
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

326

Manuscript received February 5, 2009

Manuscript revised February 20, 2009

Simulated Performance Analysis of Multiprocessor Dynamic
Space-Sharing Scheduling policy

Amit Chhabra1, Gurvinder Singh2 and Gaurav Kumar3

1, 2&3 Department of Computer Science & Engineering,
Guru Nanak Dev University,

Amritsar-143001, Punjab, INDIA

Summary
Multiprocessor systems are the wave of the future rightly said
because they offer tremendous potential to solve inherently
parallel and complex computation intensive applications. In
order to exploit the full potential of such computing systems, job
scheduling or processor allocation (both are considered
synonyms here) decisions plays a great role. Such scheduling
decisions involves determining number of jobs to execute
simultaneously as well as the number of processors to be
allocated to each running application in a manner so as to
minimize job’s execution time and/or maximizing throughput.
The growth of such multiprocessor systems has in turn paves the
way for creation of efficient processor allocation policies in
order to reduce job response time and make efficient utilization
of system’s processors. When we submit jobs or applications to
multiprocessor system which in turn relies on job scheduling
policies to allocate processors to such incoming jobs, we are
really interested to know how well such policies are performing.
Performance evaluation methodologies like actual experimental
setup i.e. multiprocessor or parallel system,
Theoretical/Analytical modelling and Simulation can be used to
evaluate the performance of scheduling policies. Actual
experimentation on multiprocessor or parallel system is still a
costly and complex approach and moreover these systems are
still out of reach to young researchers even doing research in
higher education institutes like universities or technical colleges
in developing countries India, Pakistan, Malaysia and
Bangladesh etc. There may be several reasons for the non-
availability of these systems. One can very well evade out
theoretical/analytical modelling to be used for the same purpose
due to their inaccuracy.
All these drawbacks have motivated us to switch towards
virtualization or simulation of multiprocessor environment for
the performance measurement of processor allocation policies.
Simulation provides the powerful way to measure performance
before the system under study has not actually been implemented.
Such simulation can capture the dynamic interaction between
applications and parallel architectures. Also it offers flexibility as
one can make modifications to the simulation model and check
their effect easily.
 This paper is an effort to provide a GUI based
simulated multiprocessor framework/environment for the
performance measurement of dynamic space sharing scheduling
policy. Virtualization of multiprocessor environment is carried
out with the help of simulated program which simulates all
components of actual multiprocessor so as to give best possible
outcome. Such simulated framework will provide the stage for

the young researchers to model and evaluate their scheduling
policies on virtual multiprocessor environment. The intention
behind this multiprocessor simulation environment is the
necessity to facilitate the research of multiprocessor systems and
performance measurement of scheduling algorithms in
developing countries.
Key words:
Multiprocessor environment, dynamic scheduling policy,
processor allocation, Simulation, and Performance evaluation.

1. Overview of Scheduling Mechanism in
Multiprocessor Systems

The goal of maximizing the system performance
has led to the development of the job schedulers in
multiprocessor environment that match the requirements
and workload with resource availability in terms of basic
architecture and processors. Full benefits of parallelizing a
problem will only be achieved if tasks of an application
are properly scheduled to the available processors.

Scheduling or processor allocation in the light of
multiprocessors involves determining the number of jobs
to be executed simultaneously as well as the number of
processors to be allocated to active jobs. An efficient
processor allocation policy can result into proper
utilization of system resources i.e. processors and also
helps to achieve a considerable execution time for parallel
jobs. In fact inefficient processor allocation policy will
definitely leads to underutilization of system resources.
The processor allocation policy must be such that user
submitted jobs would get services from the system
resources without being hindered by the overall problems
associated with the policy itself [1]. Thus there are two
important properties of a policy. Firstly, user jobs should
be able to efficiently access the resources and secondly,
the overhead incurred for implementing the policy should
be well utilized in terms of overall performance.

1.1 Objectives of Scheduling Algorithms

In the design of scheduling algorithms for efficient parallel
processing, there are four fundamental aspects[2]:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

327

 Example

Local
Queue

Globa
l
Q

Round-Robin

Fixed
partitioning

Variable
partitioning

Adaptive
partitioning

Dynamic
partitioning

Example Equi-partition
policy

Time-
sharing

Space-
sharing

Hybrid

Based on no. of processors

Processor
Allocatio

Based on the frequency of processor reallocations by the scheduler

Static
scheduling

Dynamic
scheduling

Performance, Time-complexity, Scalability and
Applicability.
By high performance we mean the scheduling algorithms
should produce high quality solutions. The algorithms
must be robust so that they can be used under a wide range
of input parameters. Scheduling algorithms should have
low time-complexity. The time-complexity of an
algorithm is an important factor so far as the quality of
solution is not compromised. Parallel scheduling
algorithms must be scalable. On the one hand, the problem
should possess problem-size scalability, that is, the
algorithms consistently give a good performance even for
large input. On the other hand, the algorithms should
possess processing-power scalability, that is, given more
processors for a problem, the parallel scheduling
algorithms produce solutions with almost the same quality
in a shorter period of time. Scheduling algorithms could
be used in practical environments. To achieve this goal
one must take into account realistic assumptions about the
program and multiprocessor models.

1.2 Classification of policies

In a broader way processor allocation policies [3][4] are
classified into two categories:

1.2.1 Time sharing and space sharing

1.2.2 Static and dynamic scheduling

Fig. 1: Processor Scheduling Policies

1.2.1 Time Sharing and Space Sharing
These policies as shown in the Fig. 1 & Fig. 2 are

differentiated among each other on the basis of number of
processors to be allocated among the contending jobs.
In time sharing approach different applications are
executed on same processors during different time
intervals. Processors are time-shared among applications.
In this approach

Fig. 2: Time sharing and Space Sharing Policies

1.2.2 Static and Dynamic Scheduling
Another classification of multiprocessor schedulers as
shown in Fig.1 is based on the frequency of processor
reallocations performed by the scheduler. The two flavours
of such classification are the static and dynamic
scheduling approaches. In static scheduling processors are
allocated for the lifetime of the application. The allocated
processors are not relinquished until the job is completed.
Hence processors may not be effectively utilized
especially when the variability in system load is quite high.
These algorithms are simple to implement and have low
scheduling overhead.

In dynamic scheduling, processors can be

reallocated at any point during a job’s execution. Changes
in processor allocation usually occurs due to events such
as the completion of an application (released processors
are redistributed among other applications), arrival of an
application (processors may be taken from other running
applications in order to facilitate the immediate start of a
new job), or due to changes in the parallelism of the job
(changes in parallelism may result in an increase or
decrease in the number of allocated processors). The
frequent reallocation of processors introduces extra
overhead due to context switches and the resultant loss of
processor cache context. However the advantage of
dynamic scheduling lies in its ability to adapt itself to
changing system conditions.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

328

2. Simulated Framework for Performance
Measurement of Dynamic Scheduling Policy

Simulation[5] plays a vital role in multiprocessor studies.
While the analytical modelling is often inadequate and
hardware prototyping is costly and inflexible, software
simulation has certain benefits that make it the dominant
method for evaluating processor allocation policies and
directing the development of new ideas. Software
simulators are easier to make work, moderately accurate
and less expensive than their hardware counterparts. They
are more flexible allowing enhancements with new
measuring features and real-world behaviour capturing
within a matter of days.

One of the biggest advantages of simulation is
that it offers flexibility as one can make modifications to
the simulation model and checks their effect easily. We are
also proposing simulated framework for the performance
analysis of dynamic processor allocation policy. Such a
simulated framework as shown in Fig.3 will be consisting
of two main components or layers.

2.1 Simulated Multiprocessor Environment
First layer will be a simulator program developed using
Visual Basic for the virtualization of actual multiprocessor
environment. This simulated system environment is
expressed in the terms of real multiprocessor system
parameters (like no. of processors, memory and
interconnection network), workload specification for
dynamic scheduling policy and measures for execution
time specification. This simulation provides effective and
flexible environment for the evaluation of scheduling
policy by thoroughly parameterising the system and its
environment and uses random number generator for
generating average arrival rates of jobs. It is being
assumed here that arriving jobs are parallel in nature and
can be easily broken in smaller parts. Following system
and scheduling policy parameters have been simulated and
taken care in the proposed framework

 Parallel
Metrics

Workload

Fig 3: Showing main components of the proposed framework

System and scheduling policy parameters:

1. Incoming jobs of varying computational requirement
2. Number of processors in the system
3. Arrival rates of incoming jobs(Simulated using

Poisson distribution)

2.2 Modelling of dynamic scheduling policy
Second layer deals with modelling of the dynamic
scheduling policy in the simulated multiprocessor
environment. Dynamic Equipartition is the policy that is
being modelled in this environment for its performance
measurement. Average completion time will be used as
performance metric to evaluate the performance.

2.2.1 Equipartition- Equipartition [6][7] is a dynamic
space-sharing policy proposed by McCann et al. The main
goal of the Equipartition is to perform an equal allocation
among running applications. Then the allocation number
of each job is increased by one in turn, and any job whose
allocation has reached the number of requested

processors

drops out. This algorithm continues until either there are
no remaining jobs or until all P processors have been
allocated. The only information provided by the applica-
tion is the maximum number of processors (pmax) that it
can use.
The behaviour of this algorithm is shown by the following
Fig. 4:

Fig. 4: Showing the behaviour of Equipartition algorithm

Once decided the processor allocation, it is
maintained until a new application starts its execution or a
running application finishes its execution. In that case, the
Equipartition algorithm is re-applied. The problem [8] of
Equipartition is that in most cases an equal allocation
neither means equal performance nor good performance.
Some of the assumptions and policy parameters are as
shown in Table 1:

1.1.1 Simulated
Multiprocessor

Modelling of Scheduling
Policy & its workload

characterization

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

329

Table 1: Showing various policy parameters and assumptions
Algorithm Parameter

s

Equipartition pmax Maximum no. of processors
job can use

 P Total no. of processors in
the system

J1 & J2 Jobs in the system
P1 & P2 Maximum parallelism of

job1 & job2
 Arrival time of incoming

jobs generated using
random number function
using Poisson distribution

 Completion time is
generated on the basis of
execution time function
which takes care of job’s
computational requirement
and its arrival time

Assumptions The computational
requirement of each job is
known a priori

 Process and Jobs are
considered as synonyms

Performance
evaluation
metric to be
used

Avg.
Completion
time

It is obtained by dividing
the sum of completion
times of all jobs at
particular time by total
number of active jobs at
that time

Processor allocation for a job Ji in equipartition(DEQUI)
will be min (pi

max,P/N). At any instant of time more than
one process can enter into the scheduling system.

2.2.2 Relationship between Application and Simulator
There exists an interface program written in Visual Basic
6.0 as shown in Fig.5 that grabs the workload
characteristics of the submitted application and passes this
information to the simulated multiprocessor environment
which also contains a scheduler of desired scheduling
policy.

Fig.5 Relationship between Application and Simulator

3. Snapshots and Details about working of the
Simulator

3.1 Characteristics of the simulator

1. GUI based – Easy to use & understand.
2. Menu based- Simulator has RUN menu which further

have options to start/resume or pause the simulation
program for the sake of capturing data from it.

3. Data Backup- Data generated by simulation is stored
in MS-Access and can be used whenever needed.

4. Graph generator-By just clicking on Graph
Generator button in simulator it generates the
performance graphs in Excel worksheet. With the help
of VBA Macro coded in Excel worksheet, data from
MS-Access is passed to excel worksheet and hence
graphs are generated from this data.

5. Status Window – Simulator has a status window at
bottom left which tells the current status of simulator
i.e. whether it is paused, resumed or initialized.

6. Various parameters shown in List boxes and text
boxes of simulator- Various Parameters generated by
Simulator after scheduling policy are being modelled
in it are shown in various list and text boxes.

7. Run-time performance measurement-It measures
the completion time as well as average completion
time during run-time at regular intervals.

3.2 How simulator and modelled scheduling
policy works:

1. Initially information about number of processors
available is fed to the simulator as shown in snapshot
Fig.6.

2. Then number of jobs/processes as shown in snapshot
by Label No. of processes arrived keeps on coming
at some time instant as shown in AT Time text box.

3. On the basis of number of process arrived it equally
divides the number of processors among all the
available processes with the constraint that no
processes will get processors more than its
computational requirement (pmax).

4. When processors are divided among processes they
started giving response and at run time their
completion times are measured at regular intervals. As
information about completion times of various jobs at
any instant is available, average completion time of
the system is generated by dividing the sum of
completion of all jobs by the number the active jobs.

5. Each process has got a unique process ID as indicated
by label Process ID.

6. Processes which got terminated are shown by label
Terminated Processes.

Various snapshots of the simulator are shown in Fig.6,
Fig.7 & Fig.8

Submitted
Application
(workload)

Interface

Simulator
of the target
Architecture
and

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

330

Fig. 6: First snapshot of GUI simulator

Fig.7: Simulator paused by user

Fig. 8: Simulator again started by user

4. Results of the simulated experimental setup

Graph Generator button is responsible for capturing data
from simulator as well as storing this data into MS-Access
and with the help of a VBA Macro coded into MS-Excel
worksheet ,the captured data is passed to Excel worksheet
and later on graphs are generated from this data.

Different test cases are simulated by varying the number
of processors available and accordingly data is collected as
shown in Table 2.

Test case 1: Number of processors available (NOP) =4
Test case 2: Number of processors available (NOP) =6
Test case 3: Number of processors available (NOP) =8

Table 2 :Showing data captured from all the three test cases

Arri-
val
Time

Curr
-ent
Total
Jobs
(NO
P=4)

Avg.
Completi
-on
Time
(NOP=4)

New
Jobs
Arri-
ved
(NO
P=4)

Curr
-ent
Total
Jobs
(NO
P=6)

Avg.
Completi
-on
Time
(NOP=6)

New
Jobs
Arri-
ved
(NO
P=6)

Curr
-ent
Total
Jobs
(NO
P=8)

Avg.

Completi
-on
Time
(NOP=8)

New
Jobs
Arri-
ved
(NO
P=8)

1 4 15.231 4 3 18.229 3 8 13.256 8

2 4 31.865 0 3 33.135 0 8 26.174 0

3 4 48.067 0 3 51.610 0 8 40.924 0

4 4 63.526 0 3 65.337 0 8 57.250 0

5 4 80.069 0 2 71.044 0 8 72.908 0

6 4 96.180 0 1 67.905 0 8 86.979 0

7 4 108.695 0 6 14.778 6 8 102.296 0

8 3 120.162 0 6 30.426 0 7 117.046 0

9 2 129.940 0 6 46.202 0 6 131.014 0

10 1 136.813 0 6 62.152 0 7 126.583 1

12 1 12.563 1 6 76.310 0 5 125.429 0

13 1 29.310 0 6 92.392 0 5 142.574 0

14 4 17.065 4 5 103.887 0 5 115.164 0

15 4 31.071 0 4 115.789 0 4 108.158 0

16 4 45.690 0 4 128.890 0 3 100.211 0

17 4 59.085 0 5 117.409 1 4 63.603 0

18 4 74.421 0 4 125.900 0 3 34.837 0

19 4 89.706 0 4 143.387 0 3 48.165 0

20 3 96.298 0 4 110.919 0 4 48.936 1

21 3 112.033 0 3 92.561 0 3 58.144 0

22 2 122.584 0 2 56.440 0 2 55.870 0

23 1 118.015 0 2 68.698 0 1 49.574 0

25 2 15.272 2 1 55.742 0 7 16.744 7

26 2 29.963 0 2 11.706 2 7 31.571 0

27 2 43.944 0 2 27.229 0 7 46.729 0

Here NewJobsArrived =0 means no new job arrived at that
particular instance of time.
CurrentTotalJobs = All active jobs in the system

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

331

Various Graphs generated from 3 test cases are shown in
Fig 9, Fig.10 & Fig.11.

0.000

20.000
40.000

60.000

80.000

100.000
120.000

140.000

160.000

0 5 10 15 20 25 30

Arrival Time

Av
er

ag
e

C
om

pl
et

io
n

Ti
m

e

NOP=4 NOP=6 NOP=8

Fig.9: Showing Average Completion time for 3 test cases at any time
instance

0
1
2
3
4
5
6
7
8
9

1 3 5 7 9 11 13 15 17 19 21 23 25

Arrival Time

C
ur

re
nt

To
ta

lJ
ob

s

CurrentTotalJobs When NOP=4 CurrentTotalJobs when NOP=6
CurrentTotalJobs when NOP=8

Fig. 10: Showing CurrentTotalJobs(Active jobs) for 3 test cases at any

time instance

0
1
2
3
4
5
6
7
8
9

1 3 5 7 9 11 13 15 17 19 21 23 25

Arrival Time

Ne
w

Jo
bs

Ar
riv

ed

NewJobsArrived When NOP=4 NewJobsArrived When NOP=6
NewJobsArrived when NOP=8

Fig.11: Showing NewJobsArrived for 3 test cases at any time instance

5. Conclusion and Future directions

Work done in this paper was an effort to design and
develop a simulated multiprocessor environment so as to
virtualize the actual multiprocessor system. This paper
presents a multiprocessor simulation environment
developed with the aim to facilitate the research of
multiprocessor systems as well as performance
measurement of scheduling algorithms in developing
countries. A simulator program was coded in Visual Basic
6.0 to fulfil this purpose. Later on dynamic space sharing
policy (dynamic equipartition) was modelled in this virtual
environment and its performance was analysed by taking 3
different test cases. In future the work done in this paper

can be extended by modelling many more dynamic
processor allocation algorithms in the developed
environment. Effort will be done in future to validate the
data captured by simulator with actual experimental setup.

REFERENCES:
[1] T.L.Casavant and J.G.Kuhl, “A taxanomy of

scheduling in General-purpose Distributed Computing
Systems”, in IEEE transactions on software
engineering, February 1988, vol 14, No.2, pages 141-
154.

[2] Yuen Chung Kwong, Series on scalable computing Vol
1, 2 & 3 Annual reviews on scalable computing,
Singapore University press, World scientific.

[3] Timothy B. Brecht and Kaushik Guha, “Using Parallel
Program Characteristics in Dynamic Multiprocessor
Allocation Policies”, Performance Evaluation, Volume
27-28, (October 1996), Pages: 519 – 539.

[4] Raghu Subramaniam, “A framework for parallel job
scheduling”, Ph.D thesis submitted of university of
California, Irvine.

[5] Davor Magdic, “Limes: A Multiprocessor Simulation
Environment for PC platforms”, in PROC. 21st
INTERNATIONAL CONFERENCE ON
MICROELECTRONICS (MIEL'97), VOL.2,
YUGOSLAVIA, 14-1 7 SEPTEMBER, 1997.

[6] C. McCann, R. Vaswani and J. Zahorjan “A Dynamic
Processor Allocation Policy for Multiprogrammed
Shared-Memory Multiprocessors”, in ACM Trans. on
Computer Systems, 11(2), pp. 146-178, May 1993.

[7] A. Tucker and A. Gupta, “Process Control and
Scheduling Issues for Multiprogrammed Shared-
Memory Multiprocessors”,In Proceedings of the 12th
ACM Symposium on OperatingSystems Principles,
pages 159–166, Dec. 1989.

[8] Julita Corbalán, Xavier Martorell and Jesús Labarta,
“Performance-Driven Processor Allocation”, in IEEE
Transactions on Parallel and Distributed Systems,
Volume 16, Issue 7 (July 2005), Pages 599 – 611.

Amit Chhabra has received his

bachelor’s and Master’s degree in

Computer Science from Guru Nanak

Dev University, Amritsar. Author is

working as a Lecturer in the Department

of Computer Science & Engineering,

Guru Nanak Dev University, Amritsar.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

332

His research areas include Distributed Systems and Parallel

Computing.

Gurvinder Singh has received his

master’s in computer applications and

Ph.D from Guru Nanak Dev University,

Amritsar. Author is currently working as

a Reader in the Department of Computer

Science & Engineering, Guru Nanak Dev

University, Amritsar. His research areas include Distributed

Systems, Parallel Computing and Grid Computing.

Gaurav Kumar has received his

master’s degree in computer

applications from Guru Nanak Dev

University,Amritsar. Author is working

as a Lecturer in the Department of

Computer Science & Engineering, Guru

Nanak Dev University, Amritsar. His

research areas include Advanced Computer Architecture and

Object Oriented Systems Engineering

