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Summary 
The increase in urban traffic has resulted in traffic congestions, 
long travel times and increase hazards to pedestrians due to 
inefficient traffic light controls. These scenarios necessitate the 
use of new methods in the design of traffic light control for 
vehicles and pedestrian crossings.  
 
In a conventional traffic light controller, the traffic lights change 
at constant cycle times which are clearly not optimal. The preset 
cycle time regardless of the dynamic traffic load only adds to the 
problem. It would be more feasible and sensible to pass more 
vehicles at the green interval if there are fewer vehicles waiting 
behind the red lights or vice versa.  
 
We apply the genetic algorithm technology in the traffic control 
system and pedestrian crossing to provide intelligent green 
interval responses based on dynamic traffic load inputs, thereby 
overcoming the inefficiencies of the conventional traffic 
controllers. We apply such technology to a four-way, two-lane 
junction based on two sets of parameters: vehicles and 
pedestrians queues behind a red light and number of vehicles and 
pedestrians that passes through a green light. The algorithms 
dynamically optimize the red and green times to control the flow 
of both the vehicles and the pedestrians. 
 
To represent a typical traffic flow system, we use the Cellular 
Automata for modeling vehicular motion behind the traffic lights. 
We developed an algorithm to model the situation of a four-way 
two-lane junction based on this technology. 
 
We compare the performance between the genetic algorithms 
controller and a conventional fixed time controller and the results 
show that the genetic algorithms controller performs better than 
the fixed-time controller.  
Key words: 
Traffic light, Genetic algorithm, Pedestrian crossing, Cellular 
Automata 

1. Introduction 

The monitoring and control of vehicular traffic and 
pedestrians pose a major challenge to transport authorities 
around the world. The escalating number of vehicles in 
cities not only has a huge environmental impact, but also 
results in loss of lives on the road. This situation demands 

a comprehensive approach involving a system in which 
both the traffic controls for vehicles and pedestrians are 
coordinated so that road users are safe and traffic is 
smooth flowing. 

 
Currently, pedestrian crossings pose a significant hazard in 
many countries, both in developed and developing 
countries due to the increase in vehicles number. Each 
year a staggering figure of 500,000 pedestrians are killed 
all over the world and in China alone from 2000-2004, half 
a million pedestrians were killed [1]. 

 
The European Transport Safety Council (ETSC) claims 
that 15 to 30 percent of the transportation mode used is 
walking. According to a telephone survey conducted by 
the Royal Automobile Club of Spain in the year 2000, 
walking is highly recommended as part of a healthy 
lifestyle with no negative side effects. However, it has 
been the victim of badly controlled traffic, thus increasing 
the mortality rates of road users. In the large cities of 
Europe, especially in Spain, people walked to their 
destinations but this is being seen as dangerous as 
pedestrians are more vulnerable to road accidents than 
passengers and drivers of cars [2]. 

 
In a conventional traffic light controller, the traffic lights 
change at constant cycle times which is clearly not the 
optimal solution. The system calculates the cycle time 
based on average traffic load and disregards the dynamic 
nature of the traffic load, which aggravates the problem of 
congestion. Consequently, we see an urgent need to 
optimize traffic control algorithms to accommodate the 
increase in vehicles in urban traffic that experience long 
travel times due to inefficient traffic light controls and to 
improve pedestrian’s safety. 

 
In this paper, we propose an optimal control of traffic 
lights using genetic algorithm (GA), in a four-way, two-
lane junction with a pedestrian crossing. The innovative 
design of the pedestrian crossing is also based on such 
algorithm, which includes pedestrians as one of the 
parameters. Genetic algorithm is introduced in the traffic 
control system to provide an intelligent green interval 
response based on dynamic traffic load inputs, thereby 
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overcoming the inefficiencies of conventional traffic 
controllers. In this way, the challenges are resolved as the 
number of vehicles are read from sensors put at every lane 
in a four-way, two-lane junction and pedestrianss are 
monitored at the road junction. 
 
The features inherent in genetic algorithm play a critical 
role in making them the best choice for practical 
applications, namely optimization, computer aided design, 
scheduling, economics and game theory. It is also selected 
because it does not require the presence of supervisor or 
observer.  
 
However, genetic algorithm, without prior training, 
continuously allow permanent renewal of decisions in 
generating solutions. Instead of trying to optimize a single 
solution, they work with a population of candidate 
solutions that are encoded as chromosomes. Within these 
chromosomes are separate genes that represent the 
independent variables for the problem at hand. 
 
There are a number of specific attributes of genetic 
algorithms that give them an edge over other traditional 
optimization techniques. These are: 
 
• A genetic algorithm works from a population, not a 

single point, and hence it is less likely to be trapped 
at a local optimum. 

• Derivative freeness, i.e. a genetic algorithm does not 
need the objective function’s derivative to do its 
work. 

• Flexibility, i.e., a genetic algorithm can function just 
fine regardless of how complex the objective 
function is; the only thing it requires of the function 
is that it is executable (i.e., its value can be calculated 
given the values of the decision variables). 

• Because of its implicit parallelism, a genetic 
algorithm can handle combinatorial problems 
efficiently. It has been shown that as the size of the 
search space or number of solutions increases 
exponentially, the time requirements for the GA to 
reach a solutions only grow linearly. This feature is 
particularly useful for on-line optimization of 
transportation problems such as traffic control. 

• A genetic algorithm naturally lends itself to parallel 
implementation. This follows from its functional 
components structure. 

• Genetic algorithm, is, for the most part, based on 
intuitive notions and concepts. 

 
Our preliminary review of the literature indicates that 
genetic algorithm has not been tested on pedestrian 
crossings. We have, therefore, attempted to implement this 
algorithm and study its effects on this problem. 

2. Related Work    

The first known attempt to apply fuzzy logic in traffic 
control was made by Pappis, and Mamdani [5]. They 
simulated an isolated signalized intersection composed of 
two one-way streets with two lanes in each direction 
without turning traffic. The fuzzy controller reduced 
average vehicle delay compared to an actuated controller.  
 
Tan, Khalid and Yusof [3] describe a fuzzy logic 
controller for a single junction that mimics human 
intelligence. They used two sensors for each lane. The first 
sensor behind each traffic light counts the number of cars 
passing the traffic lights, and the second sensor behind the 
first sensor counts the number of cars coming to the 
intersection at distance from the lights. The fuzzy logic 
controller determines the time that the traffic light should 
stay in a certain state, before switching to the next state. 
The order of states is predetermined, but the controller can 
skip a state if there is no traffic in a certain direction. The 
amount of arriving and waiting vehicles are quantized into 
fuzzy variables, like many, medium and none. The 
activation of the variables in a certain situation is given by 
a membership function, so when there are 5 cars in the 
queue, this might result in an activation of 25% of ‘many’ 
and 75% of ‘medium.’ In their experiments, the fuzzy 
logic controller showed to be more flexible than fixed 
controllers and vehicle actuated controllers, allowing 
traffic to flow more smoothly, and reducing waiting time.  
 
Foy et al. [4], documents the use of genetic algorithm to 
optimize timing plans. The application object is an 
octothorpe-shaped traffic network with four intersections. 
Every intersection can run a two-phase plan. This method 
uses nine decision variables including the total  green time 
of all phases, phase orders and splits. These nine decision 
variables are coded with 24 bits. The objective function is 
the reciprocal of the total waiting time. A simulation 
model is used to evaluate the optimizing method. Results 
show that genetic algorithm is indeed a parallel optimizing 
method compared with traditional search methods.  
 
Zhiyong et al. [6] propose an improved immunity genetic 
algorithms for an urban area coordinated traffic control 
system. The system adopts a two-level hierarchical 
distributed construction, with parameters that are 
hierarchically optimized at an interval of 5-30 minutes. In 
each interval, the cycles and offsets are optimized in the 
central controller while the splits are optimized in 
intersection controller. For a given performance index, 
such as minimizing the mean vehicle delay or number of 
stops etc., an improved immunity GA is used to optimize 
the cycle, offsets and splits. To ensure that the proposed 
method is plausible, simulations were conducted with 
positive results. 
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In [7] a mutation operation of genetic algorithm has a 
logistic chaotic mapping applied upon and then a chaotic 
mutation is implemented, thus building a chaotic genetic 
algorithm. From this population, 5% of the individuals are 
selected randomly to search according to chaotic dynamic 
searching process. The results of this search replace the 
previous individuals who were part of this population. It 
shows that the new algorithm converges more quickly and 
avoids local optimization and premature convergence 
when simulated in CORSIM (CORridor SIMulation). 

3. Model Design for Traffic Light  

In our design, we simulate five sensors; each sensor 
detects the number of vehicles for each lane. The fifth 
sensor detects the pedestrian queue. The system calculates 
the green and red light times to be given for vehicles and 
the vehicles queue length behind the red light plus the time 
taken for each vehicle to arrive at its target destination in 
static and dynamic modes, i.e., if vehicle V comes from 
lane X goes to a destination in lane Y, the system 
calculates the time that it takes to travel from X to Y.  

3.1 Variables  

We define the input variables as follows: 
 

1. Vehicles Passing, VP: the Number of Vehicles that 
pass through a green light. 

2. Pedestrians Passing, PP: the Number of Pedestrians 
that pass through a green light. 

3. Vehicles Queue, VQ: the Number of Vehicles behind 
a red light. 

4. Pedestrians Queue, PQ: the Number of Pedestrians 
behind a red light. 

 
The variables VP and PP are required to calculate the 
queue length behind a red light, whereas the variables VQ 
and PQ are used to calculate the green time in the next 
cycle. 
 
We define the output variables as follows: 

 
1. Queue of Vehicles, QRV: The Number of Vehicles 

behind the red light per second in static and dynamic 
modes. 

2. Queue of Pedestrians, QRP: The Number of Pedes-
trians behind the red light per second in static and 
dynamic modes.  

3. The Duration, D: The time it takes for a vehicle to 
travel from a source to a target destination in static 
and dynamic modes. 

 

The variables QRV, QRP and D are required to check our 
dynamic model’s performance by comparing it with the 
static model. 

3.2 Cellular Automata 

One way of designing and simulating (simple) driving 
rules of cars is by using cellular automata (CA). CA use 
discrete partially connected cells that can be in a specific 
state. For example, a road-cell can contain a car or is 
empty. Local transition rules determine the dynamics of 
the system and even simple rules can lead to chaotic 
dynamics [8]. 
 
We use cellular automata algorithm in this paper because it 
allows us to represent significant events that occur during 
congestions such as traffic standstill, resume motion, 
return to standstill again, and so on. In the model, we 
identify a vehicle’s basic attributes that include medium 
speed, maximum speed, vehicle location, desired speed, 
current acceleration, and vehicle unique identification 
number.  

 
We identify and define the parameters of the model’s 
entities, i.e. the vehicle and lane as follows: 

 
1. Length of lane: Following from the fundamental 

concept of CA, each lane is divided into a number of 
cells and each lane has a unique ID number. We 
define the length of a lane in cell number and set the 
number of cells for each lane to 15. The size of a cell 
is 16 pixels and a vehicle occupies two cells (32 
pixels). We use an array to represent the cells in each 
lane and the array is identified with a unique ID 
number. This enables the program to check if the cell 
is empty or occupied and to detect the vehicles actual 
position. 
 
We set a vehicle’s width to 30 pixels and its height to 
16 pixels. All vehicles have the same size with four 
different colors. Each vehicle is identified by unique 
ID number and has a known fix travel route that is 
determined by the source and destination points. 
Figure 1 shows a typical configuration of a lane 
created with Cellular Automata. In our model, we 
have eight such  lanes. 

 

 
 

Figure 1: A Typical Lane of the Model 
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2. Number of Vehicles: This is the number of vehicles 
in a lane. 
 

3. Vehicles Speed: The number of cells traveled by a 
vehicle in a given time. The value of this speed 
ranges between zero and the maximum value. The 
maximum speed is 5 cells per second. 
 

4. Traffic Signals: As clearly shown in Figure 2, our 
model has five traffic lights, four for traffic control 
and one for pedestrian crossing. Each traffic light has 
an individual ID for identification, and has three 
signal modes, red, yellow and green. We use an array 
to store the set times for the three signal modes. 

 
Our four-way, two-lane junction (hence eight lanes), has 
an entry node and an exit node for each lane and one 
intersection node (junction). The intersection node consists 
of four cells and each node has an individual ID. We set an 
array for each node, the size of which depends on the 
number of cells in the node. The pedestrian crossing area 
is set across the lanes B and B1.  

 

 
 

Figure 2: The Traffic Model 
 
As apparent in Figure 2, each vehicle can either move 
forward, stay at its current position or turn left or right. A 
typical algorithm for the Cellular Automata implemented 
for our model is as follows: 
 

1. Rule1: check decision-point 
2. If decision-point is passed 
3.  Then go to Rule3 
4. Else go to Rule2 
5. Rule2: check cell type 
6. If cell type=‘decision’ 

7. Then examine the behavior of the vehicles, 
which direction the Vehicle take, followed by a 
turn in that direction; decision point will be 
passed 

8. Else go to Rule3 
9. Rule3: check cell 
10. If cell isn’t occupied by a vehicle and cell type = 

‘empty’ or cell type = ‘decision’  
11.  Then Move 
12. Else go to Rule4 
13. Rule4: check adjacent cells 
14. If the cell over to the left (right) isn’t occupied by a 

vehicles 
15.  Then Move to the left (right) cell 
16. Else Wait 

3.3 The Model’s Algorithm 

In our algorithms, we establish the following algorithmic 
steps:  initialize population, evaluate population, chromo-
somes selection and chromosomes recombination. 
 

1. Initialize population: Each chromosome contains 
two genes, the first gene is red time, RT, and the 
other one is green time, GT. We set the chromosomes 
population to 100. Chromosomes need to be encoded 
to represent the problem that genetic algorithm is 
meant to resolve. In our algorithm, we use binary 
encoding to encode the chromosomes. In this 
encoding technique, every chromosome is a string of 
bits 0 or 1. This gives many possible chromosomes, 
even with a small number of alleles. See Figure 3 for 
an example of chromosomes with binary encoding. 
 
Chromosome A 101100101100101011100101
Chromosome B 111111100000110000011111

 
Fig. 3 Binary Encoding 

 
2. Evaluate population: This provides a way to rate 

how each chromosome (candidate solution) solve the 
problem at hand. It involves decoding the 
chromosomes into the variable space of the problem 
and then checking the result of the problem using 
these parameters. The fitness is then computed from 
the result.  
 
Crossover Fraction: With the crossover fraction=0.8, 
we used two point crossover operation performed on 
the parent’s generation, the result of which is stored 
in a mean array. In this array, the parent’s generation 
is merged with the children. These steps are repeated 
until the total number of the crossover operation is 
half the size of the initialization. We can then say that 
the crossover operation is completed. 
 

Exit 
node 

Entry 
node 

Intersection 
node 
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Mutation Fraction: With the mutation fraction=0.2, 
we performed this operation on the parent’s 
generation. From the results in the mean array, a 
random number is generated and the result of 
comparison between this number and mutation 
fraction are determined by the occurrence or non-
occurrence of mutations. These steps are repeated 
until the total number of mutation operations is half 
the size of the initialization. We can then say that the 
mutation operation is completed. 
 

3. Chromosome selection: The chromosomes are 
selected for propagation to future populations based 
upon their fitness. Chromosomes which have high 
fitness value have a good chance to be chosen for 
future population. For selection of chromosomes, we 
use the “Roulette-wheel with probability of selection 
that is proportional to fitness” based upon the fitness 
of the chromosomes. See Figure 4. 

 
Fig. 4: Roulette Wheel Selection 

 
The fitness function is then computed from the result. The 
algorithm determines the fitness function to identify the 
solutions. It computes the fitness function based on many 
parameters (queue, density, green and red light times). The 
fitness function consists of two parts: 
 
(i) The algorithm calculates the green times, GTV for 

vehicles, and GTP for pedestrians, due to the queue 
formed behind a red light, 

 
GTV = (VQ * Time for Passing)  (i) 

GTP = (PQ * Time for Passing)  (ii) 

where, VQ is the number of vehicles behind the red 
light, and Time for Passing is the time required for a 
vehicle and a pedestrian to pass a green light. We set 
the Time for Passing to 3 seconds for both vehicles 
and pedestrians. We compare this value with past 
green times to obtain a good value for the green times, 
GTV and GTP. 
 

(ii) In the same way, the algorithm calculates the length 
of queue for vehicles, VQ, and pedestrians, PQ, 
which forms during the red time, i.e. 

 

VQ = (VP * RTV  * VAVG) (iii) 

PQ = (PP * RTP * PAVG) (iv) 

where, VQ and PQ are the number of vehicles and 
pedestrians respectively, and RTV and RTP are the 
red times for vehicles and pedestrians respectively. 
VAVG is the average arrival speed of a vehicle to the 
junction at the red light and PAVG is the rate of arrival 
of pedestrians at the red light. We set VAVG to 3 cells 
per sec. and PAVG to 1 pedestrian per sec. 
 
The quality of performance increases whenever this 
value, VQ or PQ, decreases, i.e. when there are fewer 
vehicles or pedestrians behind a red light, the traffic 
control system performance improves. We give 
greater attention to optimize the green time at the 
expense of queue length. Therefore, we multiply a 
ruling parameter and give the priority for vehicles 
without being unfair to pedestrians. Thus, the fitness 
function changes as follows: 
 

(XP * RTX * XAVG)^3 - (GTX – XQ * Time for Passing)^2 

where,  
 

 XP = VP or PP, the no. of vehicles or pedestrians 
that passes a green light, 

 RTX = RTV or RTP, the red times for vehicles or  
pedestrians, 

 XAVG = VAVG or PAVG, the average arrival rate to the 
red light, 

 GTX = GTV or GTP, the green times for vehicles or 
pedestrians, 

 XQ = VQ or PQ, the number of vehicles or pedes-
trians behind a red light. 

 
4. Chromosome recombination: In recombination, 

pairs of chromosomes are recombined, possibly 
modified, and then placed back into the population as 
the next generation. The process continues again at 
evaluation until the problem represented by the 
chromosomes is solved, or some other exit criterion 
is met such as convergence, or the maximum number 
of generations is reached. 
 

The next step in the operation is evaluating the generation 
to determine the resulting quality of these individuals 
compared with the previous generation. This is done by 
arranging the elements of the array (mean array) in 
increasing values provided by the fitness function.  
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Ordering the array elements in this way contributes to 
better identification of individual generations (parent and 
child generations). The first set of the elements of this 
array (mean array) is copied to the parent’s array. These 
elements from 70% of the members of the new generation 
of parents. The rest (30%) is generated by using a random 
function. The algorithms read the new inputs after five 
generations to get good solutions. 

4. Comparisons between Static and Dynamic 
Control Modes 

We compare the performance between the static control 
(fixed cycle time) and the dynamic control (genetic 
algorithm) modes. To test our model, we use the same 
input for both modes. In the static mode, we set the green 
and the red time for the vehicles and pedestrians to 20 
seconds for each lane. We set different variable values for 
vehicle and pedestrian loads (Low, Medium and High) for 
each mode. However, due to the large number of traffic 
situations, we only conduct tests for the worst case 
scenarios as shown in Table 1, i.e. for both the vehicle and 
pedestrian loads at high value (Vehicle=7, Pedestrian=7). 

 
Table 1: Values of Variables for Different Test Scenarios 

 
Test No. Mode Test Scenarios for Simulation

Test I Static GTV = GTP = 20 s;  
RTV = RTP = 20 s 
Vehicle Load = High 
Pedestrian Load = High 

Test II Dynamic Vehicle Load = High 
Pedestrian Load = High 

 
We do not conduct tests for the Low and Medium vehicle 
and pedestrian loads on the assumption that the test results 
would be better than the worst case scenarios of Table 1.  
 
For each test, the results show the output values of the 
following variables for both static and dynamic modes: 
• The Duration, D: The time it takes for a vehicle to 

travel from a source to a target destination, 
• Queue of Vehicles, QRV: the number of vehicles 

behind the red light per second, 
• Queue of Pedestrians, QRP: the number of pedes-

trians behind the red light per second. 
 
In the dynamic control mode, the times determined by 
genetic algorithm depend on four parameters:  
• the number of vehicles passing a green light, VP, 
• the number of pedestrians passing a green light, PP, 
• vehicles queue, VQ, 
• pedestrians queue, PQ. 

 

The algorithm processes these parameters resulting in 
synchronized green and red times for the test scenarios. If 
there are no vehicle and pedestrian queues in one lane, the 
green time will be zero.  
 

4.1 The Duration, D 

Table 2 and Table 3 show the results of the durations of 
vehicles traveling from a source to a target destination. We 
present two scenarios in each mode. 
 

Table 2: Duration of Traveling Time for Static Mode 
 

V-ID Start Time Arrival Time Duration (s)
1 18:44:32 18:44:38 6 
3 18:44:32 18:44:38 6 
7 18:44:34 18:44:41 7 
10 18:44:38 18:44:45 7 
11 18:44:39 18:44:46 7 
4 18:44:32 18:44:48 16 
2 18:44:32 18:44:48 16 
6 18:44:34 18:44:49 15 
5 18:44:33 18:44:49 16 
9 18:44:38 18:44:50 12 
8 18:44:38 18:44:51 13 
16 18:44:44 18:44:51 7 
12 18:44:41 18:44:53 12 
14 18:44:42 18:44:54 12 
18 18:44:47 18:44:54 7 
20 18:44:49 18:44:56 7 
22 18:44:50 18:44:56 6 
13 18:44:41 18:44:59 18 
19 18:44:48 18:45:00 12 
21 18:44:50 18:45:00 10 
15 18:44:42 18:45:02 20 
17 18:44:44 18:45:02 18 
23 18:44:50 18:45:03 13 
24 18:44:50 18:45:04 14 

 
Result 1: See Table 2 
(Static Mode, Vehicle ID 15, Vehicle ID 13): 
• Scenario 1: Vehicle ID 15 takes 20 seconds to travel 

from lane A to lane D1.  
• Scenario 2: Vehicle ID 13 takes 18 seconds to travel 

from lane C to lane D1.  
 
Result 2: See Table 3 
(Dynamic Mode, Vehicle ID 15, Vehicle ID 13): 
• Scenario 1: Vehicle ID 15 takes 8 seconds to travel 

from lane A to lane D1.  
• Scenario 2: Vehicle ID 13 takes 9 seconds to travel 

from lane C to lane D1.  
 
The results show that the dynamic (genetic) mode 
performs better than the fixed time (static) mode. 
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Table 3: Duration of Traveling Time for Dynamic Mode 

 
V-ID Start Time Arrival Time Duration (s)

1 18:46:42 18:46:47 5 
3 18:46:42 18:46:47 5 
2 18:46:42 18:46:49 7 
4 18:46:42 18:46:49 7 
6 18:46:44 18:46:50 6 
5 18:46:42 18:46:50 8 
7 18:46:44 18:46:51 7 
8 18:46:47 18:46:53 6 
9 18:46:47 18:46:54 7 
10 18:46:47 18:46:55 8 
11 18:46:49 18:46:56 7 
12 18:46:50 18:46:57 7 
14 18:46:51 18:46:58 7 
13 18:46:50 18:46:59 9 
15 18:46:52 18:47:00 8 
17 18:46:53 18:47:01 8 
16 18:46:53 18:47:02 9 
18 18:46:56 18:47:02 6 
23 18:46:59 18:47:05 6 
24 18:46:59 18:47:05 6 

4.2 The Vehicles Queue, QRV 

Table 4 shows the results of the rate of vehicle queues 
behind a red light. The results show that the dynamic 
model performs better than the static model. We present 
one scenario for the vehicle queues for each mode: 
 

Table 4: Static and Dynamic Queue (Vehicles) 
 

Time  
(Sec) 

No. of Vehicles behind a Red light
Static Dynamic 

1 0 0 
2 0 0 
3 0 0 
4 3 3 
5 4 0 
6 6 1 
7 6 1 
8 7 1 
9 2 2 
10 3 1 
11 3 1 
12 3 1 
13 4 1 
14 5 2 
15 7 2 
16 0 0 
17 0 0 
18 0 0 
19 0 0 
20 1 1 

 
Result 3: See Table 4 
(Vehicle Queue, Static Mode) 
• Scenario 1: The number of vehicles (Vehicles Queue) 

behind the red light per second at the 8th second is 7 
vehicles. 

 
Result 4: See Table 4 
(Vehicle Queue, Dynamic Mode) 
• Scenario 2: In the same second the number of 

vehicles (Vehicles Queue) behind the red light is 1 
vehicle. 

 
The results show that the dynamic (genetic) mode 
performs better than the fixed time (static) mode. Figure 5 
shows the contrasting results of the Vehicles Queue 
between the static and dynamic modes in graphical format.  
 

 
 

Figure 5: Vehicles Queue behind a Red Light 

4.3 The Pedestrians Queue, QRP 

Table 5 shows the results of the pedestrian queues behind 
a red light. The results show that the dynamic (genetic) 
mode performs better than the fixed time (static) mode. 
We present one scenario for the pedestrian queues for each 
mode: 
 
Result 5: See Table 5 
(Pedestrian Queue, Static Mode) 
• Scenario 1: The number of pedestrians (Pedestrian 

Queue) behind the red light per second at the 8th 
second is 9 pedestrians. 

 
Result 6: See Table 5 
(Pedestrian Queue, Dynamic Mode) 
• Scenario 2:In the same second the number of 

pedestrians (Pedestrian Queue) behind the red light is 
3 pedestrians. 

 
The results show that the dynamic (genetic) mode 
performs better than the fixed time (static) mode. 
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 Table 5: Static and Dynamic Queue (Pedestrians) 
 

Time (Sec) No. of Pedestrians  behind a Red light
Static Dynamic 

1 1 1 
2 1 1 
3 1 1 
4 3 3 
5 5 1 
6 7 0 
7 7 0 
8 9 3 
9 0 0 
10 0 1 
11 0 1 
12 0 0 
13 0 0 
14 0 0 
15 0 3 
16 1 0 
17 0 0 
18 0 0 
19 0 0 
20 0 3 

 
Figure 6 shows the contrasting results of the Pedestrian 
Queue between the static and dynamic modes in graphical 
format.  
 

 
 

Figure 6: Pedestrian Queue behind a Red Light 

5. Conclusions and Further Work  

From the results, we can conclude that the dynamic control 
model performs better than the static control model. Due 
to its flexibility, the dynamic control model is able to 
calculate the optimal green time based on the number of 
vehicles and pedestrians behind a red light and the vehicles 
and pedestrians queue lengths. The results also show that 
significant time gain is experienced for a vehicle traveling 
through the GA-controlled traffic light system. In our 

further work, we will extend the application of our 
algorithms to include two or more similar junctions 
connected to our traffic model. 
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