
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

248

Manuscript received February 5, 2009

Manuscript revised February 20, 2009

Genetic Algorithm for Delivery Problem

KwangEui Lee† JiHong Kim††

† Department of Multimedia Engineering, Dongeui University, Busan, Korea
†† Department of Visual Information Engineering, Dongeui University, Busan, Korea

Summary
In this paper we introduce the delivery problem and propose a
genetic algorithm solving the delivery problem. In the delivery
problem, many heterogeneous robot agents collaborate to deliver
an object to its destination aim to minimize the delivery time In
this problem, each agent has different velocity So, the hand in
sequence and places are critical to optimize the delivery time.
We analyze properties of the delivery problem, and propose an
exact algorithm for 1-dimensional space delivery problem. And
then we describe a genetic algorithm for 2-diemnsioal case.
Finally, we compare the results of these two algorithms to show
the effectiveness of given genetic algorithm.

Key words:
Genetic algorithm, Robot collaboration, Artificial agent,
Optimization, Delivery problem

1. Introduction

The delivery problem is that of minimizing the delivery
time in m-dimensional space. There are n robot agents
with various velocity, an object and destination. In this
problem, n robot agents collaborate to deliver the object to
the destination as fast as possible. For the sake of clarity,
we will show one of the simplest samples of 1-
dimensional delivery problem with 2 agents. Figure 1
show three possible solutions for specific parameters. In
this figure, o, a, b, d stand for object, agent a, agent b,
destination, respectively. We assume that agent b is faster
than agent a.

Fig. 1 3 possible solutions for simple delivery problem

We can easily figure out that the sol2 is the best solution
and the position x will be the solution of the problem. In

this paper, we will consider only the time to deliver, the
solution will be (distance(a,o) + distance(o,x)) / speed(a) +
distance(x,d) / speed(b) or (distance(b,x) + distance(x,d)) /
speed(b).
Delivery problem can be considered as a kind of path
planning problem [1]. There are many results on path
planning, however most research focuses on single robot
[2]. Some recent researches consider the multi agent case
[3][4][5] but, within our knowledge, there is no previous
result in the literature faces our definition
In this paper, we investigate the properties of the delivery
problem and propose two algorithms for the problem. One
is an optimal algorithm for 1-dimensional space delivery
problem and the other is a genetic algorithm for 2-
dimensional case. The rest of the paper is organized as
follows. We introduce the delivery problem and its
properties in section 2. In section 3 and 4, we present a
polynomial time algorithm for 1-dimensioal delivery
problem and a genetic algorithm for 2-dimensional
delivery problem respectively. The analysis and
experimental results are shown in section 5. Finally,
section 6 draws the conclusion.

2. Delivery Problem

In this section, we will define the multi-agent single object
delivery problem and show some mathematical aspect of
the problem.

2.1 Problem Definition

The delivery problem is that of minimizing the delivery
time in m-dimensional space. The problem is composed of
n heterogeneous mobile robots and an initial position of
and object and a final position where the object should be
delivered. We assume that each robot has different
constant velocity and no additional time is needed to
pickup, hand in and release the object. In 2-dimnesional
case, the problem can be formulated like follows:
For given
 niirp ..1],[= : initial position of robot[i],
 niirv ..1],[= : constant velocity of robot[i],
 ip : initial position of the only object,
 fp : final position that the object to be delivered

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No2, February 2009

249

Decide the values of
 nkkiis <== ,..1],[: a permutation of a subset of robots,
 kiig ..1],[= : position on the space.
To minimize the value of the following cost function:
 double cost(k) {
 return]];[[/)]],[[()(isrvfpisrpEDkrecur +
 }
 double recur(k) {
 if (k==1)
 return]]1[[/]))2[,()]],1[[((srvgipEDipsrpED + ;
 double costA=)1(−krecur ;
 costA+=]]1[[/])[],1[(−− ksrvkgkgED ;
 double costB=]][[/])[]],[[(ksrvkgksrpED ;
 return }cos,max{cos tBtA
 }
Where,
),(yxED : Euclidean distance function,
 niir ..1],[= : robot[i].

4.2 Mathematical Aspect of Delivery Problem

To show the difficulty of the problem, we will investigate
a simple 2-dimensional delivery problem with two robot
agents. rp[0], rv[0], rp[1], rv[1], ip, and fp are given and
without loss of generality, we assume that r[1] is b times
faster than r[0]. For the sake of easy explanation, we
impose another constraint that rp[0] = ip (i.e., r[0] holds
the object at the beginning).
Since r[1] and r[0] has velocity ratio b, the circle of
Apollonius [6] defined by the set of points P that have a
ratio of distances b to two points r[1].p and r[0].p is
important. Figure 2 shows the Apollonian circle defined
by rp[0], rp[1] and the ratio b.

Fig. 2. Apollonian circle defined by two points and ratio b.

If fp is inside of the Apollonian circle, the solution will be
ED(rp[0],fp)/rv[0]. Otherwise, the solution will be
ED(rp[0],x)/rv[0]+ED(x,fp)/rv[1] or equivalently

ED(rp[1],x)/rv[1]+ED(x,fp)/rv[1]. Where, x is a point on
the circle that minimize ED(rp[1],x)+ED(x,fp). But,
finding the point x is another challenging problem.

3. Optimal Algorithm for 1-Dimensional Case

Fortunately, 1-dimensional delivery problem can be
solved by an exact algorithm in polynomial time. We will
describe our algorithm with out the proof of correctness.
But, the proof of correctness is not difficult.
Our algorithm runs iteratively. In each round the object is
passed to another robot whose velocity is higher than the
velocity of current holder. During the execution of the
algorithm, the robot that holds the object moves to fp, and
all the other robots move to the object.
Because each robot has different velocity, the robot that
holds the object meets another robot as time passed. If the
new robot has higher velocity, the object is passed from
current holder to the new robot. This process is repeated
until the object is delivered to fp. The overall algorithm is
as follows:

// algorithm: 1-dimensional delivery algorithm

// first stage: every robot move to ip.
timeA = 0;
mini = min {i:ED(rp[i],ip)/rv[i]};
timeA += ED(rp[mini],ip)/rv[mini]);
For each r[i] { // update the robot’s position.
 if (rp[i]>ip) rp[i] -= rv[i]*timeA;
 else rp[i] += rv[i]*timeA;
}
// now one of the robot holds the object
Do
 mini2 = min {i:ED(rp[i],rp[mini])/(rv[i]+rv[mini]),
 && rv[i]>rv[mini]}
 timeB = ED(rp[mini],rp[mini2])/(rv[mini]+rv[mini2]);
 If (timeB>ED(rp[mini],fp)/rv[mini]) {
 timeA += ED(rp[mini],fp)/rv[mini]);
 Break;
 } else {
 For each r[i] {
 if (rp[i]>rp[mini]) rp[i] -= rv[i]*timeB;
 else rp[i] += rv[i]*timeB;
 }
 timeA += timeB; mini = mini2;
 }
Until forever;
Output timeA;

Because of the object is passed to a robot with higher
speed, the do loop repeated n times maximum. So, the
time complexity of the algorithm will be)(2nO when the
number of agents is n.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No2, February 2009

250

4. Genetic Algorithm for 2-Dimensioal Case

This section presents a genetic algorithm [7] for 2-
dimensional delivery problem. Without loss of generality,
we assume that the robots are sorted by velocity in
increasing order. i.e., 2..0],1[][−=+<= niirvirv
Basically, robot r[j] moves specific place and meet robot
r[i] (i<j) and take the object from r[i] and then moves
some other specific place and meet robot r[k] (j<k) and
hand in the object to robot r[k]

41 Gene Structure and Cost Function

A gene is a representative of a solution of the problem.
Here, we describe the structure of gene and the solution
that the gene represents. For the n-robot delivery problem,
the structure of gene is as follows:
 niigene ..1],[= : place in the space that robot[i] take the
object if robot[i] participates the delivery.
With this meaning of gene, we can find the order of robots
that contribute to the delivery and the minimum time
needed to delivery the object by using the Dijkstra’s
shortest path algorithm [8]. Before going further we will
give some more explanations about the symbols s[i] and
g[i] in section 2
 ,,..1],[nkkiis <== : the order of robots that contribute to
the delivery for the given (optimal) gene. Only a subset of
robots will be listed here.
 kiisgeneig ..1]],[[][==
The cost evaluation algorithm for a gene and robot
sequence is as follows:

// algorithm: evaluation function

timeA = 0;
timeA += ED(rp[s[1]],ip) /rv[s[1]];
timeA += ED(ip,g [2]) /rv[s[1]];
For (int i=2; i<k; i++) {
 timeB = timeA + ED(g[i],g [i+1]) /rv[s[i]];
 timeC = ED(rp[s[i]],g[i]) /rv[s[i]];
 timeA = max {timeB, timeC}
}
timeA += ED(g[k],fp) /rv[s[k]];
Output timeA;

The algorithm computes the total time only, but someone
can easily modify the algorithm to generate the delivery
sequence.

4.2 Genetic Algorithm

Our algorithm stops when there is no improvement greater
more than 0.0001 unit time during last 100 generations
and we use only mutation that changes randomly selected

g[i] to generate next generation. The overall algorithm is
as follows.

// algorithm: 2-dimensional genetic algorithm

InitPopulation()
gen = 0;
While (gen<1000) {
 For all gene[i] call CostEvaluation(gene[i]);
 Call SortGeneByCost();
 Call NextGeneration();
 best[gen++] = CostEvaluation(gene[0]);
 if (best[gen-100]-best[gen]<0.0001) break;
}
Output best[gen-1];

In the function InitPopulation(), we generate initial gene
randomly. Function CostEvaluation() use the modified
Dijkstra’s shortest path algorithm to evaluate the gene.

5. Experimental Results

This section presents a set of experiments designed to
study the characteristics and performance of the proposed
algorithm. We analyze our algorithm from two aspects:
convergence speed and optimality

5.1 Experiments on 1D test suites

Table 1 shows optimal delivery time generated by 1-
dimensional exact algorithm, delivery time generated by
2-dimensional genetic algorithm, number of rounds run by
the genetic algorithm and the ratio of result of these two
algorithms.

Test
Suite#

1D algo.
(time)

2D algo.
(time)

of
rounds

1D/2D
Ratio(%)

1 55.1308 55.1312 106 99.999
2 71.5989 71.7625 107 99.772
3 70.0768 70.0769 104 99.999
4 58.9000 58.9000 100 100.000
5 62.9090 62.9092 108 99.999
6 53.3018 53.3043 108 99.995
7 62.3621 62.8701 107 99.192
8 65.4839 65.4842 103 99.999
9 69.4422 69.4436 104 99.998

10 61.0709 62.7095 190 97.387
Avg. 63.0276 63.2592 113.7 99.634

Table 1 Comparison of 1D and 2D algorithm

As shown in the figure, almost all test run reaches the
optimal solution within 0.01% error in small number of
rounds Our stop condition of the genetic algorithm is
 best[gen-100]-best[gen]<0.0001.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No2, February 2009

251

And this means, there is no meaningful improvement after
8th generation in 9 out of 10 test suites.

5.1 Experiments on 2D test suites

We generate a random 2D test suite with 10 agents and 10
random genes as initial population. The evaluated delivery
time of 10 initial genes are distributed from 92.3248 to
95.0121 and after 160 generations we got a solution with
90.3861 unit time. Figure 3 shows the time gains in each
generation.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Generation

T
im

e
 G

a
in

Fig. 3. time gains in each generation.

We also test 10 random 2D test suites and figure out that
the average round is 173. As same as the 1D case the
effective number of rounds is 73. It is still small but
almost 10 times grater than 1D case. Table 2 shows the
result

Test Suite# 2D algo. (time) # of rounds
1 77.3686 171
2 78.2716 190
3 103.5188 103
4 86.5866 123
5 82.0702 100
6 903864 298
7 78.2225 101
8 77.0049 331
9 68.9628 163
10 67.8754 146

Avg. 81.0268 172.6

Table 2. The result of genetic algorithm on 2D test suite

6. Conclusion

In this paper, we introduce new type of delivery problem
and propose two algorithms solve the problem. One is

)(2nO time exact algorithm for 1-dimensional delivery

problem and the other is genetic algorithm for 2-
Dimensioal delivery problem. By comparing the results of
these two algorithms, we show the effectiveness of the
genetic algorithm.

Acknowledgments

This work was supported by Dong-eui University Grant
(2006AA186)

References
[1] http://en.wikipedia.org/wiki/Motion_planning
[2] S. M. Lavalle, Planning Algorithms. Cambridge University

Press, 2006
[3] D.K. Liu, D. Wang, G. Dissanayake, “A force field method

based multi-robot collaboration,” Proc. IEEE Int. Conf. on
Robotics, Automation and Mechatronics, Bangkok,
Thailand, April 2006, 662–667.

[4] Y. Guo, L.E. Parker, A distributed and optimal motion
planning approach for multiple mobile robots, in: Proc.
IEEE Int. Conf. on Robotics Automation, 2002, pp. 2612-
2619.

[5] K. Azarm and G. Schmidt, “Conflict-Free Motion of
Multiple Mobile Robots Based on Decentralized Motion
Planning and Negotiation,” IEEE Int. Conf. on Robotics and
Automation, 1997, pp 3526-3533

[6] http://en.wikipedia.org/wiki/Circles_of_Apollonius
[7] Melanie Mitchell, An Introduction to Genetic Algorithms,

MIT Press, 1996
[8] R. Neapolitan and K. Naimipour, Foundations of

Algorithms Using C++ Pseudocode, 3rd Ed., Addison
Wesley, 2003

 KwangEui Lee received his B.S., M.S.
and the Ph.D. degrees from Sogang
University, Seoul, Korea in 1990, 1992,
and 1997, respectively. From 1997 to 2001,
he joined ETRI as a senior research
member. Since 2001, He has been an
associate professor of Dongeui University.
His research interests include computation
theory, artificial life, context awareness

and their applications

JiHong Kim received the B.S. and M.S.
degrees in electronics engineering from
Kyungpook National University, Korea, in
1986 and 1988, respectively, and the Ph.D.
degree in electronic and electrical
engineering from POSTECH, Korea, in
1996. He worked at ETRI from 1988-1997
and at Pusan University of Foreign Studies
form 1997-2002. In 2002, he joined the

Dongeui University, where he is an associate professor. His
current research interests are in the area of digital image
processing, computer graphics, and computer vision.

