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Summary 
Steganalysis plays an important role in identifying unacceptable 
information transmitted through internet communication system. 
In the process of steganalysis many untoward incidents can be 
avoided. Many techniques have been proposed and new 
techniques are tried with different combinations to maximize the 
efficiency of retrieving hidden information. We have proposed a 
combination of polynomial vector with Fisher’s discriminant 
function using the information of bitplane and radial basis neural 
network (PVDRBF). Each set of pixel is preprocessed to obtain 
interpolated pixels using PDV. This is further trained by Fisher’s 
discriminant method that transforms once again into 2- 
dimensional vector. A processing of training the RBF is adopted 
to obtain set of final weights. During implementation, the final 
weights are used to classify the presence of hidden information. 
 
Key words: 
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1. Introduction 

Steganalysis is the process of identifying the presence of 
hidden information in a text, image, audio, or video [1,2,3]. 
Most of the present literature on steganalysis follows 
either a parametric model [10, 11, 12] or a blind model [4, 
5, 6, 7, 8, 9]. A generic steganalysis method that can attack 
steganography blindly, detect hidden data without 
knowing embedding methods, will be more useful in 
practical applications. A framework for steganalysis based 
on supervised learning has been designed in [13]. The 
framework was further developed and tested. A mere 
significant work has been carried out on supervised 
steganalysis, using neural networks as a classifier [14, 15]. 
Fishers’ linear discriminant function (FLD) as a classifier 
has shown impressive results for steganalysis work [37]. 
We extend the present neural network based steganalytic 
work by combining a polynomial interpolated fisher’s 
discriminant method with the radial basis function neural 
network function. 

2. Methodology 

Machine learning theory based steganalysis assume no 
statistical information about the stego image, host image 
and the secret message. This work falls under the category 
of supervised learning employing two phase strategies: a) 
training phase and b) testing phase. In training phase, 
original carriers are separated by bitplane method and are 
interpolated by preprocessing into polynomial vectors. 
This is further trained by Fisher’s discriminant method to 
obtain ϕ1 and ϕ2 discriminant vectors. The n-dimensional 
patterns are inner-producted to obtain 2-dimensional 
vector which is trained by neural classifier to learn the 
nature of the images. RBF takes the role of neural 
classifier in this work. By training the classifier for a 
specific embedding algorithm a reasonably accurate 
detection can be achieved. RBF neural classifier in this 
work learns a model by averaging over the multiple 
examples which include both stego and non-stego images. 
In testing phase, unknown images are supplied to the 
trained classifier to decide whether secret information is 
present or not. The flowcharts of both the phases are given 
below in figure 1: 

 

Fig. 1a. Training Phase 
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Fig. 1b. Testing Phase 

 

2.1 Bitplane processing 

In this research work 256-color or 8-bit images are 
considered. Each image is split into 8 planes, each plane 
contains one bit of all the pixels.  
 

   
 
Fig. 2a. Carrier  Fig. 2b. Message 
 

 
 

 

Fig. 2c. The mixed image through bitplane method 

2.2 Polynomial Interpretation 

Polynomial interpolation is the interpolation of a given 
pattern set by a polynomial set obtained by outer 
producting the given pattern. It can also be described as, 
given some points, the aim is to find a polynomial which 
goes exactly through these points [16, 17]. Polynomial 

Interpolation forms the basis for computing information 
between two points. 
 
Let X present the normalized input vector, where 
X = ⎨Xi⎬ ; i=1,…nf, 

Xi is the feature of the input vector, and  
nf is the number of features  

An outer product matrix XOP of the original input vector is 
formed, and it is given by: 
 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

X3X3X3X2X3X1
 X2X3X2X2X2X1

X1X3X1X2X1X1
....Xop  

 
Using the XOP matrix, the following polynomials are 
generated: 
 
i) Product of inputs (NL1) 
it is denoted by: 

∑wijxi (i≠j) = Off-diagonal elements of the outer 
product matrix.     (1) 
The pre-processed input vector is a 3-dimensional vector. 
 
ii) Quadratic terms (NL2) 
It is denoted by: 

Σwijxi
2 = Diagonal elements of the outer product 

matrix.      (2) 
The pre-processed input vector is a 3-dimensional vector. 
 
iii) A combination of product of inputs and quadratic 
terms (NL3) 
It is denoted by: 

Σwijxi(i≠j) + Σwijxi
2 = Diagonal elements and 

Off-diagonal elements of the outer product matrix.  (3) 
The pre-processed input vector is a 6 dimensional vector. 
 
iv) Linear plus NL1 (NL4) 
The pre-processed input vector is a 6-dimensional vector.
      (4) 
 
v) Linear plus NL2 (NL5) 
The pre-processed input vector is a 6-dimensional vector.
      (5) 
 
vi) Linear plus NL3 (NL6)    
      (6) 
The pre-processed input vector is a 9-dimensional vector. 

 
In Eq. (1) through Eq. (6), the term ‘linear’ represents the 
normalized input pattern without pre-processing. While 
training the FLD, anyone of the 6 polynomial vectors can 
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be used as input depending upon the requirements. The 
abbreviation ‘NL’ represents the non-linearity.  The 
number next to ‘NL’ is used to identify the type of 
polynomial generated. The combination of different 
polynomials with FLD and RBF is given. in table 1. 
 

 
Table 1: Combination of PVDRBF 

2.3 Fisher’s Linear Discriminant Function 

 
The process of changing the dimensions of a vector is 
called transformation. The transformation of a set of n-
dimensional real vectors onto a plane is called a mapping 
operation. The result of this operation is a planar display. 
The main advantage of the planar display is that the 
distribution of the original patterns of higher dimensions 
(more than two dimensions) can be seen on a two 
dimensional graph. The mapping operation can be linear 
or non-linear. R.A. Fisher developed a linear classification 
algorithm [18] and a method for constructing a classifier 
on the optimal discriminant plane, with minimum distance 
criterion for multi-class classification with small number 
of patterns [19]. The method of considering the number of 
patterns and feature size [21], and the relations between 
discriminant analysis and multilayer perceptrons [20] has 
been addressed earlier. A linear mapping is used to map an 
n-dimensional vector space ℜn onto a two dimensional 
space. Some of the linear mapping algorithms are principal 
component mapping [22], generalized declustering 
mapping [23, 24, 25, 26], least squared error mapping [27] 
and projection pursuit mapping [28]. In this work, the 
generalized declustering optimal discriminant plane is 
used. The mapping of the original pattern ‘X’ onto a new 
vector ‘Y’ on a plane is done by a matrix transformation, 
which is given by  
 

Y=AX       (7) 
 
Where 
 

     (8) 
and ϕ1 and ϕ2 are the discriminant vectors (also called 
projection vectors). 

An overview of different mapping techniques [29, 30] 
is addressed earlier. The vectors ϕ1 and ϕ2 are obtained 

by optimizing a given criterion. The plane formed by the 
discriminant vectors is the optimal vectors which are the 
optimal discriminant planes. This plane gives the highest 
possible classification for the new patterns. 

The steps involved in the linear mappings are: 
Step 1: Computation of the discriminant vectors ϕ1 and 

ϕ2: this is specific for a particular linear mapping 
algorithm. 

Step 2: Computation of the planar images of the 
original data points: this is for all linear mapping 
algorithms. 

 

2.3.1) Computation of discriminant vectors ϕ1 and ϕ2  
The criterion to evaluate the classification performance 

is given by: 

     (9) 
Where 
Sb    the between class matrix, and 
Sw     the within class matrix which is non-singular. 

T
oioiib mmmmpS ))()(( −−∑= ω               (10) 

[ ]iT
iioiiw mXmXEpS ωω ))()( −−∑=   (11) 

where 
P(ωi) a priori the probability of the ith pattern, generally, 
p (ωi) = 1/m 
mi   the mean of each feature of the ith class patterns, 

(i=1.2…,m), 
mo  the global mean of a feature of all the patterns in 

all the classes, 
X   {xi, I=1, 2,…L} the n-dimensional patterns of 

each class, 
L the total number of patterns. 
Eq.(9) states that the distance between the class centers 

should be maximum. The discriminant vector ϕ1  that 
maximizes ‘J’ in Eq. (9) is found as a solution of the 
eigenvalue problem given by: 
Sb ϕ1 = λml Sw ϕ1             (12) 

where 
λml  the greatest non-zero eigenvalue of (Sb Sw 

–1) 
ϕ1  eigenvalue corresponding to λml 

 

The reason for choosing the eigenvector with maximum 
eigenvalue is that the Euclidean distance of this vector will 
be the maximum, when compared with that of the other 
eigenvectors of Eq.(12). Another discriminant vector ϕ2 is 
obtained, by using the same criterion of Eq.(9). The 
discriminant vector ϕ2 should also satisfy the condition 
given by:     
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 ϕT
2 ϕ1=0            (13) 

Eq.(13) indicates that the solution obtained is 
geometrically independent and the vectors ϕ1 and ϕ2 are 
perpendicular to each other. Whenever the patterns are 
perpendicular to each other, it means, that there is 
absolutely no redundancy, or repetition of a pattern. The 
discriminant vector ϕ2 is found as a solution of the 
eigenvalue problem, which is given by: 

 
Qp Sb ϕ2  = λm2 Sw ϕ2           (14) 
 
where 
λm2 the greatest non-zero eigen value of Qp Sb Sw

-1 , 
and 

Qp the projection matrix which is given by 
 
              

1
1

1

1
11

ϕϕ
ϕϕ

−

−

−=
W

T
W

T

p S
SIQ            (15) 

where 
 I  an identity matrix 
 
The eigenvector corresponding to the maximum 

eigenvalue of Eq. (14) is the discriminant vector ϕ2. In 
Eq.(12) and Eq. (14), SW should be non-singular. The SW 
matrix should be non-singular, even for a more general 
discriminating analysis and multi-orthonormal vectors [31, 
32, 33]. If the determinant of SW is zero, then singular 
value decomposition (SVD) on SW has to be done. On 
using SVD [34, 35], SW is decomposed into three matrices 
U, W and V. The matrices U and W are unitary matrices, 
and V is a diagonal matrix with non-negative diagonal 
elements arranged in the decreasing order. A small value 
of 10-5 to 10-8 is to be added to the diagonal elements of V 
matrix, whose value is zero. This process is called 
perturbation. After perturbing the V matrix, the matrix Sw

1 
is calculated by: 

T
w VWUS **1 =              (16) 

where  
 
SW

1 the non-singular matrix which has to be 
considered in the place of Sw. 

Minimum perturbed value should be considered, which 
is just sufficient to make Sw

1 non-singular. As per Eq.(13), 
when the values of ϕ1 and ϕ2 are innerproducted, the 
resultant value should be zero. In reality, the 
innerproducted value will not be zero. This is due to 
floating point operations. 
 

2.3.2) Computation of two-dimensional vector from the 
original n-dimensional input patterns 
 

The two-dimensional vector set yi is obtained by: 
 

yi  = (ui , vi ) = (Xi
T ϕ1 , Xi

T ϕ2)              (17) 
The vector set yi is obtained by projecting the original 

pattern ‘X’ onto the space, spanned by ϕ1 and ϕ2 by using 
Eq.(17). The values of ui and vi can be plotted in a two-
dimensional graph, to know the distribution of the original 
patterns. 

 

2.4 Radial Basis Function 

A radial basis function (RBF) whose value depends 
only on the distance from the origin. If a function ‘h’ 
satisfies the property h(x)=h(||x||), then it is a radial 
function. Their characteristic feature is that their response 
decreases (or increases) monotonically with distance from 
a central point. The centre, the distance scale, and the 
precise shape of the radial function are parameters of the 
model, all fixed if it is linear [36]. A typical radial function 
is the Gaussian which, in the case of a scalar input, is  

 
h(x)=exp((-(x-c)2)/(r2))          (18) 
 

Its parameters are its centre c and its radius r.  
RBF networks have traditionally been associated with 
radial functions in a multi-layer network. The input layer 
carries the outputs of FLD function. The distance between 
these values and centre values are found and summed to 
form linear combination before the neurons of the hidden 
layer. These neurons are said to contain the radial basis 
function with exponential form. The outputs of the RBF 
activation function is further processed according to 
specific requirements. 
 

3. Implementation 

3.1 Training 

 
1. Decide number of cover images.  
2. Read each Image and separate into bitplanes. Choose 

bitplanes corresponding to background of the image 
(5,6,7,8) bits.  

3. Preprocess the data to any NL  
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4. Calculate the principal component vector by 
 
           Z=Z * Z T 
where  
       Z denotes the intensities of image 
5.  Find eigenvector of the Z matrix by applying eigen 

process. 
6.  Calculate the ϕ1 and ϕ2 vectors. 
    ϕ1 = eigenvector ( Sb * Sw

-1 ) 
       Sb = ∑ ( PCVi – M0 ) ( PCVi – M0 )T / N 
      where:       
           PCVi ( i = 1,2,3 ) 
          
  PCV1, Principal component vector1 
          PCV2, Principal component vector2 
          PCV3, Principal component vector3  
            M0 = Average of (PCV1 + PCV2 + PCV3) 
             Sw = (∑ ( PCVi – Mi ) ( PCVi – Mi )T ) / N 
where: 
          Mi ( i = 1, 2, 3) 
           M1, average of PCV1 

                M2, average of PCV2 

                M3, average of PCV3 
 7. Calculate ϕ2 vector. 
            ϕ2 = eigenvector (Q Sb Sw

-1 ) 
             Q = I – ((ϕ1* ϕ1

-1 * Sw
-1 )/(ϕ1

t * Sw
-1 * Phi_ϕ1) ) 

 8. Transfer for N dimensional vector into 2 
dimensional vector. 

               U = ϕ1 * PCVi ( 1 , 2 , 3 ) 

                      V = ϕ2* PCVi ( 1 , 2 , 3 ) 

 9. Apply RBF. 
              No. of Input = 2 
              No. of Centre = 2 
          Calculate RBF as 
             RBF = exp (-X) 
         Calculate Matrix as 
            G = RBF 
            A = GT * G 
        Calculate  
            B = A-1 

        Calculate 
            E = B * GT 

 10. Calculate the final weight. 
            F = E * D 
 11.  Store the final weights in a File. 

3.2 Testing 
 

1. Read steganographed image and separate into 
bitplanes. Choose plane 5,6,7,8 one by one 

2. Preprocess the data to an NL 

 3.   Innerproduct with ϕ1* ϕ2 obtained during training 
 4.   Find eigenvector of the Z matrix by applying eigen 

process. 
        Calculate RBF  centre as  RBF ( 1 X 3) = exp (-X) is 

the gaussian function 
Output of the network (1 X 1) = RBF ( 1 X 3)  X  

Final weight(3 X 1) 
 5. Classify the pixel as containing information or not.  

4. Results and Discussion 

The simulation of steganalysis has been implemented 
using MATLAB 7®. Sample sets of images considered are 
gray colored. The different sets of cover images 
considered in the simulation are presented in figure 3. The 
information image is shown in figure 2 (b). Encryption 
technique has not been considered during the simulation. 
The different ways the secret information scattered in the 
cover images are given in figure 4.  
 

 
 

Fig.3 Three cover images under consideration 
 

 
 

 
Fig.4 Distribution of information image in cover image 
 

In this simulation, the information is embedded using least 
significant bit (LSB). This method will not be indicated to 
the steganalysis method proposed. Only the bits 
corresponding to background are considered during 
steganalysis as the foreground does not help in hiding 
information. The simulation environment is given in table- 
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2. The outputs of the FLD using NL1 through NL6 is 
shown in figure 5, and table 3 gives the length of 
polynomial vector developed. Figure 6 gives outputs of 
Polynomial with FLD and RBF during training, 
identifying the hidden information. All the methods are 
able to identify the hidden information. 
 

Size of the image 256 * 256 
 

Number of bits in each pixel 
of the cover  image considered 

4 bits (background) 
 

Number of bits preferred in 
each  message image 

4bits (foreground) 
 

Method of embedding replacing all the 
background four bits of 
cover image by four 
information bits 
(foreground) of message 
image or replacing any 
one bit or any two bits or 
any three bits of cover 
image with equal number 
of bits of message image 

 
Table 2: Simulation environment 

 

Fig 5. Each row corresponds to one image – background bits are shown 
 

Method Polynomial vector 
length 

NL1 36 
NL2 9 
NL3 45 
NL4 45 
NL5 18 
NL6 54 

 
Table 2: Polynomial vector  

 

 
 

Fig 5a. FLD output of cover image using NL1 
 

 
 

Fig 6a. Hidden information identified using FLD+RBF with 
polynomial  using NL1 
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Fig 5b. FLD output of cover image using NL2 

 

 
 

Fig 6b. Hidden information identified using FLD+RBF with 
polynomial  using NL2 

 

 
 

Fig 5c. FLD output of cover image using NL3 
 

 
Fig 6c. Hidden information identified using FLD+RBF with 

polynomial  using NL3 
 

 
 

Fig 5d. FLD output of cover image using NL4 
 

  Fig 6d. Hidden information identified using FLD+RBF with 
polynomial  using NL4 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009 
 

 

216

 
Fig 5e. FLD output of cover image using NL5 

 
 

 

 
Fig 6e. Hidden information identified using FLD+RBF with 

polynomial  using NL5 
 

 
Fig 5f. FLD output of cover image using NL6 

 

 
 

Fig 6f. Hidden information identified using FLD+RBF with 
polynomial  using NL6 

 

5. Conclusion 

Steganalysis has been implemented using preprocessed 
vector with FLD, RBF. The outputs of the algorithms for 
one steganographed image have been presented. Secret 
information is getting retrieved by the proposed 
algorithms with various degrees of accuracies. It can be 
noticed that the combined method FLDRBF with 
polynomial is giving a newer direction to detecting the 
presence of hidden information. The cover images chosen 
for the simulation are standard images. The percentage of 
identifying the hidden information is more than 98%, The 
proposed method has to be tried with different types of 
hidden information. 
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