about links. The model uses an encoded 
network by the binary adjacency matrix for the mutation 
and crossover. Next, the most suitable matrices among the 
parents and children matrices are chosen, and the others 
are eliminated. After repeating each step we obtain the 
optimized model. 

We used the multi-point crossover. After crossover, 
each element in the matrix switches to a reverse state with 
a specific probability. In this paper, the network is an 
undirected graph, and so, if one element is reversed, the 
symmetry element is reversed at the same time. There is 
the possibility that an isolated network appears after 
crossover and mutation. In this paper, when an isolated 
node appears in a new network that the node has 0 
distances to another node, we dump the network. 
Therefore, we can use non-isolated matrices. 

Finally, after long generations have passed, we obtain 
an optimal network what is reduced traffic congestion and 
low density. Fig. 1 illustrates our MGG algorithm. 

We use crossover rate at 0.7, and mutation rate is set 
at 2/2 Cn , i.e. reverses of two links per one generation. 
We create 10 different networks as individuals at the 
beginning. And, we stop until the object function has 
almost the same value match on 2Cn  generations. 

4. Definition of objective functions 

4.1 Congestion measure 

In this paper, we assume that the flow of the packet on the 
network obeys Poisson distribution. Then, the probability 
that a packet creates on a certain pass emerges 
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where ρ  is the probability of packet creation. And, the 
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where iβ  is node betweenness of node i  [7]. 

And, if number of output packet oP  is 1, queue size 
of a node is 
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according to queuing theory. [8] 

The total expected length of the queues for the each 
betweenness, )(ρλ [4][8][9], is used the function what 
decrease a traffic congestion. It is defined as 
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The minimization of )(ρλ  involves the 

simultaneous minimization of the size of the queues and 
the number of links, which is associated with the cost. 

The congestion measure Eq. (4) has a problem. If 
betweenness or ρ  has big value, like Eq. (5), then we 
cannot use congestion measure. Because )(ρλ  has minus 
value.  
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So, in recent paper, high packet creation rate cannot 

be used in optimization. 
In this paper, we use a normalization of )(ρλ . We 

assume that the probability ρ  is the probability of one 
packet creation on network in a unit time. Therefore, Eq. 
(1) is changed to Eq. (6). 
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It is the rate of input packet for each node in a unit time. 
And, apply Eq. (6) to Eq. (3). 
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Finally, we obtain new congestion measure Eq. 8. 
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We can use all of the probability of packet creation. 
( 10 ≤≤ ρ ) 

4.2 Link density 

Many essential features of links are displayed by complex 
systems: for example, memory, stability and homeostasis 
emerge from the underlying network structure [10][11]. 
Different networks exhibit different features at different 
levels, but most complex networks are extremely sparse 
and exhibit the so-called small-world phenomenon [12]. 

The inverse measure of sparseness is called the link 
density, α , is defined in terms of ija  as 
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where 2Cn  is combination that from n  nodes any two 
nodes can form a linkable combination and it is the 
maximum number of links. So, we obtain relative ratio 
what number of links divided by maximum number of 
links, define link density α  ( 10 ≤<α ). Therefore, the 
Eq. (9) is the normalized number of links. 

4.3 The object function to be minimized 

The evaluation function of our optimization algorithm is 
optimization of both Eq. (8) and Eq. (9) at the same time. 
However, the range of the two functions are gain as 

 
• 102.0 ≤≤α  
• 3.5)(0 ≤< ρλ  
 

There is big difference occurs. Especially, the 
maximum )(ρλ  is the average when 0=ω ， 1=ρ . 
Therefore, the overall object function is normalized as 
fallows 

 
αωρωλρω )1(5)(),( −+=E ,           (10) 

 
where weight variable is 10 ≤≤ω , and ω  is a 
parameter controlling the linear combination of both. 

We know that when 0=ω  it is the minimization 
problem for link density only and when 0=ω  it is only 
the minimization congestion measure. 

5. Analysis functions 

5.1 Polarization measurement 

The simulations search for a network topology with 
different a value of ω  and ρ . In particular, for any such 
network (with betweenness β ), we focus on polarization 
θ , which is defined as follows: 

 

β
ββ

θ
−

= ∈ inimax
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We use the polarization θ  for analyzing the results 

[4][9]. The polarization Eq. (11) shows that how long the 
maximum betweenness ( ini β∈max ) is separated from 

average betweenness ( β ) of the network. This type of 

polarization is used in our characterization of the different 
phases. If this value is large, the variance of betweenness 
is large. That is traffic bottlenecks are easy to detect. 

For example, a circle network and perfect connected 
network that complete network (See Fig. 3) have the 
minimum value of polarization. That is all nodes have 
same value of betweenness. In case of this, the value of 
polarization is 0. 

 

              
(a) Circle network                     (b) Complete network 

Fig. 3 A network witch minimum polarization. 

But, star network (See Fig. 4) has maximum value of 
polarization. Because, the only one node has very big 
betweenness but the other nodes have very small 
betweenness. That is the star network has a big difference 
between the maximum value and average of betweenness. 
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Fig. 4 A network witch maximum polarization : Star network 

5.2 Entropy measurement 

In information theory, entropy is a measure of the 
uncertainty associated with a random variable. The term 
by itself in this context usually refers to the Shannon 
entropy [13], which quantifies, in the sense of an expected 
value, the information contained in a message, usually in 
units such as bits. Equivalently, the Shannon entropy is a 
measure of the average information content one is missing 
when one does not know the value of the random variable. 
Shannon's entropy represents an absolute limit on the best 
possible lossless compression of any communication: 
treating messages to be encoded as a sequence of 
independent and identically-distributed random variables, 
Shannon's source coding theorem shows that, in the limit, 
the average length of the shortest possible representation 
to encode the messages in a given alphabet is their entropy 
divided by the logarithm of the number of symbols in the 
target alphabet. 

For example, a fair coin has entropy of one bit. 
However, if the coin is not fair, then the uncertainty is 
lower (if asked to bet on the next outcome, we would bet 
preferentially on the most frequent result), and thus the 
Shannon entropy is lower. Mathematically, a coin flip is 
an example of a Bernoulli trial, and its entropy is given by 
the binary entropy function. A long string of repeating 
characters has an entropy rate of 0, since every character is 
predictable. The entropy rate of English text is between 
1.0 and 1.5 bits per letter, or as low as 0.6 to 1.3 bits per 
letter, according to estimates by Shannon based on human 
experiments. 

We define the degree entropy on a certain value of 
H  as 
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where kp  is the frequency of nodes having degree k  and 
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This type of informational entropy will be used in our 
characterization of the different phases. Entropy measures 
of this type have been used in characterizing optimal 
channel networks and other models of complex systems 
[14] although they are typically averaged over time. Thus, 
we analyze uncertainty of network through the link 
entropy. 

In the appeared optimized network, a random 
network (see Fig. 5) has minimum entropy ( H =2.17) i.e. 
it is instability state, low uncertainty and regular link 
distribution.  

On the other hand, a star network (see Fig. 6) has 
maximum entropy ( H =0.56) i.e. it is stability state, high 
uncertainty and irregular link distribution. And, there is 
hard to exist in general world, because all things will 
change to state of high entropy.  

 

              

Fig. 5 A network with the minimum entropy : Random network 

              

Fig. 6 A network with the maximum entropy : Star network 

6. Simulation Results 

6.1 Optimized networks (1) 

We evaluated the results of the genetic algorithm through 
optimized networks what is optimized results according to 
each objective function Eq. (8) and (9). 

In the case in which 1=ω , the result optimized is 
the congestion measure )(ρλ . The optimization result is 
the complete network shown in Fig. 7; the average link 
number is 98.36 and the link density is 0.99. 
Approximately 98% of the nodes have 99 links as the link 
distribution. In other words, traffic congestion does not 
occur if each node is connected directly to all the other 
nodes. 
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Fig. 7 The optimized network and degree distribution : ω=1 

It follows that only the link density α  is minimized 
in the case in which ω  is 0. The optimization result is a 
tree structure (hierarchical) network shown in Fig. 8. This 
expresses the network with the least number of links. 

 

 

Fig. 8 The optimized network and degree distribution : ω=0 

By the above results, we know that the genetic 
algorithm performs well. 

6.2 Optimized networks (2) 

Fig. 9 is the result networks that optimized weight variable 
( 10 ≤≤ω ) and packet creation rate ( 10 ≤≤ ρ ) while 
changing every 0.1. We can obtain many network 
topology on each ω  and ρ .  Especially, we can find 
some rule in the change of each variable. And, we decide 
about a hub in this simulation. A hub node is defined that 
when a node has large link, i.e. connect to 10% nodes. 

If packet creation rate and weight variable is low, 
there are line like tree network topologies, i.e. on the 
conditions that network dose not utilize and link constraint 
is very high, a network is develop to line like tree network 
topology. On the other hand, if packet creation rate or 
weight variable grow up, the hierarchy structure network 
topology disappears and becomes the hub structure until 
ω  and ρ  what obtain star topology. Especially, when 
only weight variable is high, there is single hub topology 
i.e. a hub tends to become one hub structure. But, when 
only packet creation rate is high, there are multi hub 
topologies i.e. the number of hubs tends to increase. 

Star topologies appear when packet creation rate or 
weight variable grow up. In case of star topologies, if 
packet creation rate is low, obtain single star topologies, 

but if packet creation rate is high, obtain multi star 
topologies. Especially, in multi star topologies, star 
topology that there 3 or 4 hub is appeared when packet 
creation rate is low, and star topology what increase 
number of hubs (For example, 8 ~ 11 hubs) is appeared 
when packet creation rate is high.  

Because small star structure is connected, a route 
scatters the networks of the multi-star topology and has a 
property to be able to prevent concentration of the traffic. 
Besides, we know that change when hub structure changes 
into star structure pass through multi-star structure and. 

When packet creation rate and weight variable is 
higher than each values what appear star networks, we can 
obtain dense random networks. The changes from star 
networks to the dense networks is the foregoing 
description that if star hub can develop, a network become 
a star network topology, otherwise became a random 
network. Thus, there is high total queue length of the 
network to have a high dense link. But, we know that 
polarization has shrinking very much than star structure. 
Even if this has high total queue length, there is effective 
in scattering routs. 

 

 
(a) Configuration of optimized networks for different values 

 
(b) Some topologies of evolutionary optimized networks. 

Fig. 9 The optimized networks for each ω  and ρ . 

 
In case of ω =0.95, it becomes near to the complete 

network, because constraint to minimize link density 
becomes very weak. And, we know that the change to the 
complete network from the high-density network change 
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suddenly. It changes in particular to ≈α 1 suddenly from 
≈α 1.2 when see the link density. As for this, the number 

of the links becomes largest, but both congestion measure 
and polarization value become the smallest network 
structure. Thus, in case of very high ω  and ρ , an 
influence of congestion measure becomes very high, and 
an influence of the link density becomes trifling. 
Therefore, the network comes to have process minimizing 
only congestion measure. 

7. Analysis of the optimized networks 

We plot of Polarization and Entropy on Fig. 10. 
Polarization appears a network characteristic by the 
distribution of the betweenness. And, entropy appears a 
network characteristic by the distribution of the link. 
Therefore, Fig. 10 show assortment of networks by 
network characteristics. In this case, we know that 
networks do phase transition through the topology. 

 

 

Fig. 10 Comparison in terms of polarization and entropy measurements. 

First, on phase transition by entropy, there are 3 type 
of layer; high-entropy is high-dense layer, middle-entropy 
is hub layer, and low-entropy is others. And, in the low-
entropy, there are complete layer and star layer. Especially, 
we bind up star networks in one layer; for all that single 
star networks have very high polarization. Because, they 
have star hub typical first network topology. 

We know that complete, random and single star 
network is easily assorted by network topology and link 
distribution. But, assortment of others network is very 
hard. However, we assorted hub layer and star layer what 
is multi star and overlap star networks in like Fig.10.  

 

 

Fig. 11 Classification of optimized networks in terms of link density 
constraint (ω ) and packet creation rate ( ρ ). 

Finally, we can find that optimized networks have 4 
different types depending on the values ω  and ρ . 

 
• Type 1: A hub network 
• Type 2: A star network 
• Type 3: A high-dense network 
• Type 4: A complete network 
 

In Fig. 11, we classify different types of optimized 
networks. There are some phase transition any four layers 
according to ω  and ρ . And, in Fig. 11, if ω  is high and 
ρ  is low, only one hub is grown up in a network, 
otherwise some hubs are grown up on same time. 

8. Conclusion and Future works 

Many network topologies are suggested in recent 
research. But, we do not know what a optimal network 
topology is at various purposes. We want to find optimal 
network topology to answer the each purpose. We 
simulated a case of optimization network topology based 
on the flow of traffic according to a genetic algorithm. 
And, we make an addition to the constraint of a link. 

We are designed optimized communication networks 
what are considered packet creation rate and constraint of 
link. We can classify according to network characteristic 
the result networks according to change of importance of 
link constraint ω  and packet creation rate ρ . There are a 
hub network, a star network, a high-dense network and a 
complete network. And, according to link density, a hub 
network and a star network are low density, and a high-
dense network and a complete network are high density. 

In future work, we intend to increase the number of 
nodes and analyze the optimized network. In the current 
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study, we cannot yet declare conclusively what our hub 
network is because our networks had a small number of 
nodes. But, the optimization of large network needs very 
long time. We think about another appropriate method 
which is module network. It is that the big network can be 
connected by some small network. First, we optimize 
some small networks. And, a large network is made from 
connection of small networks each other. The point is how 
connect networks to networks do. Finally, we analyze 
obtain new networks. 
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