
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

264

Manuscript received February 5, 2009
Manuscript revised February 20, 2009

A State Transformation based Partitioning Technique using
Dataflow Extraction for Software Binaries

M. Sangeetha1, Dr. RajaPaul Perinbam2 , M.Kumaran3

1M. Sangeetha , Research Scholar, Department of Electronics and Communication Engineering, Anna University, Chennai-600025,
INDIA.

2Dr.Raja Paul Perinbam is Professor at Department of Electronics and Communication Engineering., Anna University, Chennai-
600025, INDIA.

3M.Kumaran , Assistant Professor, Department of Computer Science & Engineering, Jaya Engineering College, Chennai, INDIA.

Abstract
Hardware-Software Partitioning and decompilation is a key issue
in the Codesign of embedded systems. Partitioning in binary level
helps in independent usage of software languages for the
compilers. In this paper, the critical kernel of the software binary
is relocated to the hardware and this is identified using instruction
level profiling. The partitioned software binary is represented
with initial and final state by a set of register value pairs. In the
software binary the initial state to final state transformation is
derived by equating the final state in terms of algebraic place
holders, and then synthesized into hardware. A generalized
decompiler is also designed to generate equivalent HDL for
software binary block. The proposed method is applied to
standard benchmarks and show significant speedup with lesser
hardware resources. A source level partitioning is carried out for
the scheduled elliptic wave filter and buffer size is estimated in
binary and source level approach.
Key words:
 Dataflow, Hardware/Software Codesign, Embedded systems,
Partitioning, Decompilation

1. Introduction

 Traditional design technologies and flows
required that hardware and software be specified and
designed separately for an embedded system. Once the
behavior of a system is fixed, the specification needs to be
coded in different languages: For example HDLs
(Hardware Description Languages) for the hardware and
typically C/C++ for the software. The software or hardware
partition can be done by profiling the specification or
legacy software code. However, the partitioning is often
pre-determined. Defining a system partition apriori could

i.Lead to sub-optimal design
ii.Create lack of a unified hardware-software

representation
iii.Lead to complexities in the verification of the

entire system performance
iv.Result in incompatibilities across the

hardware/software boundary
v.Time-consuming due to rewriting an entire

code in HDL

To overcome the above limitations,
Hardware/Software codesign has emerged as a successful
approach.

Hardware/Software codesign [12][13] attempts to
integrate the hardware and software paths by envisioning a
common platform, and increases the possibility of
interaction between the hardware and software
development. The hardware-software codesign gives an
optimized design in terms of performance. The
investigation in this work is directed towards optimal use of
binary level partitioning and source level partitioning to
achieve maximal performance. A technique that leverages a
systematic transformation of the basic blocks of software
binaries into dataflow descriptions for implementation of
the partitioned software in hardware, by equating the final
state attained due to execution of each basic block in the
partition in terms of algebraic placeholders for the initial
state in the system, is described. Control nodes are used for
representing branching and loops that lead to different basic
blocks based on conditional expressions. Initially the part
of the software binary to be transformed into hardware is
identified using instruction level profiling. The tool flow
adopted is as shown in figure1.

Figure 1 HW/SW Tool Flow

SW SOURCE

COMPILATION

H/W S/W
PARTITIONING

CDFG

BINARIES

HW SOURCE

ASSEMBLER &
LINKER

NETLISTS

BINARIES

ASSEMBLY
AND

OBJECT
FILES

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

265

2. Previous work

An optimization method that selectively breaks up some of
the specification operations, mitigating the RAW
dependences among them, in order to speed up the
execution of data-intensive behavioral specifications [15].
Register allocation is an optimization technique which is
implemented using Linear-Scan (left-edge) algorithm and is
performed after scheduling to reduce the number of
registers [16] used in the proposed decompiler. Reducing
registers in circuit designs generally leads to smaller design
size [17] and provide creation of register transfer list for
software binaries that is partitioned to hardware. However,
they are unable to schedule operations in different blocks in
the same clock cycle.
Merging the consecutive sets of blocks into one large block,
allows the compiler to possibly schedule multiple
instructions in parallel [18]. In the proposed work merging
is carried out for forward branching and set of basic blocks.
These transformations and optimizations has the advantage,
that they reduce the design size and also increase
parallelism in the design.
Whenever the constant values for multiplication operation
were powers of two (AddersSR = 0), both sets of hardware
(for multiplier and multiplicand) had identical performance.
This is because, strength promotion converted the strength-
reduced code back into multiplication operations. This is
again strength-reduced by the synthesis tool and there
would be no benefit from using multipliers [19].
An elliptic wave filter is implemented for different
scheduling algorithms like ASAP, ALAP, FDS, LS, FDLS
and suggested MOGS [20]. The MOGS algorithm has less
cost function when compared to other scheduling
algorithms. The proposed scheduling and allocation
algorithm proves to have one control step less which in turn
reduces the execution time and cost function. Since the
other algorithms are optimized for scheduling only (they
minimize the number of functional units only) but proposed
work includes more functional units but total number of
functional units does not influence the cost function.
The elliptic filter is scheduled for minimum of 17 control
step by [21], deadline ranges from 17-34 in [22], 18 control
step for ALAP, ASAP, FDS, LS and MOGS except FDLS
which takes 19 control step. An effort is not made to reduce
the critical path length which is suggested in scheduling
and allocation algorithm to shorten the control step to 16
without modifying the functionality. Buffer size for
hardware/software partitioning is also calculated to obtain
communication cost.

3. Hardware/Software Codesign

The Codesign starts with a behavioral description
specifying the functionality of the system using a high-level
language (C language). The high level language is

transformed into binary level description using Small
Device C Compiler (SDCC [8]). The target architecture
chosen in this work is PIC 18F452. The executable code or
binary compiled for the processor is profiled by passing test
vectors using GPSIM [6]. The most frequently executed
code from the profiled list is partitioned for execution by
hardware units. This provides a basis for extremely
accurate hardware/software partitioning at a very fine grain
level. An optimized decompiler is designed using
MATLAB to transform the partitioned binary into
Hardware Description Language (HDL) as register
transfers for each instruction [17]. The speedup, hardware
utilization and runtime of the instructions partitioned are
obtained from the benchmarks.

The Scheduling and Allocation Algorithm is
proposed with an objective to reduce the critical path length.
The obtained results show better optimization for resource
constrained and time constrained system as compared to the
results tabulated in [20]. The scheduled graph is partitioned
into hardware and software modules and buffer size is
calculated.

4. Binary level partitioning
The behavioral modeling is transformed into software
binaries and need to be partitioned for hardware and
software. The partitioned software binary[1] for hardware
should be decompiled to hardware description language. So
a partitioner and decompiler are needed to be designed in
binary level approach. The decompiler design should be an
optimized one, to obtain good result in binary level
approach. The buffer size needs to be estimated in binary
and source level approach to obtain the communication cost
between hardware and software.

4.1 Decompilation

The hardware partition along with the software
glue code has to precisely realize the effect of the software
instructions that are going to be replaced by them, in a
partitioned system. A decompilation technique for software
binaries partitioned for hardware is discussed in [2][14][23].
This hardware partition must maximize performance/
minimize delay and buffer requirements as the cost
function. Translation of binaries to FPGA is discussed in
[7][24]. In this work, for each instruction processed in the
partitioning algorithm, a jump is checked and lists of all
such jump instructions are created. The addition in terms of
time complexity is O(j*p) where j represents the number of
jumps encountered and p the number of partitions gathered.
Similarly, space complexity also is of order O(j).

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

266

4.1.1. Dataflow Extraction

The partitioned instruction is transformed in control data
flow graph which is then converted into HDL source. We
can separate the initial state and the final state needed for
this realization by decoding the instruction sequence. The
algebraic variables are assigned to all the registers in
instruction sequence. For a non-control-flow instruction,
we would have one or more source operands, one or more
destination operands and an operation that maps source
operands to destination operands. The destination operands
have been changed by the operation in terms of the source
operands resulting in algebraic expression. The original
value of the destination operands in the initial-state set
varies with the final-state set values according to the
algebraic expression. Then, the next instruction’s initial-
state set is the final-state set of the previous instruction.

Initial-state set can suffice to contain only the register-value
pairs whose values are used as source operands in the
instruction. Final-state set can have only those register
value pairs whose values are modified from the original-
state set. The registers that are neither used as source
operand or destination operand in register value pairs from
the initial-state and final-state sets are omitted. Given an
already populated initial-state and final-state set, the
processing of an instruction requires scanning the final-
state set for the value of the source operand. If the lookup is
successful, the value is propagated to the expression for the
destination operand. If the lookup fails, the same is scanned
in the initial-state set and propagated. If this lookup also
fails, it means that this register is added either a source or
destination. So we have to add the register to the initial-
state set and assign a new algebraic value. This value is
propagated to the destination register’s value expression. At
the start of processing of a partition block (no instruction
would have yet been processed) .The initial-state and final-
state sets would be empty, and get populated as and when
more instructions are processed. In effect, the initial-state
and final-state sets are incrementally updated to reflect the
effect of execution upto the instruction in question from the
beginning of the block. This kind of mapping from initial
state to final state is straightforward for a basic block.
Suppose if we have the code snippet, shown in figure 2,
given in pseudocode form, the control flow can be
visualized as in figure 3. The application of the dataflow
extraction algorithm results in the sets of basic blocks and
control nodes as shown in figure 4. However, when loops
are involved, this mapping method quickly degenerates
lead to complex and computationally expensive expressions.

Figure 2 Example code snippet

Figure 3 Control flow and block Visualization in Memory

 Figure 4 The CDFG generated for the snippet

Basic

Basic Basic

Basic

a<>

node

True

Fal

Basic

Basic block
1 for derived
CDFG

Basic block
2 for
derived
CDFG

Basic block
3 for
derived
CDFG

Basic Block

Basic Block

Basic Block

Basic Block

a<>0

node

Sequence
of
processing
instruction

True

Fals

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

267

4.1.2 Optimization of CDFG

Optimizations steps need to be applied for the CDFG [10]
once it is ready, and these are listed as follows:

1. For a basic block, if the registers in the initial-state set
are also listed in the final-state set and the value is the
same in both (can happen if registers are shadowed and
used as scratchpads temporarily), the entry can be removed
from the final-state list.

2. After processing by step 1, if the values in the initial-
state set are not used in the final-state set, these can be
removed from the initial-state set as well.

3. For the section of the graph that has only forward jumps
and no jumps from the remaining part of the graph into the
middle of the section in question, the initial-state sets and
final-state sets of all the basic blocks in that section can be
clubbed together, and the intermediate control nodes can be
removed.

4.1.3 Merge operation

 The destination operand element in the clubbed final-state
set can have multiple values, each corresponding to a basic
block, that are tagged with a conditional expression
corresponding to the control nodes that lead to the
execution of the basic block. The conditional expressions
for these values of an operand are mutually exclusive,
meaning that only one of the values is selected at any
instant of execution in the CDFG, depending on the
evaluation of the expressions. As an example of
demonstrating, figure 5 shows the result of merging a basic

block (B1), a control node (C1) following the basic block,
and the two basic blocks (B2,B3) that represent the two
paths that a control node can lead to. This is the basic
structure for a merge operation. All constructs having
forward jumps only would be contained by recursively
applying this model structure. The detailed steps for
executing the Merge operation of the Basic Blocks are
given in Appendix 1.

4.2 Complexity Analysis for Dataflow Extraction

4.2.1 Time complexity

The time complexity of the algorithm can be computed
assuming each instruction has a single source operand and
a single destination operand. If the number of instructions
in a partition is ‘n’, and the number of instructions
determining control-flow (equivalent to number of control
nodes that would be created) is ‘c’, the average length of a
block is n/c. The number of blocks that could be created
(accounting for possible duplication of blocks) is 2c. If
each operand in each instruction is assumed distinct as a
worst case, the number of comparisons to create initial and
final state sets for a block of length n/c would be O((n/c)2).
The total number of comparisons for all 2c blocks would
be O(n2/c). Comparisons to determine the uniqueness of
control nodes is of O(c2).

4.2.2 Space Complexity

Similarly the determination of the uniqueness of basic
block nodes is O((2c)2) = O(c2). Hence, in summary, the
time complexity of the algorithm is O(n2/c) + O(c2) + O(c2)
= O(n2/c) + O(c2). Similarly, the space complexity can be
calculated. For a basic block, the initial and final state sets
can have elements of O(2n/c), and for 2c basic blocks, the
space complexity is O(2n/c*c) = O(n). Similarly space
complexity for control nodes is O(c). Similarly for the
stack, the complexity is determined by the number of basic
blocks 2c, hence O(c). Hence the total space complexity is
O(n) + O(c).

5. Source level partitioning

The behavioral description should be transformed into
intermediate format which has to be partitioned into
hardware and software. The control steps and cost function
need to be reduced to increase the system performance. To
obtain the communication cost, the buffer size needs to be
calculated for the software and partitioned hardware of the
intermediate format. An effort is made to prove binary level
partitioning as same as source level partitioning with
respect to buffer size.

Basic Block1
Initial =
{(reg1,x),(reg2,y),
Final =
((reg3,x+y),(reg9,z))

Basic Block 2
Initial = {(reg8,e)}
Final =
{(reg4,e),(reg9,2e)),
 (reg2,e}

Basic Block 3
Initial ={(reg3,a),
(reg1,b), (reg6,c)}
Final = {(reg4,a),
(reg5,a+b+c)}

Basic Block 1
Initial ={(reg1,x), (reg2,y), (reg6,c),
(reg7,d), (reg8,e), (reg5,f)}
Final = {(reg3,x+y),(reg4,{e|d ≠0, x+y|
if d =0}),
(reg5 {2x+y+c | if d=0, f | if d≠0}),
(reg9, {z| if d=0, 2e| if d ≠0))
(reg2, {e| if d ≠0, y | if d=0})}

reg7 ≠

True False

Figure 5 Merge operation for Basic Blocks

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

268

a b

c

d

a b c d

c

 (a) (b)

5.1 Scheduling and Allocation Algorithm

The data flow graph obtained from the input description is
scheduled using As Soon As Possible(ASAP) scheduling
and As Late As Possible(ALAP) scheduling. In ASAP
scheduling the earliest time at which an operation can be
scheduled is computed and ALAP can also be computed by
adapting the longest path algorithm to work from the
outputs backwards. Combining the information obtained in
both ways of scheduling[4][9][11] algorithm gives rise to
more powerful heuristics called mobility based scheduling
according to the available functional units as shown in
figure 6. ASAP scheduling time of node vi is denoted by
σS(vi) and the ALAP time by σL(vi), the interval [σS(vi),
σL(vi)] contains all possible time instants at which vi can be
scheduled. This interval is called the time frame

Figure 6 Mobility based scheduling algorithm
or the scheduling range of operation. The length of the
interval, i.e. σL(vi) - σS(vi), is called the operation’s
mobility. The scheduling algorithm proposed takes care of
resource-constrained synthesis. With the given allocation of
hardware, find a scheduling and assignment such that the
total computation is completed in minimal time that is
called resource constrained synthesis. The proposed
scheduling sets a cut in the critical path to reduce the
latency of the data flow graph.

The root nodes are calculated from the graphical
description and the critical path is determined. The
algorithm merges the nodes that has data dependency,
which is of same type and has minimum two external
inputs that is decomposed into parallel form as shown in
Figure 7, the condition that is considered is the last node
should have single output edge, if predecessors have one
output edge than the both the nodes are merged and formed
into single node or if the node has more than one output
edge the node should not be disturbed and a cut in the path
is set and the current node is moved to previous cycle
where it meets the hardware constraint problem. If the
problem satisfies the condition, a node is inserted in the
previous cycle else it takes up the critical path. If the
critical path is cut, the latency of the system is reduced
which leads to the reduction in clock cycle of the entire
system without any change in the hardware constraint. A
cut in the critical path i.e. between node 3 and node 4 is
made, the most serial is converted into most parallel form

which leads to the reduction in single control step without
affecting the hardware constraint 3

Figure 7 (a) Most serial form (b) Most parallel
Form
adder and 2 multiplier. Hardware is allocated according to
data dependency of the nodes. Schedule and allocation
algorithm is detailed in Figure 8. In the elliptic wave filter
benchmark (EWF), the clock period was constrained such
that add operation takes one cycle and multiply operation
takes two clock cycle.
The aim of allocation/binding is typically to minimize
factors such as the number of resources used and the
amount of wiring and steering logic (e.g. multiplexers)
required to connect resources. A simplest case of
minimizing is minimizing only the number of resources
used (i.e. ignoring wiring and steering logic). In this case
the standard technique involves building a compatibility
graph from the input expression. The compatibility graph
has nodes for each operation in the expression and an
undirected edge (n1, n2) iff n1 and n2 can be computed on
the same resource (i.e. if they do not occur in the same
time-step and there is a single resource type capable of
performing the operations corresponding to both n1 and n2.
Each clique in the compatibility graph corresponds to
operations which can share a single resource. The
minimum number of functional units required could be
calculated using maximal clique algorithm for the
scheduled graph.

5.2 Buffer Size Estimation

 The scheduled Control Data Flow Graph
(CDFG) is partitioned into hardware and software module,
buffer size and system delay is estimated by analyzing the
data flow patterns of the CDFG. According to the data
dependency, the nodes are assigned to the available
hardware resources. The scheduled CDFG is partitioned
using four different methods and its buffer size and system
delay for all scheduling algorithms are estimated using
edges. The life time of each edge is calculated by labeling
the edges which is used to detect the variables with non-
overlapping lifetimes. The variables with non-overlapping
lifetimes can share the same register in a buffer, which
leads to buffer size reduction.

 Four models have been compared in the table
for an elliptic filter benchmark which is scheduled using

determine by computing σS and σl
k 0;
While (“there are unscheduled operations”)
{
v “one of the nodes with lowest mobility”;
“Schedule at some time that optimizes the current resource utilization”;
“Determine by updating the scheduling ranges of the unscheduled
nodes”;
k k+1;

}

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

269

Int i, j, k, l, m, lat;
N1 “set the hardware constraints”;
N2 “number of hardware resources in each level”;
N3 “number of nodes used in critical path(CP)”;
N4 “number of nodes in a cluster removing the root node”;
O “number of output edges of the node”;
;
S i U j;
Cs cs+3;
Lat ;
While (
“calculate all the critical paths which has latency > Lat and N3”
while (N3 0){
“find (vi, vj) ε, C1 node with single output edge vi with two or more same
type predecessors(vi-1..) having external inputs in CP ”
Merge vi and (vi-1,vi-2..) and form a cluster
*** If (O(i-1) < 2)
Remove and form root node with external inputs
i=i-1;
N4 = N4-1;
if (N4 0)
go to ***
else
end;
Else
If N2(L) < N1
Update the list
Else
N2(L) 0;
End;
Cut O(j)
“check for the availability of hardware resources from L-1 to 0”
“insert a root node rm with external inputs of vi,vi-1 using ASAP scheduling
algorithm ”
“node vi takes the predecessors rm and pred(vi-1)”
}
}

different scheduling algorithms. The first method proves to
have less buffer size than all the other methods.

Figure 8 Scheduling and Allocation Algorithm

 Method I: Identifies the functional unit which
requires many clock cycles and partitions that section into
hardware which proves to be better than all other cases.
The other methods uses maximal clique partitioning which
is used to identify critical paths.
 Method II: The functional units in that
critical path are implemented in hardware and other
functional units in software.

 Method III: Functional units in the critical
paths are implemented in software and other functional
units are implemented in hardware.

 Method IV: All the above three methods are
based on data dependency. But results in the fourth method
show when exactly data dependency is avoided to the
maximum, when partitioning the functional units.

6. EXPERIMENTAL RESULTS

The proposed algorithms were applied to a handful of
simple benchmarks and the results were obtained as
tabulated in table 1.

 Loop Basic

block
1
(mul
int)

Basic
block
2
(mult
long)

S/W
runtime
in
cycles
(100
ns)
approx

Partition
runtime
in
cycles
(100ns)
approx

Pure
H/W(in
100 ns)

Speed up
by
partitioning

Dct √ - - 26667 23222 - 1.14

Diffeq - √ - 645 357 4.5 1.8

Ellip - √ - 952 538 0.375 1.76

Fir - √ - 769 402 0.192 1.9

Iir - √ - 714 366 0.35 1.95

Lattice √ - √ 13333 8855 - 1.5

Nc √ - - 16000 15161 - 1.05

Volterra √ - - 16000 15588 - 1.02

Wavelet √ - - 13333 12922 - 1.03

Wdf7 - - √ 20000 13479 - 1.5

TABLE 2 PERCENTAGE OF INSTRUCTIONS
PARTITIONED AND CORRESPONDING SPEEDUP
Benchmark Total Of

number
instructions

Instructions
partitioned
For SW

Instruction
partitioned
for HW

%of
Instructions
partioned

% runtime
of the
instructions
partitioned

Speedup
in % by
partitioning

Dct 3504 3481 23 0.7 12 114

Diffeq 410 330 80 17 59.6 180

Ellip 574 494 80 12.45 58.2 176

Fir 404 324 80 17.75 63.9 190

Iir 382 302 80 18.8 65.3 195

Lattice 2613 2589 24 9.2 38.1 150

Nc 3886 3862 24 0.6 5.3 105

Volterra 2664 2640 24 0.9 2.6 102

Wavelet 3617 3593 24 0.7 3.1 103

Wdf7 3958 3692 266 5.5 37.4 150

TABLE 1 RUNTIME COMPARISON

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

270

There were three sections of code that were frequented in
most of the benchmarks. Two were procedure calls
representing integer multiplication and long integer
multiplication. The third was a conditional loop. These
were selected manually for hardware synthesis out of the
candidate partitions selected by applying the fuzzy
partitioning algorithm with a cutoff ratio of 1.5 and
percentage of partitioned instruction is tabulated in table 2
and circuits were synthesized for the target device
xc2v8000-5-ff1152. Many of the benchmarks showed
significant speedup on partitioning while using very less
resources compared to pure hardware implementation.
Particularly notable are the rows for the ellip and iir
benchmarks. They show a speedup of 1.76 and 1.95
respectively, while showing high savings in hardware
resources compared to pure hardware implementation
(slices of 0%,0% in partitioned approach compared to
55%,18% in pure hardware, and Multipliers of 25%,25% in
partitioned approach compared to 116%,116% respectively
in pure hardware which exceeds the multiplier resources
available, as also seen in figure 10).

A comparative bar chart of the speedup shown in figure
9 shows to what extent each program’s size in terms of
number of cycles consumed per run gets reduced. The
results with certain benchmarks (dct, nc, volterra, wavelet)
may not be impressive at first look, but from figure 11, it is
seen that the temporal size, (temporal size is the percentage
of runtime of the partition as defined in [5]), for the
partition selected manually out of the candidate partitions,
with small size as a desired criteria to make easy the
processing of dataflow extraction, is very low compared to
other benchmarks. Figure 12 shows the profiling results of
the diffeq benchmark. First three columns show instruction
word location, the binary opcode and opcode in

average 645 clock cycles per run . Using the technique to
extract dataflow description for this block, the following

Figure 11 –Bar chart of Percentage of Instructions partitioned
and corresponding speedup

Figure 12 – Profiling results for Diffeq Figure 9 – Comparative Bar chart of Speedup gained

Fig.10.Comparative Bar chart of Percentage of
Hardware Utilization

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

271

set of input and assembly format respectively. Last column
shows the number of times the instruction location was
traversed. The part shown is the procedure for integer
multiplication. The profiling result showed that this
procedure call with 71 instruction cycles had each
instruction in it consuming 82 cycles when the program
was run repeatedly to accumulate data for a 10,000 cycle
period which output parameters for the coprocessor–
shown in figure 13 - was obtained. A savings of 53 cycles
was seen with an 18-cycle procedure call using the
coprocessor - A speedup of 3.94 times the original call, and
an overall speedup of 1.8 for the whole program. Similarly,
figure 14 shows profiling results for the dct benchmark.
The instruction rlcf, which means rotate left with carry,
takes as input the carry bit of status register, and generates
again as output the carry bit. This means we need to hold
the carry bit in the initial-state as well as the final-state.
This emphasizes that the bits of status registers also need to
be held in the final-state if they are going to be affected by
the present instruction and in the initial-state if they are
going to be used in the instruction execution. The
corresponding CDFG is shown in figure 15. The status bits
have been omitted from consideration in our algorithm for
the sake of brevity, since they are also a part of a register.
The CDFG derived after merge operation is shown in
figure 16. The hardware realization of the CDFG
represents the body of the loop, with registers to hold the
result of computation for each iteration of the loop. The
coprocessor communicates with the processor using a
handshake protocol. The processor issues a go signal after
placing all the required input parameters for computation,
on the data lines. The coprocessor starts computation at the
edge of the clock pulse after receiving the go signal. Each
clock pulse signifies the start of a new iteration. After
computation for all iterations are complete, the coprocessor
issues the done signal, placing the output parameters on the
data lines. Hence there is no need for clock
synchronization. The coprocessor can run independently
from the processor, and both can run tasks simultaneously.
Communication buffers can be used instead of the data
lines, in which case, the maximum of the number of input
parameters and the number of output parameters is the
buffer size needed for communication. The estimates of
buffer size requirements for each partition block are shown
in table 3. The buffer size requirement for source level
partitioning is shown in table 5. The table 4 shows the
number of adders/subtractors and registers required for
different practical implementations with and without
forward branching. The present work has performed
merging with forward branching and hence, there is a good
improvement in the utilization of resources. For ex: the
implementation of DCT algorithm reported using
merging[25] alone requires two adders/subtractors and
thirty nine registers. However, in this work by the novel
use of merging with forward branching the number of

registers reduces to 22. Similar results obtained for other
real time implementations are reported in table 4.

Figure 14 – Profiling Results for Dct

Figure 13 – Dataflow extraction for Diffeq

Figure 15 – CDFG for Dct without Merging
operation

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

272

7. CONCLUSION

The experimental results of the dataflow extraction based
approach to partitioning of software binaries shows
significant speedup compared to pure software
implementation, using significantly less hardware
resources. The approach can be used for dynamic
partitioning [3] of software binaries and extended to cover
arbitrary control flow. The buffer size estimation can be
applied for software binaries using different scheduling and
partitioning algorithms.

References

[1] G. Stitt, and F. Vahid, “Hardware software partitioning of
software binaries”, In International Conference on Computer
Aided Design (ICCAD ‘02), Nov.10-14,2002, pp. 164-170.

[2] G. Stitt, and F. Vahid, “A Decompilation approach to
partitioning software for Microprocessor/FPGA platforms”, In
Proceedings of Design, Automation and Test in Europe
(DATE ’05), Vol. 1., pp. 396-397.

[3] G. Stitt, R. Lysecky, and F. Vahid, “Dynamic
hardware/software partitioning: A first approach.”, In
Proceedings of Design AutomationConference (DAC ’03),
June 2-6,2003, pp. 250-255.

[4] R. Camposano, “Path-based scheduling for synthesis”, In
IEEE transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 10, Issue 1, Jan. 1991, pp. 85-93.

[5] A. Jantsch, P. Ellervee, J. Oberg, and A. Hemani, “A Case
Study on Hardware/Software Partitioning”, In Proceedings of
the IEEE Workshop on FPGAs for Custom Computing
Machines, April 1994.

[6] http://gpsim.sourceforge.net
[7] http://www.xilinx.com
[8] http://www.microchip.com
[9] K. O’Brien, M. Rahmouni, and A. Jerraya, “DLS: A

scheduling algorithm for high-level synthesis in VHDL”, In
Proceedings of 4th European Conference on Design
Automation with the European Event in ASIC Design,Feb.22-
25, 1993, pp. 393–397.

[10] R. Namballa, N. Ranganathan, and A. Ejnioui, “Control and
data flow graph extraction for high-level synthesis”, In
Proceedings of the IEEE Computer Society Annual
Symposium on VLSI - Emerging trends in VLSI systems design
(ISVLSI 2004),Feb.19-20, 2004, pp. 187–192.

[11] M. Rahmouni, and A. Jerraya, “PPS : A pipeline path-based
scheduler”, In Proceedings of European Design and Test
Conference, March 6-9,1995, pp. 557–561.

[12] R. Gupta, and G. De Micheli, “Hardware-Software
Cosynthesis for Digital Systems”, In IEEE Design & Test of
Computers, September, 1993, pp. 29-41.

[13] R. Ernst, J. Henkel, and T. Benner, “Hardware-Software
Cosynthesis for Microcontrollers”, In IEEE Design & Test of
Computers, December, 1993, pp. 64-75.

[14] Greg Stitt, Frank Vahid, “New Decompilation Techniques for
Binary-level Co-processor Generation”, In Proceedings of the
2005 IEEE/ACM International conference on Computer-aided
design”, 2005, pp. 547 – 554.

[15] Rafael Ruiz-Sautua, María C. Molina, and José M. Mendías
(2007), Exploiting Bit-Level Delay Calculations to Soften
Read-After-Write Dependences in Behavioral Synthesis, IEEE
Transactions On Computer-Aided Design Of Integrated
Circuits And Systems, vol. 26, no. 9, 1589-1601.

[16] David Zaretsky, Gaurav Mittal, Xiaoyong Tang, Prith
Banerjee (2004), Evaluation Of Scheduling And Allocation

Algorithms While Mapping Assembly Code Onto FPGAs,
Proceedings of the 14th ACM Great Lakes symposium on
VLSI, pp. 397-400.

[17] Greg Stitt and Frank Vahid , Binary-Level
Hardware/Software Partitioning of MediaBench, NetBench,
and EEMBC Benchmarks, Technical Report UCR-CSE-03-01.
January 2003.

[18] Gaurav Mittal, David Zaretsky, Xiaoyong Tang and Prith
Banerjee, An Overview of a Compiler for Mapping Software
Binaries to Hardware(2007), IEEE Transactions On Very
Large Scale Integration Systems, vol. 15, no. 11, pp. 1177-
1190.

[19] Greg Stitt and Frank Vahid, A Decompilation Approach to
Partitioning Software for Microprocessor/FPGA Platforms,
Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE’05), 2005, pp. 396-397.

[20] Papa G. and Silc J. (2000), ‘Multi-objective genetic
scheduling algorithm with respect to allocation in high-level

Table 3 – Buffer size/ Data bus width Estimates

Figure 16 – CDFG for Dct after
Merging operation

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

273

synthesis’, Proceedings of the 26th Euromicro Conference,
Vol. 1, pp. 339-346.

[21]Heejin Yoo and Dosoon Park (1999), ‘A scheduling
algorithm for pipelined data path synthesis with gradual
mobility reduction’, Proceedings of first IEEE Asia Pacific
Conference, pp. 51-54.

[22] Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan
Kastner (2007), ‘Ant Colony Optimizations for Resource- and
Timing-Constrained Operation Scheduling’, IEEE
Transactions On Computer-Aided Design Of Integrated
Circuits And Systems, Vol. 26, No. 6, pp. 1010- 1029.

[23] G.Stitt, and F. Vahid (2005) , New Decompilation
Techniques for Binary-level Co-processor Generation,
IEEE/ACM International Conference on Computer Aided
Design (ICCAD), 2005, pp. 547-554

[24] Gaurav Mittal David C., Zaretsky Xiaoyong Tang and
P.Banerjee (2004), Automatic Translation of Software
Binaries onto FPGAs, Proceedings of the 41st annual
conference on Design automation. Pp. 389 - 394

[25]Gaurav Mittal, David Zaretsky, Xiaoyong Tang and Prith
Banerjee (2007), An Overview of a Compiler for Mapping
Software Binaries to Hardware, IEEE Transactions On Very
Large Scale Integration Systems, vol. 15, no. 11, pp. 1177-
1190.

 Table 4 Merging for binary level partitioning

 Without Merging Merging Merging forward branching
 Adders/

subtractors
Registers Adders/

subtractors
Registers Adders/

subtractors
Registers

DCT 14 125 2 39 2 22
Diffeq 24 123 1 8 - -
Ellip 24 123 1 8 - -
Fir 24 123 1 8 - -
Iir 24 123 1 8 - -
Lattice 14 124 2 39 2 22
NC 14 124 2 39 2 22
Volterra 14 124 2 39 2 22
Wavelet 14 124 2 39 2 22
Wdf7 36 125 2 47 - -

 Table 5 Buffer size estimation for source level partitioning

Algorithm
Number
of
partitions

Method I Method II Method III Method IV

Edge
cut

Buffer
size

delay
Edge
cut

Buffer
size

delay
Edge
cut

Buffer
size

delay latency
Edge
cut

Buffer
size

delay

FDLS 2 16 4 234 9 3 490 9 3 312 23 33 10 410

MOGS 2 16 4 234 9 3 490 9 3 312 23 33 10 410

LS 2 16 4 234 9 3 490 9 3 312 23 33 10 410

ALAP 2 16 4 234 8 5 490 8 5 312 23 33 10 410

ASAP 2 16 4 234 9 3 490 9 3 312 23 33 10 410

SAA 2 16 3 243 5 2 508 5 2 303 24 33 10 419

