
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

88

Manuscript received February 5, 2009
Manuscript revised February 20, 2009

The Use of Genetic Algorithm for Traffic Light and Pedestrian
Crossing Control

Ayad Mashaan Turky, Mohd Sharifuddin Ahmad and Mohd Zaliman Mohd Yusoff,

University Tenaga Nasional, Km 7, Jalan Kajang-Puchong,
 43009 Kajang, Selangor, Malaysia.

Summary
The increase in urban traffic has resulted in traffic congestions,
long travel times and increase hazards to pedestrians due to
inefficient traffic light controls. These scenarios necessitate the
use of new methods in the design of traffic light control for
vehicles and pedestrian crossings.

In a conventional traffic light controller, the traffic lights change
at constant cycle times which are clearly not optimal. The preset
cycle time regardless of the dynamic traffic load only adds to the
problem. It would be more feasible and sensible to pass more
vehicles at the green interval if there are fewer vehicles waiting
behind the red lights or vice versa.

We apply the genetic algorithm technology in the traffic control
system and pedestrian crossing to provide intelligent green
interval responses based on dynamic traffic load inputs, thereby
overcoming the inefficiencies of the conventional traffic
controllers. We apply such technology to a four-way, two-lane
junction based on two sets of parameters: vehicles and
pedestrians queues behind a red light and number of vehicles and
pedestrians that passes through a green light. The algorithms
dynamically optimize the red and green times to control the flow
of both the vehicles and the pedestrians.

To represent a typical traffic flow system, we use the Cellular
Automata for modeling vehicular motion behind the traffic lights.
We developed an algorithm to model the situation of a four-way
two-lane junction based on this technology.

We compare the performance between the genetic algorithms
controller and a conventional fixed time controller and the results
show that the genetic algorithms controller performs better than
the fixed-time controller.
Key words:
Traffic light, Genetic algorithm, Pedestrian crossing, Cellular
Automata

1. Introduction

The monitoring and control of vehicular traffic and
pedestrians pose a major challenge to transport authorities
around the world. The escalating number of vehicles in
cities not only has a huge environmental impact, but also
results in loss of lives on the road. This situation demands

a comprehensive approach involving a system in which
both the traffic controls for vehicles and pedestrians are
coordinated so that road users are safe and traffic is
smooth flowing.

Currently, pedestrian crossings pose a significant hazard in
many countries, both in developed and developing
countries due to the increase in vehicles number. Each
year a staggering figure of 500,000 pedestrians are killed
all over the world and in China alone from 2000-2004, half
a million pedestrians were killed [1].

The European Transport Safety Council (ETSC) claims
that 15 to 30 percent of the transportation mode used is
walking. According to a telephone survey conducted by
the Royal Automobile Club of Spain in the year 2000,
walking is highly recommended as part of a healthy
lifestyle with no negative side effects. However, it has
been the victim of badly controlled traffic, thus increasing
the mortality rates of road users. In the large cities of
Europe, especially in Spain, people walked to their
destinations but this is being seen as dangerous as
pedestrians are more vulnerable to road accidents than
passengers and drivers of cars [2].

In a conventional traffic light controller, the traffic lights
change at constant cycle times which is clearly not the
optimal solution. The system calculates the cycle time
based on average traffic load and disregards the dynamic
nature of the traffic load, which aggravates the problem of
congestion. Consequently, we see an urgent need to
optimize traffic control algorithms to accommodate the
increase in vehicles in urban traffic that experience long
travel times due to inefficient traffic light controls and to
improve pedestrian’s safety.

In this paper, we propose an optimal control of traffic
lights using genetic algorithm (GA), in a four-way, two-
lane junction with a pedestrian crossing. The innovative
design of the pedestrian crossing is also based on such
algorithm, which includes pedestrians as one of the
parameters. Genetic algorithm is introduced in the traffic
control system to provide an intelligent green interval
response based on dynamic traffic load inputs, thereby

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

89

overcoming the inefficiencies of conventional traffic
controllers. In this way, the challenges are resolved as the
number of vehicles are read from sensors put at every lane
in a four-way, two-lane junction and pedestrianss are
monitored at the road junction.

The features inherent in genetic algorithm play a critical
role in making them the best choice for practical
applications, namely optimization, computer aided design,
scheduling, economics and game theory. It is also selected
because it does not require the presence of supervisor or
observer.

However, genetic algorithm, without prior training,
continuously allow permanent renewal of decisions in
generating solutions. Instead of trying to optimize a single
solution, they work with a population of candidate
solutions that are encoded as chromosomes. Within these
chromosomes are separate genes that represent the
independent variables for the problem at hand.

There are a number of specific attributes of genetic
algorithms that give them an edge over other traditional
optimization techniques. These are:

• A genetic algorithm works from a population, not a

single point, and hence it is less likely to be trapped
at a local optimum.

• Derivative freeness, i.e. a genetic algorithm does not
need the objective function’s derivative to do its
work.

• Flexibility, i.e., a genetic algorithm can function just
fine regardless of how complex the objective
function is; the only thing it requires of the function
is that it is executable (i.e., its value can be calculated
given the values of the decision variables).

• Because of its implicit parallelism, a genetic
algorithm can handle combinatorial problems
efficiently. It has been shown that as the size of the
search space or number of solutions increases
exponentially, the time requirements for the GA to
reach a solutions only grow linearly. This feature is
particularly useful for on-line optimization of
transportation problems such as traffic control.

• A genetic algorithm naturally lends itself to parallel
implementation. This follows from its functional
components structure.

• Genetic algorithm, is, for the most part, based on
intuitive notions and concepts.

Our preliminary review of the literature indicates that
genetic algorithm has not been tested on pedestrian
crossings. We have, therefore, attempted to implement this
algorithm and study its effects on this problem.

2. Related Work

The first known attempt to apply fuzzy logic in traffic
control was made by Pappis, and Mamdani [5]. They
simulated an isolated signalized intersection composed of
two one-way streets with two lanes in each direction
without turning traffic. The fuzzy controller reduced
average vehicle delay compared to an actuated controller.

Tan, Khalid and Yusof [3] describe a fuzzy logic
controller for a single junction that mimics human
intelligence. They used two sensors for each lane. The first
sensor behind each traffic light counts the number of cars
passing the traffic lights, and the second sensor behind the
first sensor counts the number of cars coming to the
intersection at distance from the lights. The fuzzy logic
controller determines the time that the traffic light should
stay in a certain state, before switching to the next state.
The order of states is predetermined, but the controller can
skip a state if there is no traffic in a certain direction. The
amount of arriving and waiting vehicles are quantized into
fuzzy variables, like many, medium and none. The
activation of the variables in a certain situation is given by
a membership function, so when there are 5 cars in the
queue, this might result in an activation of 25% of ‘many’
and 75% of ‘medium.’ In their experiments, the fuzzy
logic controller showed to be more flexible than fixed
controllers and vehicle actuated controllers, allowing
traffic to flow more smoothly, and reducing waiting time.

Foy et al. [4], documents the use of genetic algorithm to
optimize timing plans. The application object is an
octothorpe-shaped traffic network with four intersections.
Every intersection can run a two-phase plan. This method
uses nine decision variables including the total green time
of all phases, phase orders and splits. These nine decision
variables are coded with 24 bits. The objective function is
the reciprocal of the total waiting time. A simulation
model is used to evaluate the optimizing method. Results
show that genetic algorithm is indeed a parallel optimizing
method compared with traditional search methods.

Zhiyong et al. [6] propose an improved immunity genetic
algorithms for an urban area coordinated traffic control
system. The system adopts a two-level hierarchical
distributed construction, with parameters that are
hierarchically optimized at an interval of 5-30 minutes. In
each interval, the cycles and offsets are optimized in the
central controller while the splits are optimized in
intersection controller. For a given performance index,
such as minimizing the mean vehicle delay or number of
stops etc., an improved immunity GA is used to optimize
the cycle, offsets and splits. To ensure that the proposed
method is plausible, simulations were conducted with
positive results.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

90

In [7] a mutation operation of genetic algorithm has a
logistic chaotic mapping applied upon and then a chaotic
mutation is implemented, thus building a chaotic genetic
algorithm. From this population, 5% of the individuals are
selected randomly to search according to chaotic dynamic
searching process. The results of this search replace the
previous individuals who were part of this population. It
shows that the new algorithm converges more quickly and
avoids local optimization and premature convergence
when simulated in CORSIM (CORridor SIMulation).

3. Model Design for Traffic Light

In our design, we simulate five sensors; each sensor
detects the number of vehicles for each lane. The fifth
sensor detects the pedestrian queue. The system calculates
the green and red light times to be given for vehicles and
the vehicles queue length behind the red light plus the time
taken for each vehicle to arrive at its target destination in
static and dynamic modes, i.e., if vehicle V comes from
lane X goes to a destination in lane Y, the system
calculates the time that it takes to travel from X to Y.

3.1 Variables

We define the input variables as follows:

1. Vehicles Passing, VP: the Number of Vehicles that
pass through a green light.

2. Pedestrians Passing, PP: the Number of Pedestrians
that pass through a green light.

3. Vehicles Queue, VQ: the Number of Vehicles behind
a red light.

4. Pedestrians Queue, PQ: the Number of Pedestrians
behind a red light.

The variables VP and PP are required to calculate the
queue length behind a red light, whereas the variables VQ
and PQ are used to calculate the green time in the next
cycle.

We define the output variables as follows:

1. Queue of Vehicles, QRV: The Number of Vehicles

behind the red light per second in static and dynamic
modes.

2. Queue of Pedestrians, QRP: The Number of Pedes-
trians behind the red light per second in static and
dynamic modes.

3. The Duration, D: The time it takes for a vehicle to
travel from a source to a target destination in static
and dynamic modes.

The variables QRV, QRP and D are required to check our
dynamic model’s performance by comparing it with the
static model.

3.2 Cellular Automata

One way of designing and simulating (simple) driving
rules of cars is by using cellular automata (CA). CA use
discrete partially connected cells that can be in a specific
state. For example, a road-cell can contain a car or is
empty. Local transition rules determine the dynamics of
the system and even simple rules can lead to chaotic
dynamics [8].

We use cellular automata algorithm in this paper because it
allows us to represent significant events that occur during
congestions such as traffic standstill, resume motion,
return to standstill again, and so on. In the model, we
identify a vehicle’s basic attributes that include medium
speed, maximum speed, vehicle location, desired speed,
current acceleration, and vehicle unique identification
number.

We identify and define the parameters of the model’s
entities, i.e. the vehicle and lane as follows:

1. Length of lane: Following from the fundamental

concept of CA, each lane is divided into a number of
cells and each lane has a unique ID number. We
define the length of a lane in cell number and set the
number of cells for each lane to 15. The size of a cell
is 16 pixels and a vehicle occupies two cells (32
pixels). We use an array to represent the cells in each
lane and the array is identified with a unique ID
number. This enables the program to check if the cell
is empty or occupied and to detect the vehicles actual
position.

We set a vehicle’s width to 30 pixels and its height to
16 pixels. All vehicles have the same size with four
different colors. Each vehicle is identified by unique
ID number and has a known fix travel route that is
determined by the source and destination points.
Figure 1 shows a typical configuration of a lane
created with Cellular Automata. In our model, we
have eight such lanes.

Figure 1: A Typical Lane of the Model

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

91

2. Number of Vehicles: This is the number of vehicles
in a lane.

3. Vehicles Speed: The number of cells traveled by a
vehicle in a given time. The value of this speed
ranges between zero and the maximum value. The
maximum speed is 5 cells per second.

4. Traffic Signals: As clearly shown in Figure 2, our
model has five traffic lights, four for traffic control
and one for pedestrian crossing. Each traffic light has
an individual ID for identification, and has three
signal modes, red, yellow and green. We use an array
to store the set times for the three signal modes.

Our four-way, two-lane junction (hence eight lanes), has
an entry node and an exit node for each lane and one
intersection node (junction). The intersection node consists
of four cells and each node has an individual ID. We set an
array for each node, the size of which depends on the
number of cells in the node. The pedestrian crossing area
is set across the lanes B and B1.

Figure 2: The Traffic Model

As apparent in Figure 2, each vehicle can either move
forward, stay at its current position or turn left or right. A
typical algorithm for the Cellular Automata implemented
for our model is as follows:

1. Rule1: check decision-point
2. If decision-point is passed
3. Then go to Rule3
4. Else go to Rule2
5. Rule2: check cell type
6. If cell type=‘decision’

7. Then examine the behavior of the vehicles,
which direction the Vehicle take, followed by a
turn in that direction; decision point will be
passed

8. Else go to Rule3
9. Rule3: check cell
10. If cell isn’t occupied by a vehicle and cell type =

‘empty’ or cell type = ‘decision’
11. Then Move
12. Else go to Rule4
13. Rule4: check adjacent cells
14. If the cell over to the left (right) isn’t occupied by a

vehicles
15. Then Move to the left (right) cell
16. Else Wait

3.3 The Model’s Algorithm

In our algorithms, we establish the following algorithmic
steps: initialize population, evaluate population, chromo-
somes selection and chromosomes recombination.

1. Initialize population: Each chromosome contains
two genes, the first gene is red time, RT, and the
other one is green time, GT. We set the chromosomes
population to 100. Chromosomes need to be encoded
to represent the problem that genetic algorithm is
meant to resolve. In our algorithm, we use binary
encoding to encode the chromosomes. In this
encoding technique, every chromosome is a string of
bits 0 or 1. This gives many possible chromosomes,
even with a small number of alleles. See Figure 3 for
an example of chromosomes with binary encoding.

Chromosome A 101100101100101011100101
Chromosome B 111111100000110000011111

Fig. 3 Binary Encoding

2. Evaluate population: This provides a way to rate

how each chromosome (candidate solution) solve the
problem at hand. It involves decoding the
chromosomes into the variable space of the problem
and then checking the result of the problem using
these parameters. The fitness is then computed from
the result.

Crossover Fraction: With the crossover fraction=0.8,
we used two point crossover operation performed on
the parent’s generation, the result of which is stored
in a mean array. In this array, the parent’s generation
is merged with the children. These steps are repeated
until the total number of the crossover operation is
half the size of the initialization. We can then say that
the crossover operation is completed.

Exit
node

Entry
node

Intersection
node

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

92

Mutation Fraction: With the mutation fraction=0.2,
we performed this operation on the parent’s
generation. From the results in the mean array, a
random number is generated and the result of
comparison between this number and mutation
fraction are determined by the occurrence or non-
occurrence of mutations. These steps are repeated
until the total number of mutation operations is half
the size of the initialization. We can then say that the
mutation operation is completed.

3. Chromosome selection: The chromosomes are
selected for propagation to future populations based
upon their fitness. Chromosomes which have high
fitness value have a good chance to be chosen for
future population. For selection of chromosomes, we
use the “Roulette-wheel with probability of selection
that is proportional to fitness” based upon the fitness
of the chromosomes. See Figure 4.

Fig. 4: Roulette Wheel Selection

The fitness function is then computed from the result. The
algorithm determines the fitness function to identify the
solutions. It computes the fitness function based on many
parameters (queue, density, green and red light times). The
fitness function consists of two parts:

(i) The algorithm calculates the green times, GTV for

vehicles, and GTP for pedestrians, due to the queue
formed behind a red light,

GTV = (VQ * Time for Passing) (i)

GTP = (PQ * Time for Passing) (ii)

where, VQ is the number of vehicles behind the red
light, and Time for Passing is the time required for a
vehicle and a pedestrian to pass a green light. We set
the Time for Passing to 3 seconds for both vehicles
and pedestrians. We compare this value with past
green times to obtain a good value for the green times,
GTV and GTP.

(ii) In the same way, the algorithm calculates the length
of queue for vehicles, VQ, and pedestrians, PQ,
which forms during the red time, i.e.

VQ = (VP * RTV * VAVG) (iii)

PQ = (PP * RTP * PAVG) (iv)

where, VQ and PQ are the number of vehicles and
pedestrians respectively, and RTV and RTP are the
red times for vehicles and pedestrians respectively.
VAVG is the average arrival speed of a vehicle to the
junction at the red light and PAVG is the rate of arrival
of pedestrians at the red light. We set VAVG to 3 cells
per sec. and PAVG to 1 pedestrian per sec.

The quality of performance increases whenever this
value, VQ or PQ, decreases, i.e. when there are fewer
vehicles or pedestrians behind a red light, the traffic
control system performance improves. We give
greater attention to optimize the green time at the
expense of queue length. Therefore, we multiply a
ruling parameter and give the priority for vehicles
without being unfair to pedestrians. Thus, the fitness
function changes as follows:

(XP * RTX * XAVG)^3 - (GTX – XQ * Time for Passing)^2

where,

 XP = VP or PP, the no. of vehicles or pedestrians
that passes a green light,

 RTX = RTV or RTP, the red times for vehicles or
pedestrians,

 XAVG = VAVG or PAVG, the average arrival rate to the
red light,

 GTX = GTV or GTP, the green times for vehicles or
pedestrians,

 XQ = VQ or PQ, the number of vehicles or pedes-
trians behind a red light.

4. Chromosome recombination: In recombination,

pairs of chromosomes are recombined, possibly
modified, and then placed back into the population as
the next generation. The process continues again at
evaluation until the problem represented by the
chromosomes is solved, or some other exit criterion
is met such as convergence, or the maximum number
of generations is reached.

The next step in the operation is evaluating the generation
to determine the resulting quality of these individuals
compared with the previous generation. This is done by
arranging the elements of the array (mean array) in
increasing values provided by the fitness function.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

93

Ordering the array elements in this way contributes to
better identification of individual generations (parent and
child generations). The first set of the elements of this
array (mean array) is copied to the parent’s array. These
elements from 70% of the members of the new generation
of parents. The rest (30%) is generated by using a random
function. The algorithms read the new inputs after five
generations to get good solutions.

4. Comparisons between Static and Dynamic
Control Modes

We compare the performance between the static control
(fixed cycle time) and the dynamic control (genetic
algorithm) modes. To test our model, we use the same
input for both modes. In the static mode, we set the green
and the red time for the vehicles and pedestrians to 20
seconds for each lane. We set different variable values for
vehicle and pedestrian loads (Low, Medium and High) for
each mode. However, due to the large number of traffic
situations, we only conduct tests for the worst case
scenarios as shown in Table 1, i.e. for both the vehicle and
pedestrian loads at high value (Vehicle=7, Pedestrian=7).

Table 1: Values of Variables for Different Test Scenarios

Test No. Mode Test Scenarios for Simulation

Test I Static GTV = GTP = 20 s;
RTV = RTP = 20 s
Vehicle Load = High
Pedestrian Load = High

Test II Dynamic Vehicle Load = High
Pedestrian Load = High

We do not conduct tests for the Low and Medium vehicle
and pedestrian loads on the assumption that the test results
would be better than the worst case scenarios of Table 1.

For each test, the results show the output values of the
following variables for both static and dynamic modes:
• The Duration, D: The time it takes for a vehicle to

travel from a source to a target destination,
• Queue of Vehicles, QRV: the number of vehicles

behind the red light per second,
• Queue of Pedestrians, QRP: the number of pedes-

trians behind the red light per second.

In the dynamic control mode, the times determined by
genetic algorithm depend on four parameters:
• the number of vehicles passing a green light, VP,
• the number of pedestrians passing a green light, PP,
• vehicles queue, VQ,
• pedestrians queue, PQ.

The algorithm processes these parameters resulting in
synchronized green and red times for the test scenarios. If
there are no vehicle and pedestrian queues in one lane, the
green time will be zero.

4.1 The Duration, D

Table 2 and Table 3 show the results of the durations of
vehicles traveling from a source to a target destination. We
present two scenarios in each mode.

Table 2: Duration of Traveling Time for Static Mode

V-ID Start Time Arrival Time Duration (s)
1 18:44:32 18:44:38 6
3 18:44:32 18:44:38 6
7 18:44:34 18:44:41 7
10 18:44:38 18:44:45 7
11 18:44:39 18:44:46 7
4 18:44:32 18:44:48 16
2 18:44:32 18:44:48 16
6 18:44:34 18:44:49 15
5 18:44:33 18:44:49 16
9 18:44:38 18:44:50 12
8 18:44:38 18:44:51 13
16 18:44:44 18:44:51 7
12 18:44:41 18:44:53 12
14 18:44:42 18:44:54 12
18 18:44:47 18:44:54 7
20 18:44:49 18:44:56 7
22 18:44:50 18:44:56 6
13 18:44:41 18:44:59 18
19 18:44:48 18:45:00 12
21 18:44:50 18:45:00 10
15 18:44:42 18:45:02 20
17 18:44:44 18:45:02 18
23 18:44:50 18:45:03 13
24 18:44:50 18:45:04 14

Result 1: See Table 2
(Static Mode, Vehicle ID 15, Vehicle ID 13):
• Scenario 1: Vehicle ID 15 takes 20 seconds to travel

from lane A to lane D1.
• Scenario 2: Vehicle ID 13 takes 18 seconds to travel

from lane C to lane D1.

Result 2: See Table 3
(Dynamic Mode, Vehicle ID 15, Vehicle ID 13):
• Scenario 1: Vehicle ID 15 takes 8 seconds to travel

from lane A to lane D1.
• Scenario 2: Vehicle ID 13 takes 9 seconds to travel

from lane C to lane D1.

The results show that the dynamic (genetic) mode
performs better than the fixed time (static) mode.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

94

Table 3: Duration of Traveling Time for Dynamic Mode

V-ID Start Time Arrival Time Duration (s)

1 18:46:42 18:46:47 5
3 18:46:42 18:46:47 5
2 18:46:42 18:46:49 7
4 18:46:42 18:46:49 7
6 18:46:44 18:46:50 6
5 18:46:42 18:46:50 8
7 18:46:44 18:46:51 7
8 18:46:47 18:46:53 6
9 18:46:47 18:46:54 7
10 18:46:47 18:46:55 8
11 18:46:49 18:46:56 7
12 18:46:50 18:46:57 7
14 18:46:51 18:46:58 7
13 18:46:50 18:46:59 9
15 18:46:52 18:47:00 8
17 18:46:53 18:47:01 8
16 18:46:53 18:47:02 9
18 18:46:56 18:47:02 6
23 18:46:59 18:47:05 6
24 18:46:59 18:47:05 6

4.2 The Vehicles Queue, QRV

Table 4 shows the results of the rate of vehicle queues
behind a red light. The results show that the dynamic
model performs better than the static model. We present
one scenario for the vehicle queues for each mode:

Table 4: Static and Dynamic Queue (Vehicles)

Time
(Sec)

No. of Vehicles behind a Red light
Static Dynamic

1 0 0
2 0 0
3 0 0
4 3 3
5 4 0
6 6 1
7 6 1
8 7 1
9 2 2
10 3 1
11 3 1
12 3 1
13 4 1
14 5 2
15 7 2
16 0 0
17 0 0
18 0 0
19 0 0
20 1 1

Result 3: See Table 4
(Vehicle Queue, Static Mode)
• Scenario 1: The number of vehicles (Vehicles Queue)

behind the red light per second at the 8th second is 7
vehicles.

Result 4: See Table 4
(Vehicle Queue, Dynamic Mode)
• Scenario 2: In the same second the number of

vehicles (Vehicles Queue) behind the red light is 1
vehicle.

The results show that the dynamic (genetic) mode
performs better than the fixed time (static) mode. Figure 5
shows the contrasting results of the Vehicles Queue
between the static and dynamic modes in graphical format.

Figure 5: Vehicles Queue behind a Red Light

4.3 The Pedestrians Queue, QRP

Table 5 shows the results of the pedestrian queues behind
a red light. The results show that the dynamic (genetic)
mode performs better than the fixed time (static) mode.
We present one scenario for the pedestrian queues for each
mode:

Result 5: See Table 5
(Pedestrian Queue, Static Mode)
• Scenario 1: The number of pedestrians (Pedestrian

Queue) behind the red light per second at the 8th
second is 9 pedestrians.

Result 6: See Table 5
(Pedestrian Queue, Dynamic Mode)
• Scenario 2:In the same second the number of

pedestrians (Pedestrian Queue) behind the red light is
3 pedestrians.

The results show that the dynamic (genetic) mode
performs better than the fixed time (static) mode.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

95

 Table 5: Static and Dynamic Queue (Pedestrians)

Time (Sec) No. of Pedestrians behind a Red light
Static Dynamic

1 1 1
2 1 1
3 1 1
4 3 3
5 5 1
6 7 0
7 7 0
8 9 3
9 0 0
10 0 1
11 0 1
12 0 0
13 0 0
14 0 0
15 0 3
16 1 0
17 0 0
18 0 0
19 0 0
20 0 3

Figure 6 shows the contrasting results of the Pedestrian
Queue between the static and dynamic modes in graphical
format.

Figure 6: Pedestrian Queue behind a Red Light

5. Conclusions and Further Work

From the results, we can conclude that the dynamic control
model performs better than the static control model. Due
to its flexibility, the dynamic control model is able to
calculate the optimal green time based on the number of
vehicles and pedestrians behind a red light and the vehicles
and pedestrians queue lengths. The results also show that
significant time gain is experienced for a vehicle traveling
through the GA-controlled traffic light system. In our

further work, we will extend the application of our
algorithms to include two or more similar junctions
connected to our traffic model.

References

[1] Zhen Liu, Simulation of Pedestrians in Computer Anima-

tion, in Proceedings of ICICIC (2) 2006. pp. 229~232.
[2] European Transport Safety Council (ETSC), http://www.etsc.

be/stats3.ppt.
[3] Kok Khiang Tan, Marzuki Khalid and Rubiyah Yusof,

Intelligent Traffic Lights Control by Fuzzy Logic, Malaysian
Journal of Computer Science, Vol. 9 No. 2, December 1996,
pp. 29~35.

[4] Foy, M. D. et al., Signal Timing Determination Using
Genetic Algorithms. Transportation Research. Record 1365,
National Research Council, Washington, D.C., 1992, pp.
108~115.

[5] Pappis, C. P., and E. H. Mamdani, A Fuzzy Logic Controller
for a Traffic Junction, IEEE Transactions Systems, Man, and
Cybernetics, Vol. SMC-7, No. 10, October 1977, pp.
707~717.

[6] Liu Zhiyong, et al., Immunity genetic algorithms based
adaptive control method for urban traffic network signal.
Control Theory & Applications, 2006, 23(1): pp. 119~125.

[7] Dong Caojun, et al., Area Traffic Signal Timing Optimization
Based on Chaotic and Genetic Algorithm Approach.
Computer Engineering and Applications, 2004,40(29): pp.
32-34, 138.

[8] Nagel, K., Schreckenberg, M.: A cellular automaton model
for freeway traffic. J. Phys., 1992(I-2):2221-2229.

Ayad M. Turky received his B.Sc. Degree
in Computer Science from the College of
Computer, University of Al-Anbar, in 2006.
He worked as a Technical Support
Assistant at the College of Dentistry,
University of Al-Anbar, Iraq. Currently, he
is enrolled in the Master of Information
Technology program at the College of
Graduate Studies, Universiti Tenaga

Nasional (UNITEN), Malaysia. He has also worked as a
Research Assistant at the College of Information Technology,
UNITEN in the area of Image Processing. Being a graduate
student he has also conducted additional laboratory work for the
degree and foundation programs at the College of Information
Technology. His research interests include Artificial Intelligence,
Evolutionary Computing and Image Processing.

Mohd S. Ahmad received his B.Sc. in
Electrical and Electronic Engineering from
Brighton Polytechnic, UK in 1980. He
started his career as a power plant engineer
specialising in Instrumentation and Process
Control in 1980. After completing his MSc
in Artificial Intelligence from Cranfield
University, UK in 1995, he joined
UNITEN as a Principal Lecturer and Head
of Dept. of Computer Science and

Information Technology. He obtained his PhD from Imperial

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

96

College, London, UK in 2005. He has been an associate
professor at UNITEN since 2006. His research interests includes
applying constraints to develop collaborative frameworks in
multi-agent systems, collaborative interactions in multi-agent
systems and tacit knowledge management using AI techniques.

Mohd Z. M. Yusoff obtained his B.Sc.
and MSC in Computer Science from
Universiti Kebangsaan Malaysia in 1996
and 1998 respectively. He started his
career as a Lecturer at UNITEN in 1998
and has been appointed as a Principle
Lecturer at UNITEN since 2008. He has
produced and presented more than 40
papers for local and international

conferences. His research interest includes modeling and
applying emotions in various domains including educational
systems and software agents, modeling trust in computer forensic
and integrating agent in knowledge discovery system.

