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Abstract 
Hardware-Software Partitioning and decompilation is a key issue 
in the Codesign of embedded systems. Partitioning in binary level 
helps in independent usage of software languages for the 
compilers. In this paper, the critical kernel of the software binary 
is relocated to the hardware and this is identified using instruction 
level profiling. The partitioned software binary is represented 
with initial and final state by a set of register value pairs. In the 
software binary the initial state to final state transformation is 
derived by equating the final state in terms of algebraic place 
holders, and then synthesized into hardware. A generalized 
decompiler is also designed to generate equivalent HDL for 
software binary block. The proposed method is applied to 
standard benchmarks and show significant speedup with lesser 
hardware resources. A source level partitioning is carried out for 
the scheduled elliptic wave filter and buffer size is estimated in 
binary and source level approach. 
Key words: 
 Dataflow, Hardware/Software Codesign, Embedded systems, 
Partitioning, Decompilation 

1. Introduction 

 Traditional design technologies and flows 
required that hardware and software be specified and 
designed separately for an embedded system. Once the 
behavior of a system is fixed, the specification needs to be 
coded in different languages: For example HDLs 
(Hardware Description Languages) for the hardware and 
typically C/C++ for the software. The software or hardware 
partition can be done by profiling the specification or 
legacy software code. However, the partitioning is often 
pre-determined. Defining a system partition apriori could 

i.Lead to sub-optimal design 
ii.Create lack of a unified hardware-software 

representation 
iii.Lead to complexities in the verification of the 

entire system performance 
iv.Result in incompatibilities across the 

hardware/software boundary 
v.Time-consuming due to rewriting an entire 

code in HDL 

To overcome the above limitations, 
Hardware/Software codesign has emerged as a successful 
approach.                           

Hardware/Software codesign [12][13] attempts to 
integrate the hardware and software paths by envisioning a 
common platform, and increases the possibility of 
interaction between the hardware and software 
development. The hardware-software codesign gives an 
optimized design in terms of performance. The 
investigation in this work is directed towards optimal use of 
binary level partitioning and source level partitioning to 
achieve maximal performance. A technique that leverages a 
systematic transformation of the basic blocks of software 
binaries into dataflow descriptions for implementation of 
the partitioned software in hardware, by equating the final 
state attained due to execution of each basic block in the 
partition in terms of algebraic placeholders for the initial 
state in the system, is described. Control nodes are used for 
representing branching and loops that lead to different basic 
blocks based on conditional expressions. Initially the part 
of the software binary to be transformed into hardware is 
identified using instruction level profiling. The tool flow 
adopted is as shown in figure1. 

 

 

 

 

 

 

 

 

 

 

Figure 1 HW/SW Tool Flow 

SW SOURCE 

COMPILATION 

H/W S/W 
PARTITIONING

CDFG 

BINARIES 

HW SOURCE 

ASSEMBLER & 
LINKER

NETLISTS 

BINARIES 

ASSEMBLY 
AND  

OBJECT 
FILES 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009 
 

 

265

2. Previous work 

An optimization method that selectively breaks up some of 
the specification operations, mitigating the RAW 
dependences among them, in order to speed up the 
execution of data-intensive behavioral specifications [15]. 
Register allocation is an optimization technique which is 
implemented using Linear-Scan (left-edge) algorithm and is 
performed after scheduling to reduce the number of 
registers [16] used in the proposed decompiler. Reducing 
registers in circuit designs generally leads to smaller design 
size [17] and provide creation of register transfer list for 
software binaries that is partitioned to hardware. However, 
they are unable to schedule operations in different blocks in 
the same clock cycle.  
Merging the consecutive sets of blocks into one large block, 
allows the compiler to possibly schedule multiple 
instructions in parallel [18]. In the proposed work merging 
is carried out for forward branching and set of basic blocks. 
These transformations and optimizations has the advantage, 
that they reduce the design size and also increase 
parallelism in the design. 
Whenever the constant values for multiplication operation 
were powers of two (AddersSR = 0), both sets of hardware 
(for multiplier and multiplicand) had identical performance. 
This is because, strength promotion converted the strength-
reduced code back into multiplication operations. This is 
again strength-reduced by the synthesis tool and there 
would be no benefit from using multipliers [19].  
An elliptic wave filter is implemented for different 
scheduling algorithms like ASAP, ALAP, FDS, LS, FDLS 
and suggested MOGS [20]. The MOGS algorithm has less 
cost function when compared to other scheduling 
algorithms. The proposed scheduling and allocation 
algorithm proves to have one control step less which in turn 
reduces the execution time and cost function. Since the 
other algorithms are optimized for scheduling only (they 
minimize the number of functional units only) but proposed 
work includes more functional units but total number of 
functional units does not influence the cost function. 
The elliptic filter is scheduled for minimum of 17 control 
step by [21], deadline ranges from 17-34 in [22], 18 control 
step for ALAP, ASAP, FDS, LS and MOGS except FDLS 
which takes 19 control step. An effort is not made to reduce 
the critical path length which is suggested in scheduling 
and allocation algorithm to shorten the control step to 16 
without modifying the functionality. Buffer size for 
hardware/software partitioning is also calculated to obtain 
communication cost. 
 
3. Hardware/Software Codesign 

The Codesign starts with a behavioral description 
specifying the functionality of the system using a high-level 
language (C language). The high level language is 

transformed into binary level description using Small 
Device C Compiler (SDCC [8]). The target architecture 
chosen in this work is PIC 18F452. The executable code or 
binary compiled for the processor is profiled by passing test 
vectors using GPSIM [6]. The most frequently executed 
code from the profiled list is partitioned for execution by 
hardware units. This provides a basis for extremely 
accurate hardware/software partitioning at a very fine grain 
level. An optimized decompiler is designed using 
MATLAB to transform the partitioned binary into 
Hardware Description Language (HDL) as register 
transfers for each instruction [17]. The speedup, hardware 
utilization and runtime of the instructions partitioned are 
obtained from the benchmarks. 

The Scheduling and Allocation Algorithm is 
proposed with an objective to reduce the critical path length. 
The obtained results show better optimization for resource 
constrained and time constrained system as compared to the 
results tabulated in [20]. The scheduled graph is partitioned 
into hardware and software modules and buffer size is 
calculated. 

4. Binary level partitioning 
The behavioral modeling is transformed into software 
binaries and need to be partitioned for hardware and 
software. The partitioned software binary[1] for hardware 
should be decompiled to hardware description language. So 
a partitioner and decompiler are needed to be designed in 
binary level approach. The decompiler design should be an 
optimized one, to obtain good result in binary level 
approach. The buffer size needs to be estimated in binary 
and source level approach to obtain the communication cost 
between hardware and software. 
 
4.1 Decompilation 
 

The hardware partition along with the software 
glue code has to precisely realize the effect of the software 
instructions that are going to be replaced by them, in a 
partitioned system. A decompilation technique for software 
binaries partitioned for hardware is discussed in [2][14][23]. 
This hardware partition must maximize performance/ 
minimize delay and buffer requirements as the cost 
function. Translation of binaries to FPGA is discussed in 
[7][24]. In this work, for each instruction processed in the 
partitioning algorithm, a jump is checked and lists of all 
such jump instructions are created. The addition in terms of 
time complexity is O(j*p) where j represents the number of 
jumps encountered and p the number of partitions gathered. 
Similarly, space complexity also is of order O(j). 

  
 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009 
 

 

266

4.1.1. Dataflow Extraction 

The partitioned instruction is transformed in control data 
flow graph which is then converted into HDL source. We 
can separate the initial state and the final state needed for 
this realization by decoding the instruction sequence. The 
algebraic variables are assigned to all the registers in 
instruction sequence. For a non-control-flow instruction, 
we would have one or more source operands, one or more 
destination operands and an operation that maps source 
operands to destination operands. The destination operands 
have been changed by the operation in terms of the source 
operands resulting in algebraic expression.  The original 
value of the destination operands in the initial-state set 
varies with the final-state set values according to the 
algebraic expression. Then, the next instruction’s initial-
state set is the final-state set of the previous instruction. 

Initial-state set can suffice to contain only the register-value 
pairs whose values are used as source operands in the 
instruction. Final-state set can have only those register 
value pairs whose values are modified from the original-
state set. The registers that are neither used as source 
operand or destination operand in register value pairs from 
the initial-state and final-state sets are omitted. Given an 
already populated initial-state and final-state set, the 
processing of an instruction requires scanning the final-
state set for the value of the source operand. If the lookup is 
successful, the value is propagated to the expression for the 
destination operand. If the lookup fails, the same is scanned 
in the initial-state set and propagated. If this lookup also 
fails, it means that this register is added either a source or 
destination. So we have to add the register to the initial-
state set and assign a new algebraic value. This value is 
propagated to the destination register’s value expression. At 
the start of processing of a partition block (no instruction 
would have yet been processed) .The initial-state and final-
state sets would be empty, and get populated as and when 
more instructions are processed. In effect, the initial-state 
and final-state sets are incrementally updated to reflect the 
effect of execution upto the instruction in question from the 
beginning of the block. This kind of mapping from initial 
state to final state is straightforward for a basic block. 
Suppose if we have the code snippet, shown in figure 2, 
given in pseudocode form, the control flow can be 
visualized as in figure 3. The application of the dataflow 
extraction algorithm results in the sets of basic blocks and 
control nodes as shown in figure 4. However, when loops 
are involved, this mapping method quickly degenerates 
lead to complex and computationally expensive expressions. 
 
 
 
 
 
 

 

 

Figure 2 Example code snippet 
 

 

Figure 3 Control flow and block Visualization in Memory 

 

 Figure 4  The CDFG generated for the snippet 
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4.1.2 Optimization of CDFG  

Optimizations steps need to be applied for the CDFG [10] 
once it is ready, and these are listed as follows:  

1. For a basic block, if the registers in the initial-state set 
are also listed in the final-state set and the value is the 
same in both (can happen if registers are shadowed and 
used as scratchpads temporarily), the entry can be removed 
from the final-state list. 

2. After processing by step 1, if the values in the initial-
state set are not used in the final-state set, these can be 
removed from the initial-state set as well. 

3. For the section of the graph that has only forward jumps 
and no jumps from the remaining part of the graph into the 
middle of the section in question, the initial-state sets and 
final-state sets of all the basic blocks in that section can be 
clubbed together, and the intermediate control nodes can be 
removed.  

4.1.3 Merge operation 

 The destination operand element in the clubbed final-state 
set can have multiple values, each corresponding to a basic 
block, that are tagged with a conditional expression 
corresponding to the control nodes that lead to the 
execution of the basic block. The conditional expressions 
for these values of an operand are mutually exclusive, 
meaning that only one of the values is selected at any 
instant of execution in the CDFG, depending on the 
evaluation of the expressions. As an example of 
demonstrating, figure 5 shows the result of merging a basic 

 

block (B1), a control node (C1) following the basic block, 
and the two basic blocks (B2,B3) that represent the two 
paths that a control node can lead to. This is the basic 
structure for a merge operation. All constructs having 
forward jumps only would be contained by recursively 
applying this model structure. The detailed steps for 
executing the Merge operation of the Basic Blocks are 
given in Appendix 1. 

4.2 Complexity Analysis for Dataflow Extraction 

4.2.1 Time complexity 

The time complexity of the algorithm can be computed 
assuming each instruction has a single source operand and 
a single destination operand. If the number of instructions 
in a partition is ‘n’, and the number of instructions 
determining control-flow (equivalent to number of control 
nodes that would be created) is ‘c’, the average length of a 
block is n/c. The number of blocks that could be created 
(accounting for possible duplication of blocks) is 2c. If 
each operand in each instruction is assumed distinct as a 
worst case, the number of comparisons to create initial and 
final state sets for a block of length n/c would be O((n/c)2). 
The total number of comparisons for all 2c blocks would 
be O(n2/c). Comparisons to determine the uniqueness of 
control nodes is of O(c2).  

4.2.2 Space Complexity 

Similarly the determination of the uniqueness of basic 
block nodes is O((2c)2) = O(c2). Hence, in summary, the 
time complexity of the algorithm is O(n2/c) + O(c2) + O(c2) 
= O(n2/c) + O(c2). Similarly, the space complexity can be 
calculated. For a basic block, the initial and final state sets 
can have elements of O(2n/c), and for 2c basic blocks, the 
space complexity is O(2n/c*c) = O(n). Similarly space 
complexity for control nodes is O(c). Similarly for the 
stack, the complexity is determined by the number of basic 
blocks 2c, hence O(c). Hence the total space complexity is 
O(n) + O(c). 

 
5. Source level partitioning 

The behavioral description should be transformed into 
intermediate format which has to be partitioned into 
hardware and software. The control steps and cost function 
need to be reduced to increase the system performance. To 
obtain the communication cost, the buffer size needs to be 
calculated for the software and partitioned hardware of the 
intermediate format. An effort is made to prove binary level 
partitioning as same as source level partitioning with 
respect to buffer size. 
 
 
 

Basic Block1 
Initial = 
{(reg1,x),(reg2,y), 
Final = 
((reg3,x+y),(reg9,z)) 

Basic Block 2 
Initial = {(reg8,e)} 
Final = 
{(reg4,e),(reg9,2e)), 
 (reg2,e} 

Basic Block 3 
Initial ={(reg3,a), 
(reg1,b), (reg6,c)} 
Final = {(reg4,a),      
(reg5,a+b+c)} 
  

Basic Block 1 
Initial ={(reg1,x), (reg2,y), (reg6,c), 
(reg7,d), (reg8,e), (reg5,f)} 
Final = {(reg3,x+y),(reg4,{e|d ≠0, x+y| 
if d =0}),  
(reg5 {2x+y+c | if d=0, f | if d≠0}),  
(reg9, {z| if d=0, 2e| if d ≠0)) 
(reg2, {e| if d ≠0, y | if d=0})} 

reg7 ≠

True False 

Figure 5 Merge operation for Basic Blocks 
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5.1 Scheduling and Allocation Algorithm 
 
The data flow graph obtained from the input description is 
scheduled using As Soon As Possible(ASAP) scheduling 
and As Late As Possible(ALAP) scheduling. In ASAP 
scheduling the earliest time at which an operation can be 
scheduled is computed and ALAP can also be computed by 
adapting the longest path algorithm to work from the 
outputs backwards. Combining the information obtained in 
both ways of scheduling[4][9][11] algorithm gives rise to 
more powerful heuristics called mobility based scheduling 
according to the available functional units as shown in 
figure 6. ASAP scheduling time of node vi is denoted by 
σS(vi) and the ALAP time by σL(vi), the interval [σS(vi), 
σL(vi)] contains all possible time instants at which vi can be 
scheduled. This interval is called the time frame 

 
Figure 6 Mobility based scheduling algorithm 
or the scheduling range of operation. The length of the 
interval, i.e. σL(vi) - σS(vi), is called the operation’s 
mobility. The scheduling algorithm proposed takes care of 
resource-constrained synthesis. With the given allocation of 
hardware, find a scheduling and assignment such that the 
total computation is completed in minimal time that is 
called resource constrained synthesis. The proposed 
scheduling sets a cut in the critical path to reduce the 
latency of the data flow graph.  

The root nodes are calculated from the graphical 
description and the critical path is determined. The 
algorithm merges the nodes that has data dependency, 
which is of same type and has minimum two external 
inputs that is decomposed into parallel form as shown in 
Figure 7, the condition that is considered is the last node 
should have single output edge, if predecessors have one 
output edge than the both the nodes are merged and formed 
into single node or if the node has more than one output 
edge the node should not be disturbed and a cut in the path 
is set and the current node is moved to previous cycle 
where it meets the hardware constraint problem. If the 
problem satisfies the condition, a node is inserted in the 
previous cycle else it takes up the critical path. If the 
critical path is cut, the latency of the system is reduced 
which leads to the reduction in clock cycle of the entire 
system without any change in the hardware constraint. A 
cut in the critical path i.e. between node 3 and node 4 is 
made, the most serial is converted into most parallel form 

which leads to the reduction in single control step without 
affecting the hardware constraint 3 
 
 
 

  
 
 

 
 
 
 
Figure 7   (a) Most serial form   (b)  Most parallel  
Form 
adder and 2 multiplier. Hardware is allocated according to 
data dependency of the nodes. Schedule and allocation 
algorithm is detailed in Figure 8. In the elliptic wave filter 
benchmark (EWF), the clock period was constrained such 
that add operation takes one cycle and multiply operation 
takes two clock cycle.   
The aim of allocation/binding is typically to minimize 
factors such as the number of resources used and the 
amount of wiring and steering logic (e.g. multiplexers) 
required to connect resources. A simplest case of 
minimizing is minimizing only the number of resources 
used (i.e. ignoring wiring and steering logic). In this case 
the standard technique involves building a compatibility 
graph from the input expression. The compatibility graph 
has nodes for each operation in the expression and an 
undirected edge (n1, n2) iff  n1 and n2 can be computed on 
the same resource (i.e. if they do not occur in the same 
time-step and there is a single resource type capable of 
performing the operations corresponding to both n1 and n2. 
Each clique in the compatibility graph corresponds to 
operations which can share a single resource. The 
minimum number of functional units required could be 
calculated using maximal clique algorithm for the 
scheduled graph. 
 
5.2 Buffer Size Estimation 
 
 The scheduled Control Data Flow Graph 
(CDFG) is partitioned into hardware and software module, 
buffer size and system delay is estimated by analyzing the 
data flow patterns of the CDFG. According to the data 
dependency, the nodes are assigned to the available 
hardware resources. The scheduled CDFG is partitioned 
using four different methods and its buffer size and system 
delay for all scheduling algorithms are estimated using 
edges. The life time of each edge is calculated by labeling 
the edges which is used to detect the variables with non-
overlapping lifetimes. The variables with non-overlapping 
lifetimes can share the same register in a buffer, which 
leads to buffer size reduction. 
 
 Four models have been compared in the table 
for an elliptic filter benchmark which is scheduled using 

determine by computing σS and σl 
k       0; 
While (“there are unscheduled operations”) 
{ 
v  “one of the nodes with lowest mobility”; 
“Schedule at some time that optimizes the current resource utilization”;
“Determine by updating the scheduling ranges of the unscheduled 
nodes”; 
k           k+1; 

} 
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Int i, j, k, l, m, lat; 
N1     “set the hardware constraints”; 
N2     “number of hardware resources in each level”; 
N3     “number of nodes used in critical path(CP)”; 
N4        “number of nodes in a cluster removing the root node”; 
O      “number of output edges of the node”; 
; 
S   i U j; 
Cs  cs+3; 
Lat  ; 
While ( 
“calculate all the critical paths which has latency > Lat and N3” 
while ( N3  0){ 
“find (vi, vj) ε, C1  node with single output edge vi with two or more same 
type predecessors(vi-1..) having external inputs in CP ” 
Merge vi and (vi-1,vi-2..) and form a cluster 
*** If  (O(i-1) < 2)  
Remove and form root node with external inputs 
i=i-1; 
N4 = N4-1; 
if (N4  0) 
go to *** 
else 
end; 
Else 
If N2(L) < N1 
Update the list 
Else 
N2(L)  0; 
End;      
Cut O(j) 
“check for the availability of hardware resources from L-1 to 0” 
“insert a root node rm with external inputs of vi,vi-1 using ASAP scheduling 
algorithm ” 
“node vi takes the predecessors rm and pred(vi-1)”  
} 
} 

different scheduling algorithms. The first method proves to 
have less buffer size than all the other methods.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 Scheduling and Allocation Algorithm 
 
 
 Method I: Identifies the functional unit which 
requires many clock cycles and partitions that section into 
hardware which proves to be better than all other cases. 
The other methods uses maximal clique partitioning which 
is used to identify critical paths.  
 Method II: The functional units in that 
critical path are implemented in hardware and other 
functional units in software.  
 
 Method III: Functional units in the critical 
paths are implemented in software and other functional 
units are implemented in hardware.  
 
 Method IV: All the above three methods are 
based on data dependency. But results in the fourth method 
show when exactly data dependency is avoided to the 
maximum, when partitioning the functional units.  
 
 
 

6. EXPERIMENTAL RESULTS 

The proposed algorithms were applied to a handful of 
simple benchmarks and the results were obtained as 
tabulated in table 1.  
  

 
 Loop Basic 

block 
1 
(mul 
int)

Basic 
block 
2 
(mult 
long )

S/W 
runtime 
in 
cycles 
(100 
ns) 
approx 

Partition 
runtime 
in  
cycles 
(100ns) 
approx 

Pure 
H/W(in 
100 ns)

Speed up 
by 
partitioning

Dct √ - - 26667 23222 - 1.14 

Diffeq - √ - 645 357 4.5 1.8 

Ellip - √ - 952 538 0.375 1.76 

Fir - √ - 769 402 0.192 1.9 

Iir - √ - 714 366 0.35 1.95 

Lattice √ - √ 13333 8855 - 1.5 

Nc √ - - 16000 15161 - 1.05 

Volterra √ - - 16000 15588 - 1.02 

Wavelet √ - - 13333 12922 - 1.03 

Wdf7 - - √ 20000 13479 - 1.5 

 
TABLE 2 PERCENTAGE OF INSTRUCTIONS 
PARTITIONED AND CORRESPONDING SPEEDUP 
Benchmark Total  Of 

number 
instructions

Instructions 
partitioned 
For SW 

Instruction 
partitioned 
for HW 

%of   
Instructions 
partioned 

% runtime 
of the 
instructions 
partitioned

Speedup 
in %  by 
partitioning

Dct 3504 3481 23 0.7 12 114 

Diffeq 410 330 80 17 59.6 180 

Ellip 574 494 80 12.45 58.2 176 

Fir 404 324 80 17.75 63.9 190 

Iir 382 302 80 18.8 65.3 195 

Lattice 2613 2589 24 9.2 38.1 150 

Nc 3886 3862 24 0.6 5.3 105 

Volterra 2664 2640 24 0.9 2.6 102 

Wavelet 3617 3593 24 0.7 3.1 103 

Wdf7 3958 3692 266 5.5 37.4 150 

 

TABLE 1 RUNTIME COMPARISON 
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There were three sections of code that were frequented in 
most of the benchmarks. Two were procedure calls 
representing integer multiplication and long integer 
multiplication. The third was a conditional loop. These 
were selected manually for hardware synthesis out of the 
candidate partitions selected by applying the fuzzy 
partitioning algorithm with a cutoff ratio of 1.5 and 
percentage of partitioned instruction is tabulated in table 2 
and circuits were synthesized for the target device 
xc2v8000-5-ff1152. Many of the benchmarks showed 
significant speedup on partitioning while using very less 
resources compared to pure hardware implementation. 
Particularly notable are the rows for the ellip and iir 
benchmarks. They show a speedup of 1.76 and 1.95 
respectively, while showing high savings in hardware 
resources compared to pure hardware implementation 
(slices of 0%,0% in partitioned approach compared to 
55%,18% in pure hardware, and Multipliers of 25%,25% in 
partitioned approach compared to 116%,116% respectively 
in pure hardware which exceeds the multiplier resources 
available, as also seen in figure 10). 
 

A comparative bar chart of the speedup shown in figure 
9 shows to what extent each program’s size in terms of 
number of cycles consumed per run gets reduced. The 
results with certain benchmarks (dct, nc, volterra, wavelet) 
may not be impressive at first look, but from figure 11, it is 
seen that the temporal size, (temporal size is the percentage 
of runtime of the partition as defined in [5]), for the 
partition selected manually out of the candidate partitions, 
with small size as a desired criteria to make easy the 
processing of dataflow extraction, is very low compared to 
other benchmarks. Figure 12 shows the profiling results of 
the diffeq benchmark. First three columns show instruction 
word location, the binary opcode and opcode in  

 

 

 

 

 

 

 

 

average 645 clock cycles per run . Using the technique to 
extract dataflow description for this block, the following 

Figure 11 –Bar chart of Percentage of Instructions partitioned 
and corresponding speedup 

Figure 12 – Profiling results for Diffeq Figure 9 – Comparative Bar chart of Speedup gained 

Fig.10.Comparative Bar chart of Percentage of 
Hardware Utilization 
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set of input and assembly format respectively. Last column 
shows the number of times the instruction location was 
traversed. The part shown is the procedure for integer 
multiplication. The profiling result showed that this 
procedure call with 71 instruction cycles had each 
instruction in it consuming 82 cycles when the program 
was run repeatedly to accumulate data for a 10,000 cycle 
period which output parameters for the coprocessor– 
shown in figure 13 - was obtained. A savings of 53 cycles 
was seen with an 18-cycle procedure call using the 
coprocessor - A speedup of 3.94 times the original call, and 
an overall speedup of 1.8 for the whole program. Similarly, 
figure 14 shows profiling results for the dct benchmark. 
The instruction rlcf, which means rotate left with carry, 
takes as input the carry bit of status register, and generates 
again as output the carry bit. This means we need to hold 
the carry bit in the initial-state as well as the final-state. 
This emphasizes that the bits of status registers also need to 
be held in the final-state if they are going to be affected by 
the present instruction and in the initial-state if they are 
going to be used in the instruction execution. The 
corresponding CDFG is shown in figure 15. The status bits 
have been omitted from consideration in our algorithm for 
the sake of brevity, since they are also a part of a register. 
The CDFG derived after merge operation is shown in 
figure 16. The hardware realization of the CDFG 
represents the body of the loop, with registers to hold the 
result of computation for each iteration of the loop. The 
coprocessor communicates with the processor using a 
handshake protocol. The processor issues a go signal after 
placing all the required input parameters for computation, 
on the data lines. The coprocessor starts computation at the 
edge of the clock pulse after receiving the go signal. Each 
clock pulse signifies the start of a new iteration. After 
computation for all iterations are complete, the coprocessor 
issues the done signal, placing the output parameters on the 
data lines. Hence there is no need for clock 
synchronization. The coprocessor can run independently 
from the processor, and both can run tasks simultaneously. 
Communication buffers can be used instead of the data 
lines, in which case, the maximum of the number of input 
parameters and the number of output parameters is the 
buffer size needed for communication. The estimates of 
buffer size requirements for each partition block are shown 
in table 3. The buffer size requirement for source level 
partitioning is shown in table 5. The table 4 shows the 
number of adders/subtractors and registers required for 
different practical implementations with and without 
forward branching. The present work has performed 
merging with forward branching and hence, there is a good 
improvement in the utilization of resources. For ex: the 
implementation of DCT algorithm reported using 
merging[25] alone requires two adders/subtractors and 
thirty nine registers. However, in this work by the novel 
use of merging with forward branching the number of 

registers reduces to 22. Similar results obtained for other 
real time implementations are reported in table 4. 

 
 
 

 

Figure 14 – Profiling Results for Dct 

 
 

 

Figure 13 – Dataflow extraction for Diffeq 

Figure 15 – CDFG for Dct without Merging 
operation 
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7. CONCLUSION 

The experimental results of the dataflow extraction based 
approach to partitioning of software binaries shows 
significant speedup compared to pure software 
implementation, using significantly less hardware 
resources. The approach can be used for dynamic 
partitioning [3] of software binaries and extended to cover 
arbitrary control flow. The buffer size estimation can be 
applied for software binaries using different scheduling and 
partitioning algorithms. 
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                                       Table 4 Merging for binary level partitioning  

 Without Merging Merging Merging forward branching
 Adders/ 

subtractors 
Registers  Adders/ 

subtractors 
Registers Adders/ 

subtractors 
Registers 

DCT 14 125 2 39 2 22 
Diffeq 24 123 1 8 - - 
Ellip 24 123 1 8 - - 
Fir 24 123 1 8 - - 
Iir 24 123 1 8 - - 
Lattice 14 124 2 39 2 22 
NC 14 124 2 39 2 22 
Volterra 14 124 2 39 2 22 
Wavelet 14 124 2 39 2 22 
Wdf7 36 125 2 47 - - 
 

 Table 5 Buffer size estimation for source level partitioning  

Algorithm 
Number 
of 
partitions 

Method I Method II Method III Method IV 

Edge 
cut 

Buffer 
size 

delay 
Edge 
cut 

Buffer 
size 

delay 
Edge 
cut 

Buffer 
size 

delay latency
Edge 
cut 

Buffer 
size 

delay 

FDLS 2 16 4 234 9 3 490 9 3 312 23 33 10 410 

MOGS 2 16 4 234 9 3 490 9 3 312 23 33 10 410 

LS 2 16 4 234 9 3 490 9 3 312 23 33 10 410 

ALAP 2 16 4 234 8 5 490 8 5 312 23 33 10 410 

ASAP 2 16 4 234 9 3 490 9 3 312 23 33 10 410 

SAA 2 16 3 243 5 2 508 5 2 303 24 33 10 419 

 

  

 

 

 


