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Summary 
 
An efficient functioning of a complicated and dynamic 
grid environment requires a resource manager to monitor 
and identify the idling resources and to schedule users’ 
submitted jobs (or programs) accordingly. A common 
problem arising in grid computing is to select the most 
efficient resource to run a particular program. At present 
the execution time of any program submission depends 
mostly on guesswork by the user. The inaccuracy of 
guesswork leads to inefficient resource usage, incurring 
extra operational costs such as idling queues or machines. 
Thus, in this paper we propose a job execution time 
prediction module to aid the user. The proposed system 
will function as a standalone unit where its services can be 
offered to users as part of a grid portal. This system 
focuses on imperative paradigm tasks as they are 
commonly used in a grid environment. We propose a 
novel methodology and architecture to predict the 
execution time of jobs using aspects of static analysis, 
analytical benchmarking and compiler based approach. 
Essentially a program is analyzed in segments for 
execution time and these times are combined together to 
give the total execution time of the program. The 
experimental results show that the technique is successful 
in achieving a prediction accuracy of greater than 80%. 
Future work may involve handling other paradigms such 
as object-oriented programming and investigating the 
possibility of integrating the prediction module into a real 
grid environment.  
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1. Introduction 

Grid computing technology coordinates physically 
distributed resources that cross organizational boundaries 
to allow aggregation and sharing of heterogeneous 
resources. It enables access to tremendous computing 
power that can be harnessed for performing 
computationally intensive problems in the area of science, 
technology, commerce and engineering [1]. The basic goal 
of a grid computing environment is to allow users to 
access computational resources by just “plugging-in” to 
the grid, similar to the way electrical energy is supplied 
when one plugs into the electrical power grid. Grid 
services are treated like a utility such as electricity, where 
once the user is connected to the grid it appears as 
essentially one large computer system [2]. Users do not 
have to know which resources they are using or where the 
resources are located, they just “plug in” to the grid to 
access the computational power and data storage. 
 
As the grid is a heterogeneous environment, it is 
partitioned into basic units known as “virtual 
organization” or VO. A VO comprises of a set of grid 
entities such as applications, services or resources that are 
related to each other according to some level of trust. This 
level of trust is defined by sharing rules which determine 
how the resources are shared by individuals and 
institutions participating in a VO [3]. A grid could 
potentially consist of many VO and a grid entity 
(applications, services or resources) can be a member of 
more than one VO [4]. In addition, a VO can span across 
several “physical” institutions and entities can join or 
leave the VO based on their current needs. In such a 
complex, dynamic and distributed environment, resource 
management and task scheduling are the key challenges to 
improving the resource usage efficiency on the grid. At 
present, there are many middleware technologies that 
schedule and distribute all types of application runs (serial, 
parallel, distributed memory) on all types of hardware 
(desktops, clusters and supercomputers and even cross 
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sites) with varying levels of security. The most common 
example is given by the job scheduler that can be any of a 
complex set of products like Condor, LSF and PBS [5].  
 
As shown in Figure 1, basically, the user interacts with a 
resource broker (in middleware) that hides the 
complexities of scheduling and distribution of resources in 
grid computing. The broker finds resources that the user 
can access through grid information catalogue, negotiates 
with grid-enabled resources, schedule tasks to specified 
resources, deploy the application and finally gather the 
results [6]. In order to do this, users are required to 
provide the specifications of requirements for the 
computational resources needed including the wall time 
(real running time) of programs upon submission. 
Providing the run time or execution time is not a minor 
task in a heterogeneous grid environment. Currently, the 
run time provided by users is based on guesswork, in 
which the user estimates a rough run time based on their 
theoretical knowledge or past experiences. Such estimates 
of prediction time provided by the users can be of any 
accuracy and it is impractical to rely solely on the users to 
provide such an estimate as they lack the knowledge of 
where the job will be run in a dynamic and heterogeneous 
grid environment [7]. Therefore, a prediction module 
which gives an estimated execution time of programs is 
both useful and relevant. 
 
Hence, the aim of the research work presented here is to 
develop a prediction module that estimates the execution 
time of programs by using aspects of static analysis, 
analytical benchmarking and compiler based approach. 
For this phase, we propose a standalone prediction module 
whose focus is to predict the execution time of programs 
written using R!, software which belongs to the imperative 
programming paradigm. The remainder of this paper is 
organized as follows: Section 2.0 presents background and 
motivation for this research; Section 3.0 discusses some 
related work; Section 4.0 describes the proposed 
architecture, including the detailed description of each 
module, the information flow amongst the modules and 
their implementation; Section 5.0 describes the testing and 
evaluation phase, including preliminary results and finally, 
Section 6.0 presents our conclusions and future work.  
 

    

 

Fig.1 Job Submission to Grid 

 
 
2.0 BACKGROUND AND MOTIVATION 
 
 
2.1 The National Grid 
 
The Malaysian Research and Education Network 
(MYREN) was launched in March 2005. MYREN 
provides high-capacity broadband to universities, colleges, 
research organizations and scientific laboratories [8]. As a 
government-funded program, MYREN acted as a 
networking super highway which enables researchers to 
run data-intensive applications, share computing elements 
and run advance applications within Malaysia as well as 
overseas.  
 
 
MYREN consists of two networks: a production network 
and an experimental network. The production network is 
for exchange of high performance computing data in 
collaborative research and is based on the multi-protocol 
label switching (MPLS) with a capacity of up to 8Mbps. 
The experimental network employs point-to-point 
connectivity with 2Mbps. Its primary usage is for network 
research and testing of new network technologies such as 
internet applications and grid computing techniques. 
 
 
MYREN is connected to several international research 
communities in Asia Pacific, Europe and North America, 
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via the Trans-Eurasia Information Network 2 (TEIN2), 
pan-European GEANT2 and Internet2. TEIN2 is partly 
funded by the European Union’s and receives additional 
support from Maffin, NICT, NII and Juniper Networks. 
TEIN2 links the national networks in the Asia-Pacific 
region which comprise of China, Indonesia, Japan, Korea, 
Malaysia, the Philippines, Singapore, Thailand, Vietnam 
and Australia at speeds of up to 1Gbps [9]. GEANT2 is 
co-funded by the European Commission and connects 34 
countries through 30 National Research and Education 
Networks (NRENs), using multiple 10Gbps wavelengths 
[10].  
 
The high-capacity network aims to bridge the digital 
divide between different countries across the region. 
Malaysian researchers benefit from these projects as the 
broadband connectivity enables greater levels of research 
collaboration, access to international scientific resources 
such as biotech databases, scientific equipment and online 
libraries and information repositories. Furthermore, 
researchers can have the opportunity to work more 
efficiently on joint research projects with advance nations 
in the European Unions as well as in Asia.  This 
partnership enables researchers to bring back best 
practices and research methodologies. Potential 
applications include natural disaster warning systems, e-
learning and e-health initiatives, linking radio astronomy 
telescopes and other projects where faster transfer of 
massive amounts of data is vital. 
 
To further extend the capability of MYREN, it is 
connected to high performance clusters in other private 
and public universities as well as government and private 
research institutions to form the National Grid. At present 
the whole structure is combined under the trade name of 
KnowledgeGrid Malaysia. It provides a high-level 
abstraction which covers both the National Grid as well as 
MYREN. KnowledgeGrid Malaysia is an initiative of the 
Ministry of Science, Technology and Innovation (MOSTI) 
and is being spearheaded by MIMOS which is responsible 
for its implementation and daily maintenance [11]. It is 
meant to provide the necessary computing power and 
resource required by individuals and industries alike. 

 
 
2.2 Motivation for research 
 
One of the factors that can enable efficient usage of 
resources in a grid environment is having an estimate of 
job execution time prior to running the job. This can aid 
the scheduling policy in reducing the queue wait time as 
well as allow planning of resource allocation in advance. 
However providing prediction of job execution time is a 
non-trivial task in a grid environment. Estimates of 

prediction time provided by the users can be of any 
accuracy and it is impractical to rely solely on the users to 
provide such an estimate as they lack the knowledge of 
where the job will be run in a dynamic and heterogeneous 
grid environment [12]. Thus developing an accurate model 
for predicting execution time of jobs on the user’s behalf 
is necessary and before facing it in a grid environment, the 
problem must be studied and solved for local systems. 
 
 
3.0 RELATED WORK AND DISCUSSION 
 
Performance prediction of software is not relatively 
straight forward in the Grid environment due to its 
dynamic and heterogeneous nature. Generally when a user 
submits a job to the Grid, they are requested to provide an 
estimate of the execution time of their jobs. This is usually 
needed to assist scheduling policies or where such 
information is not mandatory, it can still be used to fine 
tune scheduling decisions. Furthermore estimates of job 
completion time are vital when conducting advance 
reservation for jobs where such estimates are used for 
future planning of resource allocation. Thus it is necessary 
to develop a model for predicting execution time of jobs to 
assist the user.  
 
Some of the early work in this area focused on using a 
simulator such as MicroGrid, SimGrid and GridSim to 
obtain a better understanding of the Grid environment and 
to simulate the process of running different application on 
the Grid. A simulation is the process of executing 
applications on an emulated platform rather than the real 
platform [13]. Only a model of the application is run 
rather than the application itself. For example SimGrid 
was used for the simulation of “C” language application 
scheduling. But these simulators have their drawbacks as 
they work off-line, are relatively slow and do not simulate 
the online, dynamic environment of the grid well [12]. 
Also their use is impractical because of the performance 
overhead incurred when applied to making predictions of 
execution time involving large applications. Hence they 
are usually used as a tool for verifying results or are 
combined with other techniques to offset their 
disadvantages. A broad overview of the techniques used 
for predicting execution time of programs is shown in 
figure 2. 
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Fig. 2: Prediction Techniques  
 

One of the most important factors affecting the choice of 
technique when making predictions of execution time 
depends on the availability of historical data. If a sufficient 
amount of historical data, demonstrating some degree of 
regularity is made available then it can be used to predict 
the execution time of jobs [14]. Statistical prediction 
algorithms predict execution time using historical data 
without requiring detailed knowledge of the underlying 
hardware and the application. A set of past observations 
are kept for each machine and these are used to make 
predictions of new incoming jobs. The prediction made is 
used to assist the scheduler when allocating resources to 
the job. Statistical algorithms are able to make better 
predictions as the number of past observations increases 
[15]. The analysis of the historical data can be used to 
produce estimates of best and worst case execution time 
and this information is used to identify critical grid 
components. The statistical method employed by these 
prediction algorithms can be grouped into three main 
categories: causal methods, time series extrapolation and 
data mining. It must be noted that the distinctions between 
the groupings are not absolute and many methods employ 
a combination of these techniques. The choice of which 
category of statistical method to use depends mainly on 
the kind of historical data available and type of parameter 
to be predicted. 
 
Causal methods assume that future demand depends on 
past or current value of some variables and can anticipate 
variations in demands. These include regression, 
econometrics models, input-output models and even neural 
networks. Their main drawback is that it is difficult to find 
a variable that leads the forecasted variable in time. On the 
other hand time series extrapolation is based on the 
premise that some features of past demand patterns will 

remain constant and these can be projected to predict 
future demands. Some of these methods include moving 
averages, exponential smoothing and decomposition 
method [14].  
 
In recent years, the application of data mining techniques 
in predicting job completion time has gained prominence. 
These techniques can be applied to very different kind of 
data, regardless of the nature of the data and they also 
include an automatic learning mechanism that allows them 
to discover or derive new knowledge without the 
necessary interaction of a third party [12]. Some of the 
data mining techniques which have been applied in this 
area include classification trees, clustering and statistical 
tests [16]. Much of the newer research is focused on using 
data mining techniques for performance prediction. The 
choice of which category of statistical method to use 
depends mainly on the kind of historical data available and 
type of parameter to be predicted. But it must be 
remembered that no prediction method can be considered 
superior to the other in every aspect. 
 
Statistical predictions have their drawbacks as the 
accuracy of their prediction depends on how well the past 
observations are reflective of future incoming jobs. In 
addition they require that a separate set of historical data 
be maintained for different machines. Also it would be 
improper to employ statistical prediction algorithms in 
situations where no historical data is available [13]. This is 
the main reason for not exploring the usage of statistical 
prediction algorithms for the prediction module as there is 
no historical data available for programs written using R 
software. Thus the prediction module must rely on a 
method which aims to develop an understanding of 
incoming jobs. 
 
Techniques which make prediction of execution time of 
programs without relying on historical data, have been 
borrowed from performance modeling of programs in 
traditional computing where exact qualification of 
software program and resources is carried out to predict 
their execution time. These range from analytical 
benchmarking, code profiling and static analysis to 
instrumentation. The main purpose of these techniques is 
to understand the different aspects of the behaviour of a 
program and they are usually used in conjunction with 
other approaches.  
 
Analytical benchmarking involves specifying a number of 
primitive code types and obtaining benchmark data which 
determines the performance of each machine for each code 
type [15]. The output produced using this technique is 
specific to the architecture of each machine and needs to 
be repeated for each type of machine if cross-platform 
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predictions of execution time are to be performed. The 
proposed prediction module uses this approach when 
building the statistical database which contains 
benchmarked execution time of commonly used segments 
of R code. However if prediction of execution time needs 
to be made on a machine with a different architecture, then 
benchmarking needs to be carried out on this machine and 
the appropriate data added to the database. This will mean 
that the portability of the prediction module is limited to 
the machine whose benchmarked data is available in the 
statistical database.  
 
Code profiling is not used by the prediction module as it 
involves recording the run-time behaviour of a program 
using a selected set of input data [15]. This method does 
not compensate for variation in input data set and it 
requires running the program at least once which is not a 
feasible option for programs meant for the grid 
environment as they run for much longer duration, such as 
days or even weeks. Some aspect of static analysis is 
adapted for use in the prediction module but this method 
alone is not sufficient as it does not account for program 
input and usually makes assumptions about the program 
properties that are not available [13]. For example the 
outcome of conditional statements, loop iteration counts, 
and recursion depths are rarely predictable using static 
analysis alone. This method also does not distinguish 
between frequently and infrequently executed program 
paths [17].  
 
Instrumentation of code is done by inserting counters in 
each basic block to produce the dynamic statistics at run 
time. This method is used to profile basic block execution 
frequency and for analyzing memory hierarchy 
performance. Instrumentation of code is not used in this 
phase of the prediction module as using it would mean 
including extra code into the R script and running this 
code will add to the execution time of the script [17].  
 
As there was no historical data available for the prediction 
module to rely upon when making its predictions, the 
approach meant for developing it had to rely upon 
analyzing the behaviour of incoming jobs (i.e. R scripts). 
In order to do this some aspects of static analysis were 
used and the data required for the database was obtained 
through analytical benchmarking. However these 
techniques alone are not sufficient to acquire a complete 
understanding of the behaviour of R scripts. Thus the 
prediction module also adopts a compiler-based approach 
to extract the additional information from the R scripts. 
The uniqueness of the prediction module lies in combining 
these three approaches and then performing the necessary 
computation to predict the execution time of R scripts. 
 

4.0 PROPOSED SYSTEM ARCHITECTURE 
 
A common type of job on the grid may involve software 
programs written in high-level languages, e.g. C++, C, 
Pascal, etc. In the present phase, our work focuses on 
programs written using R! software. Therefore, the 
approach used to develop the prediction module is very 
much dependent on the characteristics of R! software. 
Program written using R! software belong to the 
imperative paradigm, which means it maintains a 
modifiable memory and computation are performed 
through a sequence of steps specified by a list of 
commands [1][18]. This allows the user greater flexibility 
in developing their programs according to individual 
coding style. Unfortunately it also means the program 
developed does not have an identifiable pattern which can 
be studied to make predictions regarding future incoming 
job. Thus the R programs are based on the imperative 
paradigm but work exactly like shell script where they are 
compiled and then executed. R! belongs to the open source 
community, allowing its code to be freely available. Thus 
the source code of the programs developed by the users is 
accessible and not bounded by confidentiality agreement.  
 
4.1 System Architecture 
 
The architecture of the prediction module is derived from 
a compiler-based approach to help it develop an 
understanding of the R jobs submitted to it. This means 
that the source code of an R job (or script) will be parsed 
and tokenized similar to the way a compiler does when it 
checks for errors in a program. Then the execution time of 
the tokens found in the R program are obtained from the 
database and combined using mathematical calculation to 
predict the execution time of the entire R program.  
The proposed system architecture consists of four 
interdependent layers: Application Selector, File Parser, 
Code Evaluation Engine and Predictor Engine as shown in 
figure 3. The architecture follows a bottom-up approach, 
whereby it starts from the bottom layer and moves layer 
by layer until it results in an estimated execution time of 
the input job. Each of the layers plays a significant role in 
giving an accurate prediction of the execution time. 
 
a) Application Selector – The first layer consists of the 
application selector. When a user submits a job, the 
program will first go through this layer to identify the 
application used to write the job. A job submitted by user 
can be classified depending on the software (such as 
Matlab, Maple or Microsoft Visual) used to write the job. 
Currently the prediction module only has the capability to 
parse and tokenize programs written using R software. In 
the scenario where the prediction module will be extended 
to predict completion time of jobs written using different 
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software, then the parser module loader will load the 
appropriate file parser depending on the type of incoming 
job. 
 
 

 
Fig 3. Overall System Architecture  

 
b) File Parser – The second layer consists of 3 
components; lexical tokenization, keyword counter and 
grammar parser. The approach used to develop this layer 
was guided and adapted from compiler design and 
constructions tools such as Lex / Yacc. These tools help 
one to write programs that transform structured input 
which means dividing the input into smaller units and 
discovering the relationship amongst these units [19]. In 
the context of R programs, these units can be names, 
constants, strings, operators, punctuation and so forth. The 
process of dividing the program into units (usually called 
tokens) is known as lexical analysis. The keyword 
counters in this layer keeps track of the number of basic 
operators (such as addition, subtraction, multiplication and 
exponents) found and also creates a list of the functions 
and iterations found in the script. The grammar parser on 
the other hand contains a set of rules that enables the 
prediction module to understand the structure of the 
conditional and iteration statements. 
 
c) Code Evaluation Engine – This layer of the prediction 
module comprises of the metric and complexity analyzer 
module. Software metrics are proposed to measure the 
complexity of software artifacts such as functions, classes 
and whole program. Complexity in software can arise 

from a program’s structure as well as application domain 
in which the software is used [20]. In the case of the 
prediction module the metric analysis of an incoming R! 
program is carried out during the parsing phase where the 
number of operators and built-in functions found in the 
script are counted. Also, this layer measures the 
complexity of nested for loops as well as nested 
conditional statements by identifying the parent and child 
statements. 
 
d) Predictor Engine – The final layer in the proposed 
architecture has two components, one is a time completion 
calculator which is basically a program for measuring the 
time taken to execute the entire program. It makes use of 
the tokenized version of the R script and computes the 
overall predicted execution time for a particular job based 
on the benchmarked data (of operators, built-in functions 
and overheads) stored in the statistical database. The 
predictor engine analyzes the tokenized script file line by 
line, identify the benchmarked time for each token and 
finally compute the accumulated time of all the identified 
tokens in the file. The statistical database contains the 
execution time of characterized functions and operators 
which are commonly used in R script files. The statistical 
database contains the execution time of characterizing the 
functions and operators commonly used in R script files. 
This procedure was done by creating script files for each 
of the commonly used operators and built-in functions. 
These files mimicked how the operators and functions 
were typically used in R scripts along with timer function 
to obtain the execution time of these operators and 
functions. Once an R script has gone through all the layers 
of the prediction module the system will display an 
estimated execution time of the script. 
 
4.2 Handling Complexity in Programs 
 
There are several general characteristics which contribute 
to the complexity of programs. Our approach to handling 
complexity in programs is adapted from three different 
aspects of measuring software complexity: the lines of 
codes (LOC), identification and enumeration of distinct 
operators and operands as discussed by Halstead and the 
nesting depth as mentioned by McCabe. 
 
Halstead states that the amount of computation carried out 
by a program is based on the number operators and 
operands found in the program. Operators can be “+” and 
“*” whereas operands consists of numbers of literal 
expression, constants and variables. The McCabe metric, 
on the other hand, assumes that program complexity is 
related to the number of control paths generated by the 
codes [20].  The complexity of the codes is related to the 
number of decision and control statements found. As most 
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non-trivial programs predominantly consist of nested 
conditional statements or iterations, we focus on handling 
the complexity of nested loops to improve the prediction 
accuracy of the module. Predicting the execution time of 
an entire program with these nested loops and conditional 
statements involves complex computations. As the level of 
nesting of the loop grow, the computational steps 
increases as well. Our approach to handling the 
complexity of nested loops involves breaking down the 
nested loops into separate blocks identified by the start 
line and end line.  
The calculation of the execution time starts with the 
innermost loop, followed by its parent loop and this step is 
repeated until the outermost loop is reached. One iteration 
of the parent loop includes the complete number of 
iterations of the child loop. Depending on the level of 
nesting found in the loops, the calculation of execution 
time increases multiplicatively. The recurring calculations 
lead to the following simplified equation: 

 
 
              (1) 
 

 
Where, N is the total execution time for the entire job, Δ l 
is the time taken between the starting of one loop and the 
starting of the successive loop. P(t1) is the amount of time 
needed to execute the innermost loop. The calculation of 
the execution time of the outermost loop is equivalent to 
the time taken to execute the entire nested loop contained 
within it. This issue of nested loops is handled in the 
complexity analyzer and in the time completion calculator 
components of the proposed prediction module.  
 
4.3 Implementation  
 
The execution time of a program varies significantly when 
it is run across different platform. This is due to the 
different specifications of each machine that leads to wide 
variation in execution time. Therefore in our work, all 
tasks starting with benchmarking of operators, operands 
and functions to getting the actual executing time are all 
done using the same machine. This is to minimize the 
variation and deviation in predicting and then obtaining 
the actual execution time, thus leading to better accuracy 
of prediction. Even though the prediction module is 
machine dependent, the proposed architecture allows 
cross-platform prediction to be made with relative ease.  
Thus if prediction of execution time needs to be made on a 
machine with a different architecture, only the 
benchmarked scripts need to be run on this machine to 
obtain the execution time of identified tokens. The 
benchmarked data are then stored in the statistical 
database for future prediction. 

 
The type of CPU of the machine used throughout this 
project cycle was AMD Athlon 848 (2X2 Core) which 
was running on CentOS 4.4 operating system. The CPU 
speed was 3200 GHz with 2048 MB of RAM. As for the 
development of the prototype, Java was used to write the 
functional codes using Eclipse version 3.2.2 as the IDE. 
MySQL server version 5.0 was used to store the database 
involved in this work. This prediction module runs on a 
unix-based environment and is wrapped around an API 
(Application Programming Interface) implementation. To 
interact with this module, the API has to be utilized. The 
API wrapper was developed using Java Server Page which 
was later used during the testing phase of the prediction 
module. 
 
5.0 TESTING AND EVALUATION 
 
Two main criteria were used when testing the prediction 
module: firstly, checking whether each component 
functioned correctly and secondly, checking the prediction 
accuracy of the execution time of the R scripts. Beginning 
with the parsing phase until the predicted execution time is 
output to the console, the prediction module was inserted 
with output statement to see how the R script was 
processed. Thus one could see the tokenized version of the 
script, followed by an output which identifies the 
complexity in the nested loops and conditional statement. 
Then gradually the time to execute each block or token of 
the script is added up. Finally the complete execution time 
of the script is displayed. All these output statements were 
later suppressed once the testing phase of the prediction 
module was completed.  As for the second criterion, the 
module is expected to provide a prediction accuracy of 
80%, under a Normal Distribution. In the Normal 
Distribution, 68% of the sampling lies within the first 
standard deviation. A sampling test is shown in the 
following example: 
 
Testimated: Time that was estimated by the prediction module 
Tactual: Time taken for actual estimation 
 

Accuracy Error = %100×
−
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Example: 
 
Testimated : 100 days Tactual : 110 days 
 
Accuracy error = (110 – 100) / 110 * 100 =  9.09 %  
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Accuracy = 100 – 9.09 = 90.91% 
 
Hence, we can say that this is a successful estimation as 
the accuracy of prediction is 90.91%, which is more than 
the 80% of the desired goal. Under Normal Distribution 
with one sigma or one standard deviation of error, for a 
total sample of 100 test cases, our prediction module 
should be able to predict execution time for more than 68 
jobs with more than 80% accuracy. 
 
 
5.1 Evaluation of the System 
 
For testing purpose, a total of 60 R! scripts were taken at 
random as the test cases. The estimated time to run each of 
these 60 test cases was predicted using the wrapper 
developed. The predicted time was then compared with the 
actual execution time for each job. Only predicted time 
that falls within the range of 80% -120% of the actual 
execution time is considered successful. Otherwise, the 
prediction is considered to have failed. Table 1.0 shows 
the summarized result of the testing phase.  
 

Table 1: Summarized results of the testing phase 
 

Accuracy  Count Total 

Percentage 

of jobs 

90-100 % 24 Total > 90% Accuracy 40

80-89 % 20 Total > 80% Accuracy 33.33333333

70-79% 2 % > 80% accuracy 73.33333333

60-69% 2 Total > 60% Accuracy 48

50-59% 0 % > 60% accurcay 80

40-49% 3 Total > 40% Accuracy 51

30-39% 4 % > 40% Accuracy 85

20-29% 0 Total > 20% Accuracy 55

10-19% 3 % > 20% Accuracy 91.66666667

0-9% 0 Total > 0% Accuracy 58

less than 

0%  2 % > 0% Accuracy 96.66666667
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Fig. 4 Accuracy Chart 

 
The result of the testing phase shows that 44 out of 60 R! 
scripts were predicted with more than 80% accuracy, 
which means the testing objective was met. The table and 
figure above shows that a total of 73.3% of the entire test 
cases was predicted with more than 80% accuracy. Out of 
the 73.3%, 40% of the files were predicted with more than 
90% accuracy. Only about 3.33% of the entire files were 
predicted with less than 0% accuracy. This is probably due 
to the limitations of the prediction module where it does 
not cater for situation such as the occurrence of an 
indefinite while loop. 
 
6.0 CONCLUSION 
 
The research problem for our project arose from the need 
to optimize resource usage by assisting scheduling and to 
enable advance reservation in a grid environment. A 
solution to this problem will lead to improvement in 
advance scheduling for resource allocation as well as 
hasten the transition of the research-driven grids to 
commercial grids. Our project aimed to develop a 
prediction module which estimates the execution time of R 
scripts by using a combination of static analysis, analytical 
benchmarking and compiler-based approach. Usually this 
meant that the source code of the script underwent a static 
and a dynamic analysis, to extract a profile of the script 
which was then used to predict the completion time of the 
script. Even though our work focused on predicting 
execution time of programs written using R!, but the 
system architecture and techniques are robust enough such 
that it allows adaptability and flexibility when applied to 
other program written using imperative paradigm. It is 
believed that if a solution can be found for predicting the 
execution time of programs written using specific software 
as proof of concept than a generic method can be 
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abstracted from it and applied to a whole category of 
programs.   
 
 
6.1 Limitations 
 
There are several limitations to our current work. As the 
execution time of a program depends greatly on the 
machine specification that runs the program, our work is 
platform specific. Our current work also does not cover 
program written using the object oriented paradigm such 
Java and data-feed oriented programs such as Blast. 
Instead it focuses on jobs written using R!, but the 
architecture, methods and process applied are flexible 
enough to be adapted and applied to other jobs written in 
various imperative paradigm. Another assumption made 
throughout the project life cycle is that jobs will not be 
pre-empted or interrupted by other jobs. The dedicated 
consumption of CPU is assumed so that the effect of 
processors resource management can be reduced, thus 
leading to better accuracy in our prediction. 
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