
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

439

Manuscript received February 5, 2009
Manuscript revised February 20, 2009

User’s authorization in singularity operating system

Rami Matarneh†, Suha Al_Jubori††

†Faculty of Administrative and Financial Sciences, Al-isra private university, Amman, P.O. 11622, Jordan
††Faculty of Administrative and Financial Sciences, Al-isra private university, Amman, P.O. 11622, Jordan

Summary
We describe a new design for authorization in operating systems.
In this design two additional units are introduced, Certificate
Authority which provide certificates for authorization for all
participants and Access Controller which is responsible for
making access decisions, and we describe the implementation of
our design and its performance in the context of Singularity
operating system.
Key words:
Access Controller, Certificate Authority, Access Control Lists,
Singularity

1. Introduction

One of the main decisions in designing any operating
system is the choosing of security model and access
control.
Access control refers to the action of deciding which
operations are permitted and which operations are not
permitted depending on the access rights the requesting
principal has. In traditional design Access Control Lists
(ACL) are used to do this.
As input to each access decision, the identity of a
principal is presented, the identity of an object (system
resource or data protected by the system), the specific
operation that the principal requests on the object; and
depending on ACL which kept with each object for each
possible operation decision occurred. This means that
each object in the system must has a list consists of either
a principals and their legally operations or identifiers for
groups. A group, in turn, consists of either principals or
identifiers for further groups [11].
This paper argues that the traditional design is weak from
the point of the amount of search needed when making
any decision, and in a dynamic system these decisions
needed to be done very frequently and one can imagine
the search needed.
As a remedy, this paper propose a design which shrink
the search needed by working in an opposite way that is
instead of providing an ACL for each object, certificates
will be provided for authorization of all principals
registering legal operations that principal can do. We
demonstrate our design in the context of the Singularity

operating system and present a security model that takes
into account the fundamental aspects of Singularity such
as the channel abstraction, application manifests, and
software isolated processes.

2. Singularity

The Singularity project combines the expertise of
researchers in operating systems, programming language
and verification, and advanced compiler and optimization
technology to explore novel approaches in architecting
operating systems, services, and applications so as to
guarantee a higher level of dependability without undue
cost [7].
A key aspect of Singularity is an extension model based
on Software-Isolated Processes (SIPs), which encapsulate
pieces of an application or a system and provide
information hiding, failure isolation, and strong interfaces
[4]. SIPs do not rely on memory management hardware
for address space protection as is in most modern
operating system. Instead each SIP has a software
protected “object space”. Static analysis, type safety and
other language features are used to guarantee at compile
time that code within a SIP cannot access memory that
does not belong to it. Software protection of processes
removes much of the cost associated with context
switches in a hardware based system.
All inter-process communication in Singularity is done
via communication channels. These channels are a first
class abstraction which is managed by the kernel and
supported explicitly by the Sing# language. Because
dependability is the primary goal of Singularity, shared
memory between processes is not supported [2].
From the security point of view in singularity,
applications are security principals, they reflect the
application identity of the current SIP, an optional role in
which the application is running, and an optional chain of
principals through which the application was invoked or
given delegated authority. Users, in the traditional sense,
are roles of applications (for example, the system login
program running in the role of the logged in user).
Application names are derived from Manifest-Based

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

440

Program (MBP) manifests which in turn carry the name
and signature of the application publisher. SIPs are
associated with exactly one security principal. To support
this usage pattern, we allow delegation of authority over a
channel to an existing SIP. All communication between
SIPs occurs over channels. From the point of view of a
SIP protecting resources (for example, files), each
inbound channel speaks for a single security principal and
that principal serves as the subject for access control
decisions made with respect to that channel [stack]. ACLs
are patterns against which principal names are matched.

3. Access control list

An access control list (ACL) in computer security, is a
list of permissions attached to an object [12]. The list
specifies who or what is allowed to access the object and
what operations are allowed to be performed on the
object. In an ACL-based security model, when a subject
requests to perform an operation on an object, the system
first checks the list for an applicable entry in order to
decide whether to proceed with the operation. This needs
many steps to allow or reject the request. Figure 1
illustrates the required steps to perform one request over
one object.

Fig. 1 User authorization in classical access control list

4. File system ACLs

Access control list is a data structure, containing entries
that specify individual user or group rights to specific

system objects, such as a program, a process, or a file
[10]. These entries are known as access control entries
(ACEs). The privileges or permissions determine specific
access rights, such as whether a user can read from, write
to, or execute an object, each entry in the list specifies a
subject and an operation, the entry (user1, read) on the
ACL for file MY_FILE gives USER1 permission to read
file MY_FILE.
 In some implementations an ACE can control whether or
not a user, or group of users, may alter the ACL on an
object [6], which is in our opinion considered not a safe
behavior, and our approach depends on the fact that users
and groups can’t manage ACLs, so that we assign a
certificate for every subject or principal which is look like
as ACL but in reversed direction and label for every
object.
The following rules explain the basics of the proposed
model:

 System divided into groups, and every user
belongs to only one group in the system

 Every group has its certificate GC, which is
contain all rights or permissions that group can
perform

 Every user has its certificate UC, which is
contain all rights or permissions that user can
perform

 User permissions include his permissions and his
group permissions UC=UC+GC

 Every object has its label L, which is contain
one field (the owner)

 Any principal can read its certificate, but it can’t
modify it

 Certificate creation and modification is a
responsibility of a certificate authority unit

 Any principal can grant rights to and revoke
rights from other principals through certificate
authority unit

 Access control load a copy of user certificate
when user login to the system, and keep track of
any changes at any time for any certificate, using
Boolean flag that indicates any changes occurred
in the system.

 All operations in this model performed directly
through access controller without any
additional checks, except DELETE operation, it
must be checked by comparing the object’s label
with the principal ID (to ensure that only the
owner can delete the object)

 Processes, certificate authority unit and
access controller are all run in its own SIP and
communicate over channels [4], in line with
singularity model

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

441

5. Certificate creation and its characteristics

When account or group created by system administrator,
the certificate authority in its turn creates account
certificate (user certificate or group certificate), at the
outset the certificate is empty. In case object creation the
certificate authority creates LABEL (object label L)
attaches it to the object and fill it with the owner ID.
The certificate contains the following fields:

 Permission type (read, write, execution …)
 Object (Intended object)
 Sequence (the sequence of users that delegate

the permission)
 Delegation (Boolean value, true if delegation

allowed and false otherwise)

Fig. 2 Certificate structure

When user login to the system and creates an object all
permissions must be added into its certificate, we prefer
to add permissions as a separate entry, the sequence field
value is set to OWNER to indicate its ownership of the
object, and so if user1 create file1 then, user’s certificate
must look like:

Fig. 3 Certificate with values

If user1 want to read or write file1, it requests the specific
operation through access controller, access controller in
its turn compares the request with user’ certificate
(which is already loaded by access controller when user1
logged into the system), if such permission found access
controller allows user to perform the request, otherwise
rejects it.

 Fig. 4 User authorization sequence

To compare this model with classical ACLs, assume
user1 want to perform read or write on 50 different
objects, in ACLs it means that system needs to open and
check 50 different ACLs, and every operation requires 4
steps (see figure 1) in total, system needs 200 steps to
perform the task, in our model the system needs 100 steps
to perform the request. Taking into consideration that step
2 in figure-1 may take long time comparing with other
steps, which is not found in our model. At this time user1
can invoke permissions to a specific user or group, or
revoke theme. In the following sections we discuss how
our model manages these operations.

6. Invoke permissions

Any user can invoke permissions to other users in his
group or in other groups, as follow:

1. username@groupname INVOKE permission on
objectname to username@groupname ||
groupname +D

Where +D means delegation allowed.
2. username@groupname INVOKE ALL on

objectname to groupname || all +D
Where all means all username in all groupname.

To understand how our model works, assume user1 want
to invoke read permission to user2 in group2
User1@group1 INVOKE read on file1 to user2@group2
Access controller fetch the request and checks if user1
has such permission if true, then it sends the request to
certificate authority, which is modify the specified user’s
or group’s certificate and alter group’s flag to true and
signal access controller that some changes had been
occurred in users or groups permissions, access controller
check all flags and refresh certificates for all groups

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

442

where flag equals true, then set all flags to false (see
figure 6).

Fig.5 Permissions invoke or revoke sequence

7. Delegation

Any user can invoke permissions to other users or groups
if delegation field in its certificate is set to true for the
specific permission, for example in figure 6 user2 can
delegate user 3 to read file2 but can’t delegate to write it,
because delegation allowed on read and not allowed on
write (figure 6).

Fig.6 Certificate with values that can be delegated

To understand the whole picture, how users can delegate
permissions and how to update the sequence field for
every new user in the sequence. Assume the following
scenario:

1. User1 has file1 (the owner).
2. User1 invoke the permission read (file1) with

delegation to user2, user3 and user4.
3. User2 invoke the permission read (file1) with

delegation to user5.
4. User5 invoke the permission read (file1) with

delegation to user6 and user7.
5. User7 invoke the permission to user10.
6. User3 invoke the permission read (file1) with

delegation to user8.
7. User8 invoke the permission read (file1) with

delegation to user9.
8. User9 invoke the permission read (file1) to

user11.

Figure 7 illustrates this scenario, where every user in the
tree has a sequence of users who delegated him the
permission.
We stress not to allow repetition of the same permission
if it is already found, so if user7 for example invoke the
read permission on file1 to user6 or user9, such request
should be rejected by access controller, because user6 and
user9 already have such permission, dotted lines in
figure7 represents this case.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

443

Fig. 7 Illustration of delegation scenario

8. Revoke permissions

Any user, who invoked permission to other user, can
revoke it. When permission revoked from the user the
same permission will be automatically revoked from all
users who have obtained the permission from.
Access controller compares the username who want to
revoke a specific permission from another user or group
to the user’s or groups sequence field, if found it will
transfer the request to certificate authority unit to finish
the task, otherwise will reject it.
To understand how access controller can take a decision
to accept or reject a request to revoke permission from a
specific user. Depending on figure 7, assume user2
requests the following independent requests:

1. REVOKE read on file1 from user10
2. REVOKE read on file1 from user8
3. REVOKE read on file1 from user5

First request will be accepted because user2 is an
element of user10 sequence set (see fig. 7).
Let us explain how access controller accepts the request
from user2:

 Access controller find user10 sequence field,
which is: [user1, user2, user5, user7]

 Check if user2 is an element of [user1, user2, user5,
user7]

 The answer is TRUE, so the request accepted.

Second request will be rejected because user2 is not an
element of user8 sequence set.

 Access controller find user8 sequence field, which
is: [user1, user3]

 Check if user2 is an element of [user1, user3]
 The answer is FALSE, so the request rejected.

Third request will be accepted because user2 is an
element of user5 sequence set.

 Access controller find user5 sequence field, which
is: [user1, user2]

 Check if user2 is an element of [user1, user2]
 The answer is TRUE, so the request accepted.

After the execution of the third request, access controller
will ask certificate authority unit to revoke the same
permission from all users who got the permission from
user5, which is in this case will be user6, user7 and
user10 (see fig. 7).
Other security approaches don’t take in consideration the
delegation sequence, which is mean; we can’t know the
sequence of delegates. So if we use other security
approaches to execute the following:

REVOKE read on file1 from user5

It will revoke read permission from user5 only, although
user6, user7 and user10 got the permission from him,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

444

which will lead us to a complex situation when we find
number of users has permissions on some objects in the
system and we can’t know how they got such
permissions. Such case can make a security vulnerability
in the system can’t be avoided.

9. Conclusions

In this paper a security model for authorization in
singularity operating system introduced. This model
based on providing certificates for very user which state
all access rights given to that user and according to
checks done through these certificates accesses is granted.
The main novelty of the work is reducing the amount of
search needed when using Access Lists which registered
all operations each user could do to each object and each
time an access decision made the whole list must be

searched, by imagining the number of objects may exist
in a system one can expect the amount of search needed.
However using certificates as suggested in this work the
situation reversed is that instead of searching the whole
Access list each time a user needs to implement an
operation to an object, we need only to check the user
certificate to make our decision and by comparing the
number of users to the number of objects in any system
one can find that in most cases the number of users in a
system are less than number of objects and as
consequence the amount of search needed in our design
reduced than what is needed in the traditional way.
We believe that this design allows for authentication and
access control in a modern operating system, suitable for
the more stringent requirements of a modern security
posture in a world with diverse software.

References

[1] Galen C. Hunt, James R. Larus, Singularity:
Rethinking the Software Stack, ACM SIGOPS
Operating Systems Review, vol. 41, no. 2, pp. 37-49,
Association for Computing Machinery, Inc., Apr.
2007

[2] Galen Hunt, Chris Hawblitzel, Orion Hodson, James
Larus, Bjarne Steensgaard, Ted Wobber, Sealing OS
Processes to Improve Dependability and Safety, in
Proceedings of the European Conference on
Computer Systems (EuroSys), Association for
Computing Machinery, Inc., Lisbon, Portugal, Mar.
2007

[3] Ted Wobber, Aydan Yumerefendi, Martín Abadi,
Andrew Birrell, Daniel R. Simon, Authorizing
Applications in Singularity, in Proceedings of the
2007 Eurosys Conference, Association for
Computing Machinery, Inc., Lisbon, Portugal, Mar.
2007

[4] Aiken, Mark, Fähndrich, Manuel, Hawblitzel, Chris,
Hunt, Galen, Larus, James R., Deconstructing
Process Isolation, in ACM SIGPLAN Workshop on
Memory Systems Performance and Correctness, pp.
1-10, ACM, San Jose, CA, Oct. 2006

[5] Paul Barham, Rebecca Isaacs, Richard Mortier, Tim
Harris, Learning communication patterns in
Singularity, in Proceedings of the First Workshop on
Tackling Computer Systems Problems with Machine
Learning Techniques (SysML), Jun. 2006

[6] Galen C. Hunt, Mark Aiken, Paul Barham, Manuel
Fahndrich, Chris Hawblitzel, Orion Hodson, James R.
Larus, Steven Levi, Nick Murphy, Bjarne
Steensgaard, David Tarditi, Ted Wobber, Brian D.
Zill, Sealing OS Processes to Improve Dependability
and Security, no. MSR-TR-2006-51, pp. 14,
Microsoft Research, Apr. 2006

[7] Galen Hunt, James R. Larus, Martin Abadi, Mark
Aiken, Paul Barham, Manuel Fahndrich, Chris
Hawblitzel, Orion Hodson, Steven Levi, Nick
Murphy, Bjarne Steensgaard, David Tarditi, Ted
Wobber, Brian D. Zill, An Overview of the
Singularity Project, no. MSR-TR-2005-135, pp. 44,
Microsoft Research, Oct. 2005

[8] Larus, James, Hunt, Galen, Tarditi, David, {End
Bracket} Singularity, MSDN Magazine, vol. 21, no.
7, pp. 176, Jun. 2006

[9] Galen C. Hunt, James R. Larus, Singularity Design
Motivation, no. MSR-TR-2004-105, pp. 4, Microsoft
Research, Nov. 2004

[10] Martín Abadi , Andrew Birrell , Ted Wobber, Access
control in a world of software diversity, Proceedings
of the 10th conference on Hot Topics in Operating
Systems, p.22-22, June 12-15, 2005, Santa Fe, NM

[11] R. S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E.
Youman (1996), "Role-Based Access Control
Models", IEEE Computer 29(2): 38-47, IEEE Press,
1996.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

445

[12] D.F. Ferraiolo and D.R. Kuhn (1992) "Role Based
Access Control" 15th National Computer Security
Conference, Oct 13-16, 1992, pp. 554-563.

[13] Martín Abadi , Michael Burrows , Butler Lampson ,
Gordon Plotkin, A calculus for access control in
distributed systems, ACM Transactions on
Programming Languages and Systems (TOPLAS),
v.15 n.4, p.706-734, Sept. 1993

[14] Elaine Shi , Adrian Perrig , Leendert Van Doorn,
BIND: A Fine-Grained Attestation Service for Secure
Distributed Systems, Proceedings of the 2005 IEEE
Symposium on Security and Privacy, p.154-168, May
08-11, 2005

[15] Galen Hunt , Mark Aiken , Manuel Fähndrich , Chris
Hawblitzel , Orion Hodson , James Larus , Steven
Levi , Bjarne Steensgaard , David Tarditi , Ted
Wobber, Sealing OS processes to improve
dependability and safety, ACM SIGOPS Operating
Systems Review, v.41 n.3, June 2007

[16] Aiken, Mark, Fähndrich, Manuel, Hawblitzel, Chris,
Hunt, Galen, Larus, James R., Deconstructing
Process Isolation, in ACM SIGPLAN Workshop on
Memory Systems Performance and Correctness, pp.
1-10, ACM, San Jose, CA, Oct. 2006

 Rami Matarneh received the B.E.
from Mu’tah Univ. in 1994, and M.E.
degrees, from Kharkiv National
University of Radio Electronics in
1997. He received the Dr. Eng. degree
from Kharkiv National University of
Radio Electronics in 2000. After
working as an assistant professor (from
2000) in the Dept. of computer science,

Philadelphia Univ. (from 2000), and an assistant professor, Al-
Isra private university(from 2006). His research interest
includes AI, automation design systems and security.

Suha Al_Jubori received the B.E.,
M. E., and Dr. Eng. degrees from Al-
Nahrain Univ. in 1992, 1996, and 2006,
respectively. After working an
assistant professor (from 2006) in the
Dept. of Management information
systems, Al-Isra private university.
Here research interest includes
database management systems,

security, and programming languages.

