
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

104

Manuscript received February 5, 2009
Manuscript revised February 20, 2009

Health Ontology Generator: Design And Implementation

Yip Chi Kiong1, Sellappan Palaniappan2, Nor Adnan Yahaya3
Department of Information Technology,

Malaysia University of Science and Technology,
Kelana Square, Kelana Jaya, 47301 Petaling Jaya, Selangor, Malaysia

Summary
This paper presents the design and implementation of a
Health Ontology Generator (HOG) using a health database
such as Microsoft Access or SQL Server. The development
of the ontology generator involves building methods for
creating and reading the ontology. This research performs
both these tasks. In generating the ontology, database tables
are treated as classes, fields as functional properties, and
records as instances. The ontology generated can be read
using third-party software such as Microsoft Word, Excel
and Internet Explorer. HOG is implemented using C#.NET
on the Windows platform.

Key words:
Ontology encoding and generation, database schema,
ontology viewing, ontology information extraction and
integration

1. Introduction

Most of the existing information systems are based on
databases developed over years. These databases are
populated from transaction records. There are software
available which can create ontology by defining
individually the classes, properties and even the instances.
This process is tedious when it becomes necessary to create
an ontology based on databases. It is more useful to be able
to extract the schema of the databases and add useful
semantics to generate ontology automatically. The ability to
perform this task will be useful in database-ontology
integration, as well as ontology-ontology integration.

1.1 Purpose

This paper discusses the development of a system to extract
a database schema and create an OWL ontology file using
C# in the Visual Studio environment. It also discusses the
debugging and displaying of an OWL file using various
resources, such as Internet Explorer, Microsoft Excel, and
Microsoft Word.

With the ontology generated, it is necessary to be able to
read it as a stream of data to extract information on the
classes contained in it, and the properties and instances that
are included.

1.2 Review of Resources

We have searched the Web for resources to perform the task
of extracting the schema of a database to create an ontology
file. Protégé appears to be promising, using the DataMaster
plug-in developed in the BioSTORM Project at the Stanford
University School of Medicine. This was an upgrade from
the DataGenie plug-in, which could not extract the schema
alone, necessitating the import of the schema as well as the
data [1]. This is basically a Java-based ontology editor,
where one can generate ontology by extracting the database
schema through an ODBC-JDBC provider. Although these
programs exist, there is no documentation to describe the
process of generating ontology from a database in sufficient
detail to build an ontology generator.

1.3 Problem Statement

The generation of ontology involves exploring several
concepts that deals with the details of file generation. These
include

• How do we extract the schema of a database using
OLEDB in the Visual C# environment?

• How do we encode an ontology?
• What constitutes the structure of an ontology file?
• What semantics should be included in the

ontology?
• How do we verify the correctness and usefulness of

the ontology generated?
• How do we extract classes, properties and

instances from the ontology?

In order to answer these questions, we analyzed in depth
how Protégé performs the job of creating ontology. We
imported several types of databases with a known schema
and studied the output generated. We found that the
namespaces and the semantics generated are not within our
control to specify. It was found necessary to edit the file
generated using a text editor such as WordPad in order to
edit the file, which can be very tedious and error-prone.

This makes it necessary to develop our own system to
perform the generation of the ontology. The ability to read

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

105

ontology is necessary to extract information from a given
ontology.

1.4 Recent Development in Ontology

The term ontology was introduced in philosophy in the
nineteenth century and have been widely used in computer
science, predominantly in the area of natural language
processing and knowledge representation. More recently,
ontologies have become the central focus of the Semantic
Web initiative, giving rise to proposals on ontology
description languages and associated technologies. The
most frequently quoted definition of ontology in the
Semantic Web literature is the one by Gruber [2] which
refers an ontology as a formal, explicit specification of a
shared conceptualization. In simple terms, we can view an
ontology as providing a vocabulary for the basic terms and
relations used to describe certain domain or topic of interest.
It consists of specific vocabulary used to describe a
particular reality, together with a set of explicit assumptions
regarding the intended meaning of the vocabulary.

The vision of Semantic Web was first articulated in 2000 by
Tim Berners-Lee, who is the inventor of the current World
Wide Web during his XML 2000 address
(http://www.w3.org/2000/talks/1206-xml2k-tbl/slide1-
0.html) where he envisaged the architecture of this future
Web as consisting of several layers, with ontology as one of
them. The Semantic Web idea is further elaborated in [3]
where the Semantic Web is described as “an extension of
the current web in which information is given well-defined
meaning, better enabling computers and people to work in
co-operation.” To date, many proposals have been made to
develop the so-called Semantic Web languages to represent
the various aspects associated with the future Web. In an
interview with Tim Berners-Lee [4], two development were
considered to be most significant ; the Resource Description
Framework (RDF) [5]for representing metadata and Web
Ontology Language (OWL) [6] for representing ontology.

RDF allows metadata to be represented in the form of
<subject, property, object> triples using XML syntax.
Although it is particularly intended for representing
metadata about Web resources, it can also be used to
represent information about objects that can be identified on
the Web. RDF is also regarded as a lightweight ontology
language where its lack of expressiveness was partly eased
with the introduction of RDF Schema (RDF-S) [7] through
additions of terms for defining application-specific classes
and properties. OWL extends the RDF/RDF Schema
vocabulary further with richer semantics to allow for
descriptions of classes, properties, and relations among
conceptual objects in a way that facilitates machine
interpretability of Web content. Like RDF and RDF-S,
OWL itself is defined as a vocabulary where an ontology

described in OWL essentially is a collection of RDF triples
using such a vocabulary [8].

There are three dialects of OWL: OWL Lite, OWL DL and
OWL Full.. OWL-Lite is the syntactically simplest sub-
language. OWL-DL is much more expressive than OWL-
Lite and is based on Description Logics (hence the suffix
DL). Description Logics are a decidable fragment of First
Order Logic and are therefore amenable to automated
reasoning. It is therefore possible to automatically compute
the classification hierarchy and check for inconsistencies in
an ontology that conforms to OWL-DL. OWL-Full is the
most expressive OWL sub-language. It is intended to be
used in situations where very high expressiveness is more
important than being able to guarantee the decidability or
computational completeness of the language. It is therefore
not possible to perform automated reasoning on OWL-Full
ontologies [9].

2. Design of Ontology Generator

The system we have built is called Health Ontology
Generator (HOG). It is built to conform to the needs of the
healthcare domain (specifically healthcare records). The
prototype is built as a Windows Application. This is easier
to install on another notebook for purposes of demonstration
than designing it as Web Service and Web Client. However,
the coding is done in such a manner that it can be readily to
converted into Web Service. Each module transfers data
using DataSets and passes data as if it is Web Service. This
is a more complex Windows Application but convertibility
to Web Service has future benefits. The final design will use
Web Services and may even include Windows
Communication Framework version.

2.1 Algorithm to Extract Schema from Database

We have chosen to develop the system using C#, making
rapid development smoother. The first step involves
selecting the type of database. We started with Microsoft
Access and SQL Server. The connection string is created to
connect to the database. For Microsoft Access databases, we
use the Microsoft.Jet.OLEDB.4.0 provider, for
SQL Server, we use the OLEDB provider. HOG’s initial
interface is shown in Figure 5 in Section 3. Currently the
system supports only Microsoft Access and SQL Server.
Support for MySQL will be added later.

HOG uses the schemaTable method to query the tables
in a database and returns the result as a DataSet. After the
table names are obtained, it extracts the column names and
their data types and puts them into another DataSet. Finally,
if the user chooses, the row data is extracted into a third
DataSet.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

106

2.2 Method for Encoding Ontology

The ontology generation is an automatic process which
encodes and stores the ontology physically as an RDF file
that includes declarations of classes, properties and
instances. In addition, the ontology also includes the
semantics that describe the meaning of the data included in
it. Typically, the file is given the file extension owl.

The first part of the encoding process of ontology is the
generation of the header. The body of the ontology includes
the classes, the properties and the instances. The final part is
the trailer. Figure 1 show these stages diagrammatically.

Figure 1: Stages in the encoding of ontology

2.3 Encoding the Header

The header specifies the RDF start tag (with namespace
attributes) and the ontology element. It starts with the
version information of the XML encoding. This is followed
by some standard namespaces, which includes

• XML schema (for data types)
• RDF
• RDFS
• OWL

Each of these standard namespaces is declared using their
usual URIs. For example, XMLS is declared as

xmlns:xsd="http://www.w3.org/2001/XMLSch
ema#". The ontology’s own namespace is declared as
xmlns:
db="http://zhiq.tripod.com/db_table_clas
ses?DSNtype=Access:dbHealth_1#", which is a
reference to the database to link to the ontology. Finally,
the ontology element is declared simply as
<owl:Ontology rdf:about=""/>.

Figure 10 (in Section 4) shows the header as viewed
through Internet Explorer.

2.4 Encoding the Body

In the ontology, tables are converted to classes. This is done
by constructing the RDF statement as an OWL class. Figure
11 (in Section 4) shows the encoding of the class. Field
names (or column names) in the table are converted to
functional attributes. Figure 12 shows the encoding of the
field names. In addition, other functional attributes are
added, which describe the semantics of the ontology. These
include

#hasFKName
 #isBridgeTable
 #hasLocTableClass
 #hasLocalField
 #hasRefTableClass
 #hasLocFieldProperty
 #hasReferenceField
 #hasOrigColumnName
 #hasRefFieldProperty
 #hasReferenceTable

The rows of each table are converted into instances,
beginning the first instance in the form of instance_1.
The annotation properties, such as #hasForeignKeys
are then added.

2.5 Encoding the Trailer

The trailer consists of the closing RDF tag and information
about the creator of the ontology.
</rdf:RDF><!—creator -->

2.6 Web Service Ready Functions

The following functions are implemented as Web Service
ready functions:

a. Connect to database
b. Extract Tables from database
c. Extract Fields from each table
d. Extract Rows from each table
e. Extract Foreign Keys from each table

Figure 2 shows some of the Web Services available. These
functions use the respective provider's features to extract
required data as listed above. They are implemented by
using DataSets to pass data from the database tier to the
client tier in the three-tier architecture. When we implement
the system as Web Service at a later stage of development,
these functions will be implemented at the server. The User
tier will call these functions either from a Windows or Web

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

107

Application. A Web Application will make the layer
platform independent.

Figure 2: Some of the services available as Web Services

2.7 Web Service Architecture of HOG

HOG is implemented as a three-tier architecture. The data
tier stores and retrieves data from the database. These
functions are processed by the database management system,
and are transparent to the system. The information is then
passed to the logic tier. Here, the application, in this case
the Web Service module itself coordinates and processes
commands that come from the user. Finally, we have the
top-most presentation layer, which is the user interface. Its
function is to translate and interpret tasks from the user.
Figure 3 shows these three layers in perspective.

2.8 Architecture of Ontology Generator

How does ontology relate to the user interface and the
underlying database? Figure 4 illustrates one way of looking
at the links between these resources. The ontology is the
theory of what exists, and is expressed in a language such as
OWL. The database (which stores the facts) is defined and
accessed using this language. The information requirements
are the specification of what information we wish to keep.
The human-computer interface (HCI) and the computer-
computer interface (CCI, which is the reason for the
Semantics) are applications that view, interpret, modify or
request information/data from the ontology. Sometimes, the
ontology is stored in the database. Ontology tools are used
to create and modify the ontology. This is an area which
needs more research to discover the implementation of these
links.

Figure 3: Three-tier Web Services model of HOG

Figure 4: The ontology-database architecture

3. The Health Ontology Generator

This section deals with handling the user interface used to
generate the ontology. Figure 5 shows the user interface as
the system starts. Currently it displays only two tabs, one
for ontology generation and one for viewing the resulting
ontology.

3.1 Connecting to Database

The first selection is to decide on the type of database to
open, using the radio buttons provided. It is necessary to
select the Data Source Name using the Select button, which
opens the file-open dialog box shown in Figure 6.

The User Name and Password will have to be added if the
database is locked by a password, before proceeding to click
the Connect button. Once the connection is made, the
system opens the database and displays the tables, fields and
the records in the database as shown in Figure 7.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

108

Figure 5: Initial User interface of the Health Ontology
Generator

Figure 6: File open dialogue

Figure 7: Displaying the Tables, Fields and Records

3.2 Generating the ontology

The next task is to generate the ontology from the selected
database. It requires a few selections as shown in Figure 8.

Figure 8: Generating the ontology

The first step involves selecting the output file, which in this
case is an OWL file. It is basically an RDF file.

Figure 9: Selecting the output file

After selecting the output filename, we have to decide
whether to include the foreign keys, and whether to include
the data from each record in the database. However, the
Access data provider does not give information about
foreign keys, so this function does not work for Access
databases.

Clicking the Generate button will generate the OWL file
according the selections made.

4. Output of the Ontology Generated

In C#, the ontology is generated as a text file conforming to
the syntax rules of OWL 1.1 [10]. In the design of the
ontology, the first part of the OWL file declares it as an
XML file. This is followed by the RDF declarations and the
namespaces. The namespaces for the dbs, db, rdf, xsd, rdfs,
and owl are declared. We have generated this part as shown
in Figure 10.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

109

Tables in the ontology are generated as classes, as shown in
Figure 11.

Fields in each table are generated as functional properties.
Figure 12 shows the statement declaring DoctorID as a
functional property of the class called tblDoctor.

The Records of the data are generated as instances. Figure
13 shows the first instance of the class tblDoctor having
three fields: DoctorID, Doctor Name and Specialist ID. The
functional property data types and the instance values are
inserted.

5. Reading the OWL File

There are several ways to view the generated ontology,
using Internet Explorer, Microsoft Excel or Word.
Subjecting the ontology to be read by these different
programs shows the consistency of the data generated. It is
also a quick way to debug the generated output before we
had a method to read and verify the ontology.

5.1 Debugging OWL file

Internet Explorer is useful for debugging the RDF file
generated as it gives useful debugging information. Figure
14 shows a sample of the debug message displayed during
the process of debugging the output of the ontology. The
error is indicated clearly using a caret at the part of the
statement which is erroneous.

<?xml version="1.0" ?>
- <rdf:RDF xmlns:dbs="http://www.univ_ontology.com.my/RDF/relational.owl#"

xmlns:db="http://zhiq.tripod.com/db_table_classes?DSNtype=Access:dbHealth_1#"
xmlns="http://www.owl-ontologies.com/Ontology1227149346.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1227149346.owl">
 <owl:Ontology rdf:about="" />

Figure 10: Viewing the ontology using Internet Explorer

-
<owl:Class

rdf:about="http://zhiq.tripod.com/db_table_classes?DSNtype=Access:dbHealth_1#tblDoctor">

<db:isBridgeTable

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">false</db:isBridgeTable>
 </owl:Class>

Figure 11: Tables are classes in the ontology

-
<owl:FunctionalProperty
rdf:about="http://zhiq.tripod.com/db_table_classes?DSNtype=Access:dbHealth_1#tblDoctor.Doctor
ID">

Figure 12: Fields are functional properties

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

110

-
<db:tblDoctor
rdf:about="http://zhiq.tripod.com/db_table_classes?DSNtype=Access:dbHealth_1#tblDoctor_Insta
nce_1">

<db:tblDoctor.DoctorID
rdf:datatype="http://www.w3.org/2001/XMLSchema#System.String">1</db:tblDoctor.DoctorID>

<db:tblDoctor.DoctorName
rdf:datatype="http://www.w3.org/2001/XMLSchema#System.String">RAJ</db:tblDoctor.DoctorName
>

<db:tblDoctor.SpecialistID
rdf:datatype="http://www.w3.org/2001/XMLSchema#System.Int32">10</db:tblDoctor.SpecialistID>
 </db:tblDoctor>

Figure 13: Instance Number One of the tblDoctor Table

Missing equals sign between attribute and attribute value. Error processing resource
'file:///C:/Documents and Settings/YIP/My
Documents/MySrc/MyThesis/dbHealth_structure/test/dbHealth_1.mdb.owl'. Line 37, Position 16
<db: tblDoctor
rdf:about="http://zhiq.tripod.com/db_table_classes?DSNtype=Access:dbHealth_1#tblDoctor_Instance_1">
---------------^

Figure 14: Debugging OWL file using Internet Explorer

….

Figure 15 – Reading the ontology using Excel

5.2 Viewing Ontology using Microsoft Excel

Microsoft Excel 2003 can read the ontology file as an XML
List, creating a schema based upon the XML source data.
Each section is shown in its own column. The instance (i.e.,
the record data) is presented as in the snapshot in Figure 15.
It displays the instance number and the instance value for
each field.

5.3 Viewing Ontology using Microsoft Word

Microsoft Word 2003 can read the ontology in Web Layout
View. It can display the property names alongside the actual
data in each instance of the classes. This indicates the
usefulness of the ontology that is generated using HOG.

http://biostorm.stanf
ord.edu/db_table_cla
sses?DSN=jdbc:odbc
:dbHealth_1#tblPati
ent_Instance_2 11

http://www.w3.org/2001
/XMLSchema#int 2

http://www.w3.org/2001/XML
Schema#string

http://biostorm.stanf
ord.edu/db_table_cla
sses?DSN=jdbc:odbc
:dbHealth_1#tblPati
ent_Instance_1 10

http://www.w3.org/2001
/XMLSchema#int 1

http://www.w3.org/2001/XML
Schema#string

ns1:about10

ns5:tblPat
ient.
PatientID ns1:datatype11

ns5:tblPat
ient.
DoctorID ns1:datatype12

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

111

5.4 Viewing Methods in HOG

HOG has a tab which can view the ontology read as a
stream, and place the classes and properties in list boxes.

The viewing of the ontology in this tab involves treating the
ontology file as a stream. As the stream is read, it is parsed
for specific keywords, such as

 the XML header,
 the RDF and namespace declarations,

 the class declarations,
 the functional properties declarations, and
 the instances in the ontology.

As they are parsed, the system adds the items in the various
list boxes.

This functionality of reading ontology will be used to
extract data from third party ontologies for the purpose of
ontology integration and data-mining. Treating the ontology
as a text file to be parsed appears to serve this purpose.

Figure 16: Web Layout View

Figure 17: Viewing ontology in HOG

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

112

6. Conclusion

In this research, we have built a system that from a database
it has generated an ontology which can be read using third-
party sources such as Microsoft Word, Excel and Internet
Explorer. We have also built a stream reader to read and
extract information from ontology. These are the building
blocks that we have successfully built to proceed to the next
stage in our study, that is, the integration of ontologies.

References

[1] Nyulas, C., O’Connor, M., Samson Tu, DataMaster – a

Plug-in for Importing Schemas and Data from
Relational Databases into Protégé, Stanford University
School of Medicine, Stanford, CA 94305

[2] Gruber, T.R., A translation approach to portable ontologies,

Knowledge Acquisition, Vol 5, No. 2, pp 199-220, 1993.

[3] Lee, T.B., Hendler, J., and Lasilla, O. , “The Semantic Web,”

Scientific American, May 2001.

[4] Updegrove, A., “The Semantic Web : An Interview with Tim
Berners-Lee,” Consortium Standards Bulletin, June 2005.

[5] Manola, F. and Miller, E. (Eds), RDF Primer, W3C
Recommendation, 10 February 2004. Available at :
http://www.w3.org/TR/rdf-primer/

[6] McGuiness, D. L. and Harmelen, F. V. (Eds), OWL Web

Ontology Language Overview, W3C Recommendation, 10
February 2004. Available at : http://www.w3.org/TR/owl-
features/

[7] Brickley, D. and Guha, R. V. (Eds), RDF Vocabulary

Description Language 1.0: RDF Schema, W3C
Recommendation, 10 February 2004. Available at :
http://www.w3.org/TR/rdf-schema/

[8] Breitman, K. K., Casanova, M. A., and Truszkowski, W.,

Semantic Web – Concepts, Technologies and Applications,
Springer-Verlag, London, 2007.

[9] Horridge, M., Knublauch,H., Rector,A., Stevens,R.,

Wroe, C. (2004) , Protégé OWL Tutorial, The
University Of Manchester, Stanford University

[10] Motik, B., Patel-Schneider, P., Horrocks, I. (2007)

OWL 1.1 Web Ontology Language Structural
Specification and Functional-Style Syntax,
http://www.webont.com/owl/1.1/owl_specification.html

Yip Chi Kiong obtained his Masters in Information Technology from
University of Malaya. He is a Research Officer at the Department of
Information Technology, Malaysia University of Science and
Technology. His research interests include database systems, ontology
development, data mining and web services.

Sellappan Palaniappan obtained his PhD in Interdisciplinary
Information Science from University of Pittsburgh and a MSc in
Computer Science from University of London. He is an Associate
Professor at the Department of Information Technology, Malaysia
University of Science and Technology. His research interests include
information integration, clinical decision support systems, OLAP and
data mining, web services and collaborative CASE tools.

Nor Adnan Yahaya obtained his PhD in Computer Science from
Northwestern University, USA in 1987. He is an Associate Professor
of IT at the Malaysia University of Science and Technology (MUST).
His current research activities are focused on the development of
tools and innovative applications related to emerging Web
technologies such as web aggregation, web services, web agents, and
the Semantic Web

