
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2,February 2009

155

Manuscript received February 5, 2009
Manuscript revised February 20, 2009

Execution Time Prediction of Imperative Paradigm Tasks
for Grid Scheduling Optimization

 Maleeha Kiran 1,2, Aisha-Hassan A. Hashim1, Lim Mei Kuan2, Yap Yee Jiun2
1Department of Electrical & Computer Engineering, Faculty of Engineering,

International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
 2 Centre for Multimodal Signal Processing, MIMOS BERHAD, Technology Park Malaysia, 57000 Kuala Lumpur,

Malaysia

Summary

An efficient functioning of a complicated and dynamic
grid environment requires a resource manager to monitor
and identify the idling resources and to schedule users’
submitted jobs (or programs) accordingly. A common
problem arising in grid computing is to select the most
efficient resource to run a particular program. At present
the execution time of any program submission depends
mostly on guesswork by the user. The inaccuracy of
guesswork leads to inefficient resource usage, incurring
extra operational costs such as idling queues or machines.
Thus, in this paper we propose a job execution time
prediction module to aid the user. The proposed system
will function as a standalone unit where its services can be
offered to users as part of a grid portal. This system
focuses on imperative paradigm tasks as they are
commonly used in a grid environment. We propose a
novel methodology and architecture to predict the
execution time of jobs using aspects of static analysis,
analytical benchmarking and compiler based approach.
Essentially a program is analyzed in segments for
execution time and these times are combined together to
give the total execution time of the program. The
experimental results show that the technique is successful
in achieving a prediction accuracy of greater than 80%.
Future work may involve handling other paradigms such
as object-oriented programming and investigating the
possibility of integrating the prediction module into a real
grid environment.

 Key words:
Prediction module, Grid scheduling, Job execution time

1. Introduction

Grid computing technology coordinates physically
distributed resources that cross organizational boundaries
to allow aggregation and sharing of heterogeneous
resources. It enables access to tremendous computing
power that can be harnessed for performing
computationally intensive problems in the area of science,
technology, commerce and engineering [1]. The basic goal
of a grid computing environment is to allow users to
access computational resources by just “plugging-in” to
the grid, similar to the way electrical energy is supplied
when one plugs into the electrical power grid. Grid
services are treated like a utility such as electricity, where
once the user is connected to the grid it appears as
essentially one large computer system [2]. Users do not
have to know which resources they are using or where the
resources are located, they just “plug in” to the grid to
access the computational power and data storage.

As the grid is a heterogeneous environment, it is
partitioned into basic units known as “virtual
organization” or VO. A VO comprises of a set of grid
entities such as applications, services or resources that are
related to each other according to some level of trust. This
level of trust is defined by sharing rules which determine
how the resources are shared by individuals and
institutions participating in a VO [3]. A grid could
potentially consist of many VO and a grid entity
(applications, services or resources) can be a member of
more than one VO [4]. In addition, a VO can span across
several “physical” institutions and entities can join or
leave the VO based on their current needs. In such a
complex, dynamic and distributed environment, resource
management and task scheduling are the key challenges to
improving the resource usage efficiency on the grid. At
present, there are many middleware technologies that
schedule and distribute all types of application runs (serial,
parallel, distributed memory) on all types of hardware
(desktops, clusters and supercomputers and even cross

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2,February 2009

156

sites) with varying levels of security. The most common
example is given by the job scheduler that can be any of a
complex set of products like Condor, LSF and PBS [5].

As shown in Figure 1, basically, the user interacts with a
resource broker (in middleware) that hides the
complexities of scheduling and distribution of resources in
grid computing. The broker finds resources that the user
can access through grid information catalogue, negotiates
with grid-enabled resources, schedule tasks to specified
resources, deploy the application and finally gather the
results [6]. In order to do this, users are required to
provide the specifications of requirements for the
computational resources needed including the wall time
(real running time) of programs upon submission.
Providing the run time or execution time is not a minor
task in a heterogeneous grid environment. Currently, the
run time provided by users is based on guesswork, in
which the user estimates a rough run time based on their
theoretical knowledge or past experiences. Such estimates
of prediction time provided by the users can be of any
accuracy and it is impractical to rely solely on the users to
provide such an estimate as they lack the knowledge of
where the job will be run in a dynamic and heterogeneous
grid environment [7]. Therefore, a prediction module
which gives an estimated execution time of programs is
both useful and relevant.

Hence, the aim of the research work presented here is to
develop a prediction module that estimates the execution
time of programs by using aspects of static analysis,
analytical benchmarking and compiler based approach.
For this phase, we propose a standalone prediction module
whose focus is to predict the execution time of programs
written using R!, software which belongs to the imperative
programming paradigm. The remainder of this paper is
organized as follows: Section 2.0 presents background and
motivation for this research; Section 3.0 discusses some
related work; Section 4.0 describes the proposed
architecture, including the detailed description of each
module, the information flow amongst the modules and
their implementation; Section 5.0 describes the testing and
evaluation phase, including preliminary results and finally,
Section 6.0 presents our conclusions and future work.

Fig.1 Job Submission to Grid

2.0 BACKGROUND AND MOTIVATION

2.1 The National Grid

The Malaysian Research and Education Network
(MYREN) was launched in March 2005. MYREN
provides high-capacity broadband to universities, colleges,
research organizations and scientific laboratories [8]. As a
government-funded program, MYREN acted as a
networking super highway which enables researchers to
run data-intensive applications, share computing elements
and run advance applications within Malaysia as well as
overseas.

MYREN consists of two networks: a production network
and an experimental network. The production network is
for exchange of high performance computing data in
collaborative research and is based on the multi-protocol
label switching (MPLS) with a capacity of up to 8Mbps.
The experimental network employs point-to-point
connectivity with 2Mbps. Its primary usage is for network
research and testing of new network technologies such as
internet applications and grid computing techniques.

MYREN is connected to several international research
communities in Asia Pacific, Europe and North America,

UI

jdl

Resource Broker

Information Catalog

Interrogation Response

BQS

LSF

PBS

ldap

ldap

ldap

Lyon

CERN

NKHEF

Middleware

Job
Submission

user

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2,February 2009

157

via the Trans-Eurasia Information Network 2 (TEIN2),
pan-European GEANT2 and Internet2. TEIN2 is partly
funded by the European Union’s and receives additional
support from Maffin, NICT, NII and Juniper Networks.
TEIN2 links the national networks in the Asia-Pacific
region which comprise of China, Indonesia, Japan, Korea,
Malaysia, the Philippines, Singapore, Thailand, Vietnam
and Australia at speeds of up to 1Gbps [9]. GEANT2 is
co-funded by the European Commission and connects 34
countries through 30 National Research and Education
Networks (NRENs), using multiple 10Gbps wavelengths
[10].

The high-capacity network aims to bridge the digital
divide between different countries across the region.
Malaysian researchers benefit from these projects as the
broadband connectivity enables greater levels of research
collaboration, access to international scientific resources
such as biotech databases, scientific equipment and online
libraries and information repositories. Furthermore,
researchers can have the opportunity to work more
efficiently on joint research projects with advance nations
in the European Unions as well as in Asia. This
partnership enables researchers to bring back best
practices and research methodologies. Potential
applications include natural disaster warning systems, e-
learning and e-health initiatives, linking radio astronomy
telescopes and other projects where faster transfer of
massive amounts of data is vital.

To further extend the capability of MYREN, it is
connected to high performance clusters in other private
and public universities as well as government and private
research institutions to form the National Grid. At present
the whole structure is combined under the trade name of
KnowledgeGrid Malaysia. It provides a high-level
abstraction which covers both the National Grid as well as
MYREN. KnowledgeGrid Malaysia is an initiative of the
Ministry of Science, Technology and Innovation (MOSTI)
and is being spearheaded by MIMOS which is responsible
for its implementation and daily maintenance [11]. It is
meant to provide the necessary computing power and
resource required by individuals and industries alike.

2.2 Motivation for research

One of the factors that can enable efficient usage of
resources in a grid environment is having an estimate of
job execution time prior to running the job. This can aid
the scheduling policy in reducing the queue wait time as
well as allow planning of resource allocation in advance.
However providing prediction of job execution time is a
non-trivial task in a grid environment. Estimates of

prediction time provided by the users can be of any
accuracy and it is impractical to rely solely on the users to
provide such an estimate as they lack the knowledge of
where the job will be run in a dynamic and heterogeneous
grid environment [12]. Thus developing an accurate model
for predicting execution time of jobs on the user’s behalf
is necessary and before facing it in a grid environment, the
problem must be studied and solved for local systems.

3.0 RELATED WORK AND DISCUSSION

Performance prediction of software is not relatively
straight forward in the Grid environment due to its
dynamic and heterogeneous nature. Generally when a user
submits a job to the Grid, they are requested to provide an
estimate of the execution time of their jobs. This is usually
needed to assist scheduling policies or where such
information is not mandatory, it can still be used to fine
tune scheduling decisions. Furthermore estimates of job
completion time are vital when conducting advance
reservation for jobs where such estimates are used for
future planning of resource allocation. Thus it is necessary
to develop a model for predicting execution time of jobs to
assist the user.

Some of the early work in this area focused on using a
simulator such as MicroGrid, SimGrid and GridSim to
obtain a better understanding of the Grid environment and
to simulate the process of running different application on
the Grid. A simulation is the process of executing
applications on an emulated platform rather than the real
platform [13]. Only a model of the application is run
rather than the application itself. For example SimGrid
was used for the simulation of “C” language application
scheduling. But these simulators have their drawbacks as
they work off-line, are relatively slow and do not simulate
the online, dynamic environment of the grid well [12].
Also their use is impractical because of the performance
overhead incurred when applied to making predictions of
execution time involving large applications. Hence they
are usually used as a tool for verifying results or are
combined with other techniques to offset their
disadvantages. A broad overview of the techniques used
for predicting execution time of programs is shown in
figure 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2,February 2009

158

Fig. 2: Prediction Techniques

One of the most important factors affecting the choice of
technique when making predictions of execution time
depends on the availability of historical data. If a sufficient
amount of historical data, demonstrating some degree of
regularity is made available then it can be used to predict
the execution time of jobs [14]. Statistical prediction
algorithms predict execution time using historical data
without requiring detailed knowledge of the underlying
hardware and the application. A set of past observations
are kept for each machine and these are used to make
predictions of new incoming jobs. The prediction made is
used to assist the scheduler when allocating resources to
the job. Statistical algorithms are able to make better
predictions as the number of past observations increases
[15]. The analysis of the historical data can be used to
produce estimates of best and worst case execution time
and this information is used to identify critical grid
components. The statistical method employed by these
prediction algorithms can be grouped into three main
categories: causal methods, time series extrapolation and
data mining. It must be noted that the distinctions between
the groupings are not absolute and many methods employ
a combination of these techniques. The choice of which
category of statistical method to use depends mainly on
the kind of historical data available and type of parameter
to be predicted.

Causal methods assume that future demand depends on
past or current value of some variables and can anticipate
variations in demands. These include regression,
econometrics models, input-output models and even neural
networks. Their main drawback is that it is difficult to find
a variable that leads the forecasted variable in time. On the
other hand time series extrapolation is based on the
premise that some features of past demand patterns will

remain constant and these can be projected to predict
future demands. Some of these methods include moving
averages, exponential smoothing and decomposition
method [14].

In recent years, the application of data mining techniques
in predicting job completion time has gained prominence.
These techniques can be applied to very different kind of
data, regardless of the nature of the data and they also
include an automatic learning mechanism that allows them
to discover or derive new knowledge without the
necessary interaction of a third party [12]. Some of the
data mining techniques which have been applied in this
area include classification trees, clustering and statistical
tests [16]. Much of the newer research is focused on using
data mining techniques for performance prediction. The
choice of which category of statistical method to use
depends mainly on the kind of historical data available and
type of parameter to be predicted. But it must be
remembered that no prediction method can be considered
superior to the other in every aspect.

Statistical predictions have their drawbacks as the
accuracy of their prediction depends on how well the past
observations are reflective of future incoming jobs. In
addition they require that a separate set of historical data
be maintained for different machines. Also it would be
improper to employ statistical prediction algorithms in
situations where no historical data is available [13]. This is
the main reason for not exploring the usage of statistical
prediction algorithms for the prediction module as there is
no historical data available for programs written using R
software. Thus the prediction module must rely on a
method which aims to develop an understanding of
incoming jobs.

Techniques which make prediction of execution time of
programs without relying on historical data, have been
borrowed from performance modeling of programs in
traditional computing where exact qualification of
software program and resources is carried out to predict
their execution time. These range from analytical
benchmarking, code profiling and static analysis to
instrumentation. The main purpose of these techniques is
to understand the different aspects of the behaviour of a
program and they are usually used in conjunction with
other approaches.

Analytical benchmarking involves specifying a number of
primitive code types and obtaining benchmark data which
determines the performance of each machine for each code
type [15]. The output produced using this technique is
specific to the architecture of each machine and needs to
be repeated for each type of machine if cross-platform

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2,February 2009

159

predictions of execution time are to be performed. The
proposed prediction module uses this approach when
building the statistical database which contains
benchmarked execution time of commonly used segments
of R code. However if prediction of execution time needs
to be made on a machine with a different architecture, then
benchmarking needs to be carried out on this machine and
the appropriate data added to the database. This will mean
that the portability of the prediction module is limited to
the machine whose benchmarked data is available in the
statistical database.

Code profiling is not used by the prediction module as it
involves recording the run-time behaviour of a program
using a selected set of input data [15]. This method does
not compensate for variation in input data set and it
requires running the program at least once which is not a
feasible option for programs meant for the grid
environment as they run for much longer duration, such as
days or even weeks. Some aspect of static analysis is
adapted for use in the prediction module but this method
alone is not sufficient as it does not account for program
input and usually makes assumptions about the program
properties that are not available [13]. For example the
outcome of conditional statements, loop iteration counts,
and recursion depths are rarely predictable using static
analysis alone. This method also does not distinguish
between frequently and infrequently executed program
paths [17].

Instrumentation of code is done by inserting counters in
each basic block to produce the dynamic statistics at run
time. This method is used to profile basic block execution
frequency and for analyzing memory hierarchy
performance. Instrumentation of code is not used in this
phase of the prediction module as using it would mean
including extra code into the R script and running this
code will add to the execution time of the script [17].

As there was no historical data available for the prediction
module to rely upon when making its predictions, the
approach meant for developing it had to rely upon
analyzing the behaviour of incoming jobs (i.e. R scripts).
In order to do this some aspects of static analysis were
used and the data required for the database was obtained
through analytical benchmarking. However these
techniques alone are not sufficient to acquire a complete
understanding of the behaviour of R scripts. Thus the
prediction module also adopts a compiler-based approach
to extract the additional information from the R scripts.
The uniqueness of the prediction module lies in combining
these three approaches and then performing the necessary
computation to predict the execution time of R scripts.

4.0 PROPOSED SYSTEM ARCHITECTURE

A common type of job on the grid may involve software
programs written in high-level languages, e.g. C++, C,
Pascal, etc. In the present phase, our work focuses on
programs written using R! software. Therefore, the
approach used to develop the prediction module is very
much dependent on the characteristics of R! software.
Program written using R! software belong to the
imperative paradigm, which means it maintains a
modifiable memory and computation are performed
through a sequence of steps specified by a list of
commands [1][18]. This allows the user greater flexibility
in developing their programs according to individual
coding style. Unfortunately it also means the program
developed does not have an identifiable pattern which can
be studied to make predictions regarding future incoming
job. Thus the R programs are based on the imperative
paradigm but work exactly like shell script where they are
compiled and then executed. R! belongs to the open source
community, allowing its code to be freely available. Thus
the source code of the programs developed by the users is
accessible and not bounded by confidentiality agreement.

4.1 System Architecture

The architecture of the prediction module is derived from
a compiler-based approach to help it develop an
understanding of the R jobs submitted to it. This means
that the source code of an R job (or script) will be parsed
and tokenized similar to the way a compiler does when it
checks for errors in a program. Then the execution time of
the tokens found in the R program are obtained from the
database and combined using mathematical calculation to
predict the execution time of the entire R program.
The proposed system architecture consists of four
interdependent layers: Application Selector, File Parser,
Code Evaluation Engine and Predictor Engine as shown in
figure 3. The architecture follows a bottom-up approach,
whereby it starts from the bottom layer and moves layer
by layer until it results in an estimated execution time of
the input job. Each of the layers plays a significant role in
giving an accurate prediction of the execution time.

a) Application Selector – The first layer consists of the
application selector. When a user submits a job, the
program will first go through this layer to identify the
application used to write the job. A job submitted by user
can be classified depending on the software (such as
Matlab, Maple or Microsoft Visual) used to write the job.
Currently the prediction module only has the capability to
parse and tokenize programs written using R software. In
the scenario where the prediction module will be extended
to predict completion time of jobs written using different

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2,February 2009

160

software, then the parser module loader will load the
appropriate file parser depending on the type of incoming
job.

Fig 3. Overall System Architecture

b) File Parser – The second layer consists of 3
components; lexical tokenization, keyword counter and
grammar parser. The approach used to develop this layer
was guided and adapted from compiler design and
constructions tools such as Lex / Yacc. These tools help
one to write programs that transform structured input
which means dividing the input into smaller units and
discovering the relationship amongst these units [19]. In
the context of R programs, these units can be names,
constants, strings, operators, punctuation and so forth. The
process of dividing the program into units (usually called
tokens) is known as lexical analysis. The keyword
counters in this layer keeps track of the number of basic
operators (such as addition, subtraction, multiplication and
exponents) found and also creates a list of the functions
and iterations found in the script. The grammar parser on
the other hand contains a set of rules that enables the
prediction module to understand the structure of the
conditional and iteration statements.

c) Code Evaluation Engine – This layer of the prediction
module comprises of the metric and complexity analyzer
module. Software metrics are proposed to measure the
complexity of software artifacts such as functions, classes
and whole program. Complexity in software can arise

from a program’s structure as well as application domain
in which the software is used [20]. In the case of the
prediction module the metric analysis of an incoming R!
program is carried out during the parsing phase where the
number of operators and built-in functions found in the
script are counted. Also, this layer measures the
complexity of nested for loops as well as nested
conditional statements by identifying the parent and child
statements.

d) Predictor Engine – The final layer in the proposed
architecture has two components, one is a time completion
calculator which is basically a program for measuring the
time taken to execute the entire program. It makes use of
the tokenized version of the R script and computes the
overall predicted execution time for a particular job based
on the benchmarked data (of operators, built-in functions
and overheads) stored in the statistical database. The
predictor engine analyzes the tokenized script file line by
line, identify the benchmarked time for each token and
finally compute the accumulated time of all the identified
tokens in the file. The statistical database contains the
execution time of characterized functions and operators
which are commonly used in R script files. The statistical
database contains the execution time of characterizing the
functions and operators commonly used in R script files.
This procedure was done by creating script files for each
of the commonly used operators and built-in functions.
These files mimicked how the operators and functions
were typically used in R scripts along with timer function
to obtain the execution time of these operators and
functions. Once an R script has gone through all the layers
of the prediction module the system will display an
estimated execution time of the script.

4.2 Handling Complexity in Programs

There are several general characteristics which contribute
to the complexity of programs. Our approach to handling
complexity in programs is adapted from three different
aspects of measuring software complexity: the lines of
codes (LOC), identification and enumeration of distinct
operators and operands as discussed by Halstead and the
nesting depth as mentioned by McCabe.

Halstead states that the amount of computation carried out
by a program is based on the number operators and
operands found in the program. Operators can be “+” and
“*” whereas operands consists of numbers of literal
expression, constants and variables. The McCabe metric,
on the other hand, assumes that program complexity is
related to the number of control paths generated by the
codes [20]. The complexity of the codes is related to the
number of decision and control statements found. As most

2. File Parser

Complexity Analyzer

Metric Analyzer

Time Completion Calculator

Lexical Tokenization

Grammar Parser

Keyword Counter

4. Predictor Engine

Breaks down and counts
number of operators,
operands and branches.
The input is broken into
tokens

From the tokens, the
length and complexity
is measured

This engine analyzes the
length and complexity in
order to compute the
estimated time

3. Code Evaluation Engine

Statistical
l

Database

Application Selector It is used to categorize
program according to type.
Currently only handles R
program

1. Application Selector

© 2008 MIMOS Berhad. All rights reserved

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2,February 2009

161

non-trivial programs predominantly consist of nested
conditional statements or iterations, we focus on handling
the complexity of nested loops to improve the prediction
accuracy of the module. Predicting the execution time of
an entire program with these nested loops and conditional
statements involves complex computations. As the level of
nesting of the loop grow, the computational steps
increases as well. Our approach to handling the
complexity of nested loops involves breaking down the
nested loops into separate blocks identified by the start
line and end line.
The calculation of the execution time starts with the
innermost loop, followed by its parent loop and this step is
repeated until the outermost loop is reached. One iteration
of the parent loop includes the complete number of
iterations of the child loop. Depending on the level of
nesting found in the loops, the calculation of execution
time increases multiplicatively. The recurring calculations
lead to the following simplified equation:

 (1)

Where, N is the total execution time for the entire job, Δ l
is the time taken between the starting of one loop and the
starting of the successive loop. P(t1) is the amount of time
needed to execute the innermost loop. The calculation of
the execution time of the outermost loop is equivalent to
the time taken to execute the entire nested loop contained
within it. This issue of nested loops is handled in the
complexity analyzer and in the time completion calculator
components of the proposed prediction module.

4.3 Implementation

The execution time of a program varies significantly when
it is run across different platform. This is due to the
different specifications of each machine that leads to wide
variation in execution time. Therefore in our work, all
tasks starting with benchmarking of operators, operands
and functions to getting the actual executing time are all
done using the same machine. This is to minimize the
variation and deviation in predicting and then obtaining
the actual execution time, thus leading to better accuracy
of prediction. Even though the prediction module is
machine dependent, the proposed architecture allows
cross-platform prediction to be made with relative ease.
Thus if prediction of execution time needs to be made on a
machine with a different architecture, only the
benchmarked scripts need to be run on this machine to
obtain the execution time of identified tokens. The
benchmarked data are then stored in the statistical
database for future prediction.

The type of CPU of the machine used throughout this
project cycle was AMD Athlon 848 (2X2 Core) which
was running on CentOS 4.4 operating system. The CPU
speed was 3200 GHz with 2048 MB of RAM. As for the
development of the prototype, Java was used to write the
functional codes using Eclipse version 3.2.2 as the IDE.
MySQL server version 5.0 was used to store the database
involved in this work. This prediction module runs on a
unix-based environment and is wrapped around an API
(Application Programming Interface) implementation. To
interact with this module, the API has to be utilized. The
API wrapper was developed using Java Server Page which
was later used during the testing phase of the prediction
module.

5.0 TESTING AND EVALUATION

Two main criteria were used when testing the prediction
module: firstly, checking whether each component
functioned correctly and secondly, checking the prediction
accuracy of the execution time of the R scripts. Beginning
with the parsing phase until the predicted execution time is
output to the console, the prediction module was inserted
with output statement to see how the R script was
processed. Thus one could see the tokenized version of the
script, followed by an output which identifies the
complexity in the nested loops and conditional statement.
Then gradually the time to execute each block or token of
the script is added up. Finally the complete execution time
of the script is displayed. All these output statements were
later suppressed once the testing phase of the prediction
module was completed. As for the second criterion, the
module is expected to provide a prediction accuracy of
80%, under a Normal Distribution. In the Normal
Distribution, 68% of the sampling lies within the first
standard deviation. A sampling test is shown in the
following example:

Testimated: Time that was estimated by the prediction module
Tactual: Time taken for actual estimation

Accuracy Error = %100×
−

actual

actualestimated

T
TT

Accuracy = 100% - Accuracy Error

Example:

Testimated : 100 days Tactual : 110 days

Accuracy error = (110 – 100) / 110 * 100 = 9.09 %

()()
()

∑ ∏∏
−

= ==

+Δ+Δ⎥
⎦

⎤
⎢
⎣

⎡
=

1

1 1
1

1

l

m

l

j
ljm

m

i
i tPnnN

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2,February 2009

162

Accuracy = 100 – 9.09 = 90.91%

Hence, we can say that this is a successful estimation as
the accuracy of prediction is 90.91%, which is more than
the 80% of the desired goal. Under Normal Distribution
with one sigma or one standard deviation of error, for a
total sample of 100 test cases, our prediction module
should be able to predict execution time for more than 68
jobs with more than 80% accuracy.

5.1 Evaluation of the System

For testing purpose, a total of 60 R! scripts were taken at
random as the test cases. The estimated time to run each of
these 60 test cases was predicted using the wrapper
developed. The predicted time was then compared with the
actual execution time for each job. Only predicted time
that falls within the range of 80% -120% of the actual
execution time is considered successful. Otherwise, the
prediction is considered to have failed. Table 1.0 shows
the summarized result of the testing phase.

Table 1: Summarized results of the testing phase

Accuracy Count Total

Percentage

of jobs

90-100 % 24 Total > 90% Accuracy 40

80-89 % 20 Total > 80% Accuracy 33.33333333

70-79% 2 % > 80% accuracy 73.33333333

60-69% 2 Total > 60% Accuracy 48

50-59% 0 % > 60% accurcay 80

40-49% 3 Total > 40% Accuracy 51

30-39% 4 % > 40% Accuracy 85

20-29% 0 Total > 20% Accuracy 55

10-19% 3 % > 20% Accuracy 91.66666667

0-9% 0 Total > 0% Accuracy 58

less than

0% 2 % > 0% Accuracy 96.66666667

0
5

10
15
20
25
30

90-100 %
80-89 %

70-79%
60-69%

50-59%
40-49%

30-39%
20-29%

10-19% 0-9%

less than 0% accu ra

N
o

of
 s

cr
ip

t f
ile

s

Series1

Percentage Accuracy Range

Fig. 4 Accuracy Chart

The result of the testing phase shows that 44 out of 60 R!
scripts were predicted with more than 80% accuracy,
which means the testing objective was met. The table and
figure above shows that a total of 73.3% of the entire test
cases was predicted with more than 80% accuracy. Out of
the 73.3%, 40% of the files were predicted with more than
90% accuracy. Only about 3.33% of the entire files were
predicted with less than 0% accuracy. This is probably due
to the limitations of the prediction module where it does
not cater for situation such as the occurrence of an
indefinite while loop.

6.0 CONCLUSION

The research problem for our project arose from the need
to optimize resource usage by assisting scheduling and to
enable advance reservation in a grid environment. A
solution to this problem will lead to improvement in
advance scheduling for resource allocation as well as
hasten the transition of the research-driven grids to
commercial grids. Our project aimed to develop a
prediction module which estimates the execution time of R
scripts by using a combination of static analysis, analytical
benchmarking and compiler-based approach. Usually this
meant that the source code of the script underwent a static
and a dynamic analysis, to extract a profile of the script
which was then used to predict the completion time of the
script. Even though our work focused on predicting
execution time of programs written using R!, but the
system architecture and techniques are robust enough such
that it allows adaptability and flexibility when applied to
other program written using imperative paradigm. It is
believed that if a solution can be found for predicting the
execution time of programs written using specific software
as proof of concept than a generic method can be

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2,February 2009

163

abstracted from it and applied to a whole category of
programs.

6.1 Limitations

There are several limitations to our current work. As the
execution time of a program depends greatly on the
machine specification that runs the program, our work is
platform specific. Our current work also does not cover
program written using the object oriented paradigm such
Java and data-feed oriented programs such as Blast.
Instead it focuses on jobs written using R!, but the
architecture, methods and process applied are flexible
enough to be adapted and applied to other jobs written in
various imperative paradigm. Another assumption made
throughout the project life cycle is that jobs will not be
pre-empted or interrupted by other jobs. The dedicated
consumption of CPU is assumed so that the effect of
processors resource management can be reduced, thus
leading to better accuracy in our prediction.

ACKNOWLEDGEMENT

We gratefully acknowledge the support of Dr Lai Weng
Kin throughout the project.

References

[1] X. Che, L. Hu, D. Guo, K. Tang, D. Hu, Information Service

Prototype System for Run- time Prediction of Grid
Applications, 1-6, 2007

[2] M. Irving, G. Taylor, P. Hobson. Plug in to Grid Computing,
IEEE Power and Energy Magazine, 2, 2004, 40-44.

[3] J. Nabrzyski, J. Schopf and J. Weglarz, eds. Grid Resource
Management – State of the Art and Future Trends, Kluwer
Academic Publishers, 2003.

[4] P. Plaszczak, R. Wellener Jr., Grid Computing: The Savvy
Manager’s Guide (San Francisco, CA: Morgan Kaufmann
Publishers, Elsevier Inc, 2006).

[5] Luvisetto, Grid Middleware Technology,
http://www.bo.infn.it/alice/introgrd/introgrd/node 7.html,
2006

[6] R. Buyya, S. Chapin, D. DiNucci. Architectural Models for
Resource Management in Grid,
www.buyya.com/papers/gridmodels.pdf , 2000

[7] T. El-Ghazawi, K. Gaj, N. Alexandridis, F. Vroman, N.
Nguyen, J.R. Radzikowski, P. Samipagdi, and S.A. Suboh,
A Performance Study of Job Management Systems,
Concurrency and Computation: Practice & Experience, Vol
16, Issue 13, John Wiley & Son, 2004

[8] What is MYREN?
http://www.myren.net.my/?g=A&c=2006111632
0062658172169882&a, 2005

[9] The TEIN2 Network,
http://www.tein2.net/server/show/nav.622 , 2003- 2004

[10] The GEANT2 Network,
http://www.geant2.net/server/show/nav.740, 2003-2004

[11] KnowledgeGrid Malaysia,
http://knowledgegrid.net.my/index.jsp?p=ab, 2007

[12] The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed,
GRID and Peer-to-Peer Technologies D.RMS.06-Review of
Performance Prediction Models and Solutions, CoreGRID -
Network of Excellence European Grid Research, 2006,
http://www.coregrid.net/mambo/content/view/43 1/295/

[13] R. Zhang, Z. Budimlić, K. Kennedy, Performance Modeling
and Prediction for Scientific Java Applications, IEEE, 2006.

[14] A. Attanasio, G. Ghiani, L. Grandinetti, E. Guerriero, F.
Guerriero, Operations Research Methods for Resource
Management and Scheduling in a Computational Grid: a
Survey, GRID COMPUTING: The new frontier of High
Performance Computing, Advances in Parallel Computing,
14, 2005, 53-81.

[15] M.A. Iverson. F. Özgüner, L. Potter, Statistical Prediction
of Task Execution Times through Analytic Benchmarking
for Scheduling in a Heterogeneous Environment, IEEE
Transactions on Computers, vol. 48, no. 12, Dec. 1999.

[16] D. Binkley, Source Code Analysis: A Road Map, Future of
Software Engineering (FOSE’07), 2007 IEEE.

[17] P.P. Chang, S. A. Malkhe, W. W. Hwu, Using Profile
Information to Assist Classic Code Optimizations, Software
Practice & Experience, 21(12): 1301 – 1321, 1999, URL:
http://www.crhc.uiuc.edu/IMPACT/ftp/journal/spe.profile-
classic.91.pdf

[18] W. Li, H. Delugach, Software Metrics and Application
Domain Complexity, IEEE Proc. of Asia Pacific Software
Engineering Conference & International Computer Science
Conference (APSEC ’97), Hong Kong,1997,513–514.

[19] J. R. Levine, T. Mason, D. Brown., lex & yacc, O’Reilly,
United States of America, 1995

[20] L. Marco, Measuring Software Complexity, Enterprise
Systems Journal, April 1997

