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Summary 
In this paper we introduce the delivery problem and propose a 
genetic algorithm solving the delivery problem. In the delivery 
problem, many heterogeneous robot agents collaborate to deliver 
an object to its destination aim to minimize the delivery time In 
this problem, each agent has different velocity So, the hand in 
sequence and places are critical to optimize the delivery time. 
We analyze properties of the delivery problem, and propose an 
exact algorithm for 1-dimensional space delivery problem. And 
then we describe a genetic algorithm for 2-diemnsioal case. 
Finally, we compare the results of these two algorithms to show 
the effectiveness of given genetic algorithm. 
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1. Introduction 

The delivery problem is that of minimizing the delivery 
time in m-dimensional space. There are n robot agents 
with various velocity, an object and destination. In this 
problem, n robot agents collaborate to deliver the object to 
the destination as fast as possible. For the sake of clarity, 
we will show one of the simplest samples of 1-
dimensional delivery problem with 2 agents. Figure 1 
show three possible solutions for specific parameters. In 
this figure, o, a, b, d stand for object, agent a, agent b, 
destination, respectively. We assume that agent b is faster 
than agent a. 
 

 

Fig. 1 3 possible solutions for simple delivery problem 

We can easily figure out that the sol2 is the best solution 
and the position x will be the solution of the problem. In 

this paper, we will consider only the time to deliver, the 
solution will be (distance(a,o) + distance(o,x)) / speed(a) + 
distance(x,d) / speed(b) or (distance(b,x) + distance(x,d)) / 
speed(b). 
Delivery problem can be considered as a kind of path 
planning problem [1]. There are many results on path 
planning, however most research focuses on single robot 
[2]. Some recent researches consider the multi agent case 
[3][4][5] but, within our knowledge, there is no previous 
result in the literature faces our definition 
In this paper, we investigate the properties of the delivery 
problem and propose two algorithms for the problem. One 
is an optimal algorithm for 1-dimensional space delivery 
problem and the other is a genetic algorithm for 2-
dimensional case. The rest of the paper is organized as 
follows. We introduce the delivery problem and its 
properties in section 2. In section 3 and 4, we present a 
polynomial time algorithm for 1-dimensioal delivery 
problem and a genetic algorithm for 2-dimensional 
delivery problem respectively. The analysis and 
experimental results are shown in section 5. Finally, 
section 6 draws the conclusion. 

2. Delivery Problem 

In this section, we will define the multi-agent single object 
delivery problem and show some mathematical aspect of 
the problem. 

2.1 Problem Definition 

The delivery problem is that of minimizing the delivery 
time in m-dimensional space. The problem is composed of 
n heterogeneous mobile robots and an initial position of 
and object and a final position where the object should be 
delivered. We assume that each robot has different 
constant velocity and no additional time is needed to 
pickup, hand in and release the object. In 2-dimnesional 
case, the problem can be formulated like follows: 
For given 
    niirp ..1],[ = : initial position of robot[i], 
    niirv ..1],[ = : constant velocity of robot[i], 
    ip : initial position of the only object, 
    fp : final position that the object to be delivered 
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Decide the values of  
    nkkiis <== ,..1],[ : a permutation of a subset of robots, 
    kiig ..1],[ = : position on the space. 
To minimize the value of the following cost function: 
    double cost(k) { 
        return ]];[[/)]],[[()( isrvfpisrpEDkrecur +  
    } 
    double recur(k) { 
        if (k==1) 
            return ]]1[[/]))2[,()]],1[[(( srvgipEDipsrpED + ; 
        double costA= )1( −krecur ; 
        costA+= ]]1[[/])[],1[( −− ksrvkgkgED ; 
        double costB= ]][[/])[]],[[( ksrvkgksrpED ; 
        return }cos,max{cos tBtA  
    } 
Where, 
    ),( yxED : Euclidean distance function, 
    niir ..1],[ = : robot[i]. 
 

4.2 Mathematical Aspect of Delivery Problem 

To show the difficulty of the problem, we will investigate 
a simple 2-dimensional delivery problem with two robot 
agents. rp[0], rv[0], rp[1], rv[1], ip, and fp are given and 
without loss of generality, we assume that r[1] is b times 
faster than r[0]. For the sake of easy explanation, we 
impose another constraint that rp[0] = ip (i.e., r[0] holds 
the object at the beginning). 
Since r[1] and r[0] has velocity ratio b, the circle of 
Apollonius [6] defined by the set of points P that have a 
ratio of distances b to two points r[1].p and r[0].p is 
important. Figure 2 shows the Apollonian circle defined 
by rp[0], rp[1] and the ratio b. 
 

 

Fig. 2. Apollonian circle defined by two points and ratio b. 

If fp is inside of the Apollonian circle, the solution will be 
ED(rp[0],fp)/rv[0]. Otherwise, the solution will be 
ED(rp[0],x)/rv[0]+ED(x,fp)/rv[1] or equivalently 

ED(rp[1],x)/rv[1]+ED(x,fp)/rv[1]. Where, x is a point on 
the circle that minimize ED(rp[1],x)+ED(x,fp). But, 
finding the point x is another challenging problem. 

3. Optimal Algorithm for 1-Dimensional Case 

Fortunately, 1-dimensional delivery problem can be 
solved by an exact algorithm in polynomial time. We will 
describe our algorithm with out the proof of correctness. 
But, the proof of correctness is not difficult. 
Our algorithm runs iteratively. In each round the object is 
passed to another robot whose velocity is higher than the 
velocity of current holder. During the execution of the 
algorithm, the robot that holds the object moves to fp, and 
all the other robots move to the object. 
Because each robot has different velocity, the robot that 
holds the object meets another robot as time passed. If the 
new robot has higher velocity, the object is passed from 
current holder to the new robot. This process is repeated 
until the object is delivered to fp. The overall algorithm is 
as follows: 
 
// algorithm: 1-dimensional delivery algorithm 
 
// first stage: every robot move to ip. 
timeA = 0; 
mini = min {i:ED(rp[i],ip)/rv[i]}; 
timeA += ED(rp[mini],ip)/rv[mini]); 
For each r[i] { // update the robot’s position. 
    if (rp[i]>ip) rp[i] -= rv[i]*timeA; 
    else rp[i] += rv[i]*timeA; 
} 
// now one of the robot holds the object 
Do 
    mini2 = min {i:ED(rp[i],rp[mini])/(rv[i]+rv[mini]), 
                        && rv[i]>rv[mini]} 
    timeB = ED(rp[mini],rp[mini2])/(rv[mini]+rv[mini2]); 
    If (timeB>ED(rp[mini],fp)/rv[mini]) { 
        timeA += ED(rp[mini],fp)/rv[mini]); 
        Break; 
    } else { 
        For each r[i] { 
            if (rp[i]>rp[mini]) rp[i] -= rv[i]*timeB; 
            else rp[i] += rv[i]*timeB; 
        } 
        timeA += timeB; mini = mini2; 
    } 
Until forever; 
Output timeA; 
 
 
Because of the object is passed to a robot with higher 
speed, the do loop repeated n times maximum. So, the 
time complexity of the algorithm will be )( 2nO  when the 
number of agents is n. 
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4. Genetic Algorithm for 2-Dimensioal Case 

This section presents a genetic algorithm [7] for 2-
dimensional delivery problem. Without loss of generality, 
we assume that the robots are sorted by velocity in 
increasing order. i.e., 2..0],1[][ −=+<= niirvirv  
Basically, robot r[j] moves specific place and meet robot 
r[i] (i<j) and take the object from r[i] and then moves 
some other specific place and meet robot r[k] (j<k) and 
hand in the object to robot r[k] 

41 Gene Structure and Cost Function 

A gene is a representative of a solution of the problem. 
Here, we describe the structure of gene and the solution 
that the gene represents. For the n-robot delivery problem, 
the structure of gene is as follows: 
    niigene ..1],[ = : place in the space that robot[i] take the 
object if  robot[i] participates the delivery. 
With this meaning of gene, we can find the order of robots 
that contribute to the delivery and the minimum time 
needed to delivery the object by using the Dijkstra’s 
shortest path algorithm [8]. Before going further we will 
give some more explanations about the symbols s[i] and 
g[i] in section 2 
    ,,..1],[ nkkiis <== : the order of robots that contribute to 
the delivery for the given (optimal) gene. Only a subset of 
robots will be listed here. 
    kiisgeneig ..1]],[[][ ==  
The cost evaluation algorithm for a gene and robot 
sequence is as follows: 
 
// algorithm: evaluation function 
 
timeA = 0; 
timeA += ED(rp[s[1]],ip) /rv[s[1]]; 
timeA += ED(ip,g [2]) /rv[s[1]]; 
For (int i=2; i<k; i++) { 
    timeB = timeA + ED(g[i],g [i+1]) /rv[s[i]]; 
    timeC = ED(rp[s[i]],g[i]) /rv[s[i]]; 
    timeA = max {timeB, timeC} 
} 
timeA += ED(g[k],fp) /rv[s[k]]; 
Output timeA; 
 
 
The algorithm computes the total time only, but someone 
can easily modify the algorithm to generate the delivery 
sequence. 

4.2 Genetic Algorithm 

Our algorithm stops when there is no improvement greater 
more than 0.0001 unit time during last 100 generations 
and we use only mutation that changes randomly selected 

g[i] to generate next generation. The overall algorithm is 
as follows. 
 
// algorithm: 2-dimensional genetic algorithm 
 
InitPopulation() 
gen = 0; 
While (gen<1000) { 
    For all gene[i] call CostEvaluation(gene[i]); 
    Call SortGeneByCost(); 
    Call NextGeneration(); 
    best[gen++] = CostEvaluation(gene[0]); 
    if (best[gen-100]-best[gen]<0.0001) break; 
} 
Output best[gen-1]; 
 
 
In the function InitPopulation(), we generate initial gene 
randomly. Function CostEvaluation() use the modified 
Dijkstra’s shortest path algorithm to evaluate the gene. 

5. Experimental Results 

This section presents a set of experiments designed to 
study the characteristics and performance of the proposed 
algorithm. We analyze our algorithm from two aspects: 
convergence speed and optimality 

5.1 Experiments on 1D test suites 

Table 1 shows optimal delivery time generated by 1-
dimensional exact algorithm, delivery time generated by 
2-dimensional genetic algorithm, number of rounds run by 
the genetic algorithm and the ratio of result of these two 
algorithms. 
 

Test 
Suite# 

1D algo.
(time) 

2D algo. 
(time) 

# of 
rounds 

1D/2D 
Ratio(%)

1 55.1308 55.1312 106 99.999 
2 71.5989 71.7625 107 99.772 
3 70.0768 70.0769 104 99.999 
4 58.9000 58.9000 100 100.000 
5 62.9090 62.9092 108 99.999 
6 53.3018 53.3043 108 99.995 
7 62.3621 62.8701 107 99.192 
8 65.4839 65.4842 103 99.999 
9 69.4422 69.4436 104 99.998 

10 61.0709 62.7095 190 97.387 
Avg. 63.0276 63.2592 113.7 99.634 

Table 1 Comparison of 1D and 2D algorithm 

As shown in the figure, almost all test run reaches the 
optimal solution within 0.01% error in small number of 
rounds Our stop condition of the genetic algorithm is  
    best[gen-100]-best[gen]<0.0001. 
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And this means, there is no meaningful improvement after 
8th generation in 9 out of 10 test suites. 

5.1 Experiments on 2D test suites 

We generate a random 2D test suite with 10 agents and 10 
random genes as initial population. The evaluated delivery 
time of 10 initial genes are distributed from 92.3248 to 
95.0121 and after 160 generations we got a solution with 
90.3861 unit time. Figure 3 shows the time gains in each 
generation. 
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Fig. 3. time gains in each generation. 

We also test 10 random 2D test suites and figure out that 
the average round is 173. As same as the 1D case the 
effective number of rounds is 73. It is still small but 
almost 10 times grater than 1D case. Table 2 shows the 
result 
 

Test Suite# 2D algo. (time) # of rounds 
1 77.3686 171 
2 78.2716 190 
3 103.5188 103 
4 86.5866 123 
5 82.0702 100 
6 903864 298 
7 78.2225 101 
8 77.0049 331 
9 68.9628 163 
10 67.8754 146 

Avg. 81.0268 172.6 

Table 2. The result of genetic algorithm on 2D test suite 

6. Conclusion 

In this paper, we introduce new type of delivery problem 
and propose two algorithms solve the problem. One is 

)( 2nO  time exact algorithm for 1-dimensional delivery 

problem and the other is genetic algorithm for 2-
Dimensioal delivery problem. By comparing the results of 
these two algorithms, we show the effectiveness of the 
genetic algorithm. 
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