
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

446

Manuscript received February 5, 2009

Manuscript revised February 20, 2009

A New Variant Nevine Maurice Ebied’s Key Randomization
Counter Measures to Power Analysis Attacks on Elliptic

Curve Cryptosystems

ABSTRACT
It is essential to secure the implementation of
cryptosystems in embedded devices against side-channel
attacks. Namely, in order to resist differential (DPA)
attacks, randomization techniques should be employed to
decorrelate the data processed by the device from secret
key parts resulting in the value of this data. This peak
appears only if the attacker’s guess of a bit or a digit of
the secret key is correct. The attacker’s goal is to retrieve
partial or full information about a long-term key that is
employed in several ECSM executions. In this paper we
proposed secret key to calculate the number of bits or
digits processed in an n-bit prime integer for SPA attacks
in the execution of elliptic curve scalar multiplication
executions.
Key Words: Elliptic curve cryptography, Simple power
Analysis, Differential Power analysis

1. Elliptic Curve Cryptosystems and Side-
Channel Attacks

1.1.Introduction

Elliptic curve cryptosystems (ECCs) are suitable for
implementation on devices with limited memory and
computational capability such as smart cards and also
with limited power such as wireless handheld devices.
This is due to the fact that elliptic curves over large finite
fields provide the same security level as other
cryptosystems such as RSA for much smaller key sizes.

Considering power analysis attacks, there are two
main types that were presented by Kocher et al. These are
simple and differential power analysis attacks (referred to
as SPA and DPA respectively).

Both of them are based on monitoring the power

consumption of a cryptographic token while executing an
algorithm that manipulates the secret key. The traces of
the measured power are then analyzed to obtain

significant information about the key. In some cases the
key can be totally compromised and in others the search
space of the key can be reduced to a computationally
affordable size. In SPA, a single power trace can reveal
large features of the algorithm being executed such as the
iterations of the loop. Moreover, cryptosystem-specific
operations such as point doubling and adding in ECCs can
be identified [3]. In order to resist this SPA attack, the
steps of the algorithm need to be uniform across different
executions.

Hence, DPA attacks are, in general, more
powerful than the SPA attack. Randomization of the data
processed at some instant is essential in resisting this type
of attacks. Electromagnetic emanations present another
powerful side channel since the information is leaked
from the device via more than one channel and is a
function of space as well as of time. In [2], Agrawal et al.
presented both simple (SEMA) and differential (DEMA)
electromagnetic analysis attacks on smart cards and on a
Palm pilot in [21]. In [AARR], they conclude that
software countermeasures rely on signal information
reduction, which is achieved by “randomization and/or
frequent key refreshing within the computation”, which
agrees with the concept of resisting DPA attacks.

1.2. Elliptic Curve Cryptosystems

Let K be a finite field and E be an elliptic curve (EC) over
K defined by the following Weierstrass equation
 E: y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 (2.1)

where a i ∈K and Δ ≠ 0, where Δ is the discriminant of
E and is defined in [13 Section 3.1].

Let L be an extension field of K. Then E(L)
denotes the set of L-rational points (x, y) on E, where (x,
y) 2 L × L and satisfy (2.1), together with the point at
infinity ∂. The addition of two points on the curve is
performed using a chord-and-tangent rule. E(L) and this

 E.Kesavulu Reddy1 V.V.Lakshmi Prasad2

 Assistant Professor Research Scholar
 Dept.of Computer Science Dept.of Computer Science

 College of CMIS College of CMIS
 S.V.University , Tirupati S.V.University, Tirupati

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

447

addition operation form an abelian group where ∂ is the
identity. The point addition operation consists of finite
field operations carried in the underlying field K. We
denote the field inversion by I, the multiplication by M,
the squaring by S. The point addition is denoted by A.
When the two operands of the addition are the same point,
the operation is referred to as point doubling and is
denoted by D.

1.2.1 Elliptic curves over prime fields

If K = Fp, where p > 3 is a prime, (2.1) can be simplified
to 1
 E : y 2 = x 3 + ax + b, (2.2)

where a and b∈Fp. The discriminant of this curve isΔ =
−16 (4a3+27b2). The negative of a point P = (x, y) is −P =
(x,−y) such that P + (−P) = ∂. This simplification is
generally applicable when the characteristic of K is not 2
or 3.

The affine coordinate (A) representation of a
point P = (x, y) can be replaced by projective coordinates
representations in order to render the point addition and
doubling operations less costly in terms of field operations.
The following representations are the best known
• standard (homogeneous) projective coordinates (P); the
projective point (X : Y : Z), Z ≠ 0, corresponds to the
affine point (X/Z, Y/Z), ∂ corresponds to (0 : 1 : 0) and
the negative of (X : Y : Z) is (X : −Y : Z). • Jacobian
projective coordinates (J); the projective point (X : Y :
Z), Z 6= 0, corresponds to the affine point (X/Z2, Y/Z3),
O corresponds to (0 : 1 : 0) and the negative of (X : Y : Z)
is (X : −Y : Z).
• Chudnovsky coordinates (C); the Jacobian point (X : Y :
Z) is represented as (X : Y : Z : Z 2 : Z 3).

1.2.2 Elliptic curves over binary fields

If K = F∈ m, (2.1) can be simplified to
 E : y 2 = x 3 + ax + b,, (2.3)

where a and b ∈ F 2 m The discriminant of this curve is
Δ = b and the negative of a point P = (x, y) is −P = (x, x
+ y). Such a curve is known as
non-super singular.

Standard and Jacobian projective coordinates are
used to represent points on this type of curves in the same
way as on the prime curves with the difference that the
negative of (X : Y : Z) is (X : X + Y : Z).

1.2.3 Elliptic Curve Scalar Multiplication

Scalar multiplication in the group of points of an elliptic
curve is analogous to exponentiation in the multiplicative

group of integers modulo a fixed integer. Thus, it is the
fundamental operation in EC-based cryptographic systems.
The scalar multiplication, denoted kP, is the result of
adding the point P to itself k times, where k is a positive
integer, that is kP = P + P + · · · + P | {z } k copies and
−kP = k(−P). u is said to be the order of P if u is the
smallest integer such that uP = ∂.

In many applications, the scalar k is a short-term
(ephemeral) or long-term (private) secret (key). From
now on, we will always assume that k is a n-bit integer,
where n is the bit length of u, the order of the group of
points of interest in an ECC. Also the point P may be
fixed (e.g., the base point of the ECC) or unknown a priori.

Let (k 1−n , k 2−n , . . . , k 1 , k 0) 2 2 be the binary

representation of k,
i.e., k i ∈ {0, 1} for 0 ≤ i < n − 1. Thus,

 kP = (∑
−

=

1

0

n

i
k i 2 i)P

 = 2(2(· · · 2(2(k 1−n P) + k 2−n P) + · · ·)

 + k 1 P) + k 0 P (2.4)

 = (k 1−n 2 1−n P) + · · · (k 1 2P) + (k 0 P) (2.5)

Hence, kP can be computed using the
straightforward double-and-add approach in n iterations.
In fact, there are two algorithms that can be used.
Algorithm 2.1, which corresponds to the expansion in
(2.4), scans the bits of the scalar k from left to right, i.e.,
from the most significant bit to the least significant one.
Algorithm 2.2, corresponding to (2.5), scans the bits of k
from right to left. These algorithms are analogous to the
square-and-multiply algorithms employed in
exponentiation-based cryptosystems.

Algorithm 1.1. Left-to-Right Double-and- Add
Algorithm
Input: k = (k 1−n . . . k 0) 2 and P ∈ E(F q).

Output: KP.
1. Q ∂
2. for i from n − 1 down to 0 do
2.1 Q 2Q.
2.2 if (k i = 1) then

 Q Q + P.
3. Return (Q).

Algorithm 1.2. Right-to-Left Double-and- Add
Algorithm

 Input: k = (k 1−n , k 0)2 and P ∈ (F q).

Output: KP.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

448

1. Q ∂; R P.
2. for i from 0 to n − 1 do
2.1 if (k i = 1) then
 Q Q + R.
2.2 R 2R.
3. Return(Q).

The expected number of point addition (A) and point
doubling (D) operations performed in the binary
algorithm (left-to-right or right-to-left)
is

 (n − 1) D +
2
n

 A.

If affine coordinates are used, the field operation

count is 2.5n S + 3n M + 1.5n I. Algorithm 2.1 is usually
preferred since one of the addition operands is the base
point P which is constant through the algorithm. This has
the advantage of saving a register if P is a fixed point
known a priori. Moreover, it allows the use of mixed
coordinates addition. That is, when one of the operands to
the addition operation is fixed, the Z-coordinate of that
operand is set to and remains 1, this reduces the number
of field multiplications needed to perform the point
addition as illustrated in Table 2.1 and Table 2.2.

Hence if Q is stored in Jacobian coordinates and

P in affine coordinates, Jacobian coordinates can be used
for doubling in Algorithm 2.1 and mixed Jacobian-affine
for the Elliptic Curve Cryptosystems and Side-Channel
Attacks addition. The field operation count is then 8n M +
5.5n S + (1 I + 3 M + 1 S), where the last three terms are
needed to convert the resulting point back to affine
coordinates.

1.2.4.Non-Adjacent form (NAF)

The key k can be represented in Non-adjacent Form
(NAF) k’ = (k’ n , . . . , k1 , k 0)2, where k i ∈ {0,±1}
and no two consecutive digits are non zero; that is,
k 1+i k’ i = 0
for i ≥ 0 [Rei60; Sol00]. The NAF of an integer is unique
and is at most one digit longer than its binary
representation. The average density of nonzero digits
among all NAFs of length n is n/3.

This key representation requires the slight
modification of the binary algorithm that is to subtract,
rather than add, P when k’ i = −1, i.e., to add −P. This is
advantageous for ECCs since the negative of a point can
be obtained with a minor cost as we mentioned in Section
2.1, e.g., a modular negation for curves over prime fields

and a bit-wise XOR operation for curves over binary
fields.

1.2.5. Window methods

This method is sometimes referred to as m−ary method.
There are different versions of window methods [17;26].
What is common among them is that, if the window width
is w, some multiples of the point P up to (2 w − 1)P are
precomputed and stored and k is processed w bits at a
time. k is recoded to the radix 2 w . k can be recoded in a
way so that the average density of the nonzero digits in
the recoding is 1/(w + ξ), where 0 ≤≤ ξ 2 depends on
the algorithm. Let the number of precomputed points be t,
in the precomputation stage, each point requires either a
doubling or an addition to be computed also depending on
the algorithm.

This ECSM method is suitable for unknown or
fixed point P. The cost is Storage: t points, where 2 2−w ≤
t ≤2 1−w depending on the algorithm.
 Precomputation: t point operations (A or D).
 Expected running time:

 (n − 1) D + n
ξ+w

n
 A,

where 0≤ 2≤ξ depending on the algorithm. Note that
the number of doubling is between n − w and
n − 1.

1.2.6.Simultaneous multiple point multiplication

This method is used to compute kP +lS where P may be a
known point. This algorithm was referred to as Shamir’s
trick in [10]. If k and l are n-bit integers, then their binary
representations are written in a 2 × n matrix called the
exponent array. Given width w, the values iP +jS are
calculated for wji 2,0 <≤ . Now the algorithm performs

d = ⎡ ⎤wn / iterations. In every iteration, the accumulator
point is doubled w times and the current 2 × w window
over the exponent array determines the precomputed point
that is to be added to the accumulator.

Algorithm 1.3. Simultaneous multiple point
multiplication (Shamir-Strauss method)
Input: Window width w, d = ⎡ ⎤wn / ,

 k = (K 1−d , . . . ,K 1 ,K 0) w2
 l= (L 1−d , ..,L 1 ,L 0) w2

, and P, S

∈ E(F q). 3Also according to [Ber01], it is originally due to

Straus [Str64].

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

449

Output: kP + lS.

1. Precomputation. Compute iP + jS for all

i, j ∈ [0, 2 w − 1].
2. Q K 1−d P + L 1−d S.
3. for i from d − 2 down to 0 do

3.1 Q 2 w Q.
3.2 Q Q + (K i P + L i S).
4. Return(Q).

Storage: 2 w2 − 1 points. For w = 1, 3 points.
For w = 2, 15 points.
Precomputation:

(2)1(2 −w − 2 1−w) D + (3 · 2)1(2 −w − 2 1−w − 1) A.
For w = 1, 1 A.
For w = 2, 1 D + 11 A.

Expected running time:

(d − 1)w D + w

w

2

2

2
12(−

d − 1) A.

For w = 1, (n − 1) D +(
4
3

n − 1) A.

For w = 2, (n − 1) D +(
32
15

n -1) A.

Using sliding windows can save about 1 4 of the
precomputed points and decrease the number of additions

to
)3/1(+w

n
, which is about 9% saving for w ∈ {2, 3}.

Interleaving method

This method is also a multiple point multiplication
method, that is we want to compute ∑ j

j Pk for points

P j and integers k j . In the comb and simultaneous
multiplication methods, each of the precomputed values is
a sum of the multiples of the input points. In the
interleaving method, each precomputed value is simply a
multiple of one of the input points. Hence, the required
storage and the number of point additions at the
precomputation phase is decreased at the expense of the
number of point additions in the main loop. This method
is flexible in that each k j can have a different
representation, e.g., different window size, as if a separate
execution of a window method is performed for each k j
P j with the doubling step performed jointly on a
common accumulator, as shown in [12]. As an illustration,
we provide the following algorithm that computes kP + lS
where both k and l are represented to the same base 2 w .

1.2. 7Algorithm 1.4. Interleaving method

Input: width w, d = ⎡ ⎤wn / ,

 k = (K 1−d , . . . ,K 1 ,K 0) w2
 l= (L 1−d , . . . ,L 1 ,L 0) w2

, and P,

S ∈ E(F q).

Output: kP + lS.

1. Precomputation. Compute iP and iS for all i ∈ [0, 2 w − 1].
2. Q K 1−d P.

3. Q Q L 1−d S.
4. for i from d − 2 down to 0 do

4.1 Q 2 w Q.
4.2 Q Q + K i P.

4.3 Q Q + L i S.
5. Return(Q).

Storage: 2 1+w − 2 points.

Precomputation: 2(w-1) D + 2(2 w − w − 1) A.

Expected running time: w(d − 1) D + (2d − 1). w

w

2

2

2
)12(−

A

In general, if different basis and/or
representations are used for k and l, we have
Storage: 2t points, where 2 2−w ≤ t ≤2 1−w depending on
the particular window algorithm used as discussed in
Section 2.1.3.
Precomputation: 2t point operations (A or D).

Expected running time: (n − 1) D + 2
iw

n
+

 A, where 1

2≤≤ i depending on the algorithm

2. Koblitz curves

Koblitz curves [15]—originally named anomalous binary
curves—are the curves E a , a ∈ {0, 1}, defined over

 F 2 Ea: y 2 + xy = x 3 + ax 2 + 1, (2.6)

which is a special case of (2.3) where b = 1. E a (F m
2) is

the group of F m
2 -rational points on E a . Let μ = (−1) a−1

that is μ ∈ {−1, 1}. The order of the group is computed as
 # Ea (F m

2) = 2 m + 1 − V m , (2.7)

where {Vh} is the Lucas sequence defined by
V 0 = 2, V 1 = μ and V 1+h

 = μV h − 2V 1−h for h ≥ 1.

The value of m is chosen to be a prime number
so that # Ea (F m

2) = h · u is very nearly prime, that is u >

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

450

2 is prime and h = 3 − μ. The main advantage of Koblitz
curves when used in public-key cryptography is that
scalar multiplication of the points in the main subgroup,
the group of order u, can be performed without the use of
point doubling operations . This is due to the following
property. Since these curves are defined over F m

2 then if

 P = (x, y) is a point on E a , then the point (x 2 , y 2) is on
the curve, as well. That is the Frobenius (squaring, in this
case) endomorphism _ : E a (F 2 m) E a (F 2 m) defined
by
(x, y) a (x 2 , y 2), ∂a ∂
 is well defined. It can also be verified by point addition
on E a tha

 (x 4 , y 4) + 2(x, y) = μ · (x 2 , y 2).
 Hence, the squaring map can be considered as a
multiplication by the complex number τ
Satisfying τ 2 + 2 = μτ , (2.8)

 that is τ =
2
1

(μ + 7−).

The norm of τ is 2. Thus, it is beneficial to represent the
key k as an element of the ring Z[τ],

 K= ∑
−

=

1

0

l

i

i
ik τ (2.9)

for some l. We can therefore carry the scalar
multiplication kP of a point P on E a more efficiently by
replacing the doubling operation in the double-an-add
algorithm by the squaring map. In [25], Solinas has shown
how to represent k as in (2.9) in its τ -adic non adjacent
form (τ NAF) where k i ∈ {−1, 0, 1} and k 1+i k i = 0 for

 i ≥ 0abusing the notation, we will refer to k i as a sbit.
However, this results in l ≈ 2m. Therefore, he proposed a
reduced τ -adic non adjacent form (RTNAF) for k where
k is reduced modulo δ = (τ 1−m)/(τ −1), hence l = m+ a.
He has proved that in a τ NAF representation the number

of 0s is
3
2

 on average. He also mentioned that 1 and -1

are equally likely on average.

3. Power and Electromagnetic Analysis
Attacks on ECCs

 The elliptic curve scalar multiplication
 Q = kP, where both P and Q are points on the curve and k
is an integer, is the fundamental computation performed
in ECCs. Usually both P and Q are public information and
k is the secret key stored securely in he cryptosystem. The
security of the system lies in the difficulty of extracting k

from P and Q, which is the hard problem known as EC
discrete logarithm problem (ECDLP).

However, the mathematically proved security of
a cryptosystem does not imply its implementation security
against side-channel attacks. Among those attacks are
those that monitor the power consumption and or the
electromagnetic emanations of a device, e.g., a smart card
or a handheld device, and can infer important information
about the instructions being executed or the operands
being manipulated at a specific instant of interest.

These attacks are broadly divided into two
categories; simple and differential analysis attacks. We
will refer to the former category as SPA attacks and the
latter as DPA attacks. Though SPA and DPA are the
acronyms for simple power analysis and differential
power analysis, respectively, are used in this thesis to
include simple and differential electromagnetic analysis as
well due to their extensive usage in the literature. Also, in
subsequent discussions, we may only focus on power
analysis attacks, since the countermeasures that we are
interested in were proposed to prevent information
leakage on side-channels, the power consumption and the
electromagnetic emanations.

Power analysis attacks use the fact that the
instantaneous power consumption of a hardware device is
related to the instantaneous computed instructions and the
manipulated data. The attacker could measure the power
consumption during the execution of a cryptographic
algorithm, store the waveform using a digital oscilloscope
and process the information to learn the secret key.
Kocher et al., in [16], first introduced this type of attack
on smart cards performing the DES operation. Then
Messerges et al. [19] augmented Kocher’s work by
providing further analysis and detailed examples of actual
attacks they mounted on smart cards.

In general, SPA attacks are those based on

retrieving valuable information about the secret key from
a single leaked information—power consumption or
electromagnetic emanation—trace. On the other hand,
DPA attacks generally include all attacks that require
more than one such trace along with some statistical
analysis tools to extract the implicit information from
those traces.

3.1 SPA Attack on ECCs and its
Countermeasures

Coron [3] has transferred the power analysis
attacks to ECCs and has shown that an unaware
implementation of EC operations can easily be exploited
to mount an SPA attack. Monitoring of the power
consumption enables us to visually identify large features
of an ECC implementation such as the main loop in
Algorithms 2.2 and 2.1. Moreover, it may also enable to

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

451

recognize the exact instruction that has been executed. For
example, if the difference in power consumption between
point doubling (D) and point addition (A) is obvious in
their respective power traces, then, by investigating one
power trace of a complete execution of a double-and-add
algorithm, the bits of the scalar k are revealed. That is,
whenever a D is followed by A, the corresponding bit is
k i = 1, otherwise if D is followed by another D, then k i
= 0. This sequence of point operations is referred to as the
DA sequence.

Window methods process the key on a digit
(window) level. The basic version of this method, that is
where _ = 0 in Section 2.1.3, is inherently uniform since
in most iterations, w D operations are followed by 1 A,
except for possibly when the digit is 0. Therefore, fixed-
sequence window methods were proposed [20;23;27] in
order to recode the digits of the key such that the digit set
does not include 0.

3.2 DPA Attack on ECCs and its
Countermeasures

When the relation between the instructions
executed by a cryptographic algorithm and the key bits is
not directly observable from the power signal, an attacker
can apply differential power analysis (DPA). DPA attacks
are in general more threatening and more powerful than
SPA attacks because the attacker does not need to know
as many details about how the algorithm was
implemented. The technique also gains strength by using
statistical analysis and digital signal processing techniques
on a large number of power consumption signals to
reduce noise and to amplify the differential signal. The
latter is indicated by a peak, if any, in the plot of the
processed data. This peak appears only if the attacker’s
guess of a bit or a digit of the secret key is correct. The
attacker’s goal is to retrieve partial or full information
about a long-term key that is employed in several ECSM
executions.

 As for the SPA attack, Kocher et al. were the
first to introduce the DPA attack on a smart card
implementation of DES [16]. Techniques to strengthen the
attack and a theoretical basis for it were presented by
Messerges et al. in [18;3,19]. Coron applied the DPA
attack to ECCs [3].

In order to resist DPA attacks, it is important to
randomize the value of the long-term key involved in the
ECSM across the different executions. Some of the
countermeasures that were based on randomizing the key
representation [22;12] were proven to be inadequate since
the intermediate point computed in the accumulator Q at
certain iteration remained one of two possible values [11].
The constancy of the value of this intermediate point is an
integral part in the success of first-order DPA attacks.

A potential DPA countermeasure is known as
key splitting [14]. It is based on randomly splitting the
key into two parts such that each part is different in every
ECSM execu+tion. An additive splitting using subtraction
is attributed to Clavier and Joye [CJ01]4. It is based on
computing

 kP = (k − r)P + rP, (I)
The authors mention that the idea of splitting the data was
abstracted in [5]. where r is a n-bit random integer, that
is, of the same bit length as k. Alternatively, Ciet and Joye
[8] suggest the following additive splitting using division,
that is, k is written as
 k = ⎣ ⎦rk / + (k mod r). (1)

Hence, if we let k 1 = (k mod r), k 2 2 = ⎣ ⎦rk / and S =

rP, we can compute KP = k 1 p + k 2 P (II)
where the bit length of r is n/2. They also suggest that (II)
should be evaluated with Shamir-Strauss method as in
Algorithm 2.3. However, they did not mention whether
the same algorithm should be used to evaluate (I). The
following multiplicative splitting was proposed by
Trichina and Bellezza [0] where r is a random integer
invertible modulo u, the order of P. The scalar
multiplication kP is then evaluated as
 kP = [kr 1− (mod u)] (rp) (III)
To evaluate (III), two scalar multiplications are needed;
first R = rP is computed, then kr 1− R is computed.

4. Key Splitting Methods

4.1. Introduction

We discuss different the forms of key splitting along with
their strengths and weaknesses. We also discuss the
candidate SPA-resistant algorithms and compare the
resulting performance when combined with each form of
key splitting. At the end of the chapter, we present
countermeasures to DPA attacks on the ECDSA and the
ECMQV algorithms.

This approach was suggested by Clavier and
Joye in [CJ01] and revisited by Ciet [Cie03] as follows. In
order to compute the point kP, the n-bit key k is written as

 k = k 1 + k 2 ,

such that k 1 = k − r and k 2 = r, where r is a random
integer of length n bits. Then kP is computed as
 kP = k 1 P + k 2 P. (5.1)

It is important to note that each of the terms of
(5.1) should be evaluated separately and their results
combined at the end using point addition. That is the
multiple-point multiplication methods that use a common
accumulator to save doubling operations such as

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

452

Algorithms 2.3 and 2.4—whether at the bit level (w ≡ 1)
or window level (w > 1)-should not be used, even when a
countermeasure against SPA is employed. This
observation is based on the following lemma. Let
k ab→ denote ⎣ ⎦abk 2)2(mod 1+ or, simply, the bits of k
from bit position b down to bit position a, with b ≥ a.

 Lemma 4.2 Let splitting scheme I in (6.1) be evaluated
using Algorithm 2.3 with w = 1 (d = n). Then, at the end
of some iteration j, 0 < j ≤ n − 1, there are only two
possible values for Q, those are [k jIn −−] P or [k jIn −− −
1] P.
Proof. Algorithm 2.3—and similarly Algorithm 2.4—
computes the required point by scanning
 k 1 = (k1 1−n , . . . , k 1 0)2 and

k 2 = (k 2 1−n , . . . , k 2 0) 2 from the most significant end
down to the least significant end. Hence, at the end of
iteration j, the accumulator Q contains the value
Q = k jIn −−1 P + k jIn −−2 P (5.2)

 = [k jIn −−1 + k jIn −−2] P.

We can write k, k1 and k 2 as

 k = k jjIn −−
2 j + k 01−−j k i =

k i jjIn −−
2 j + k i 01−−j (5.4)

 Since k = k1 + k 2 we have

 k 1 0−−Ij + k 2 0−−Ij j = k 0−−Ij + b 2 j where b ∈ {0,
1} (5.5)
and
 k 1 jIn →− + k 2 jIn →− = k jIn →− -b
 The DPA attack would proceed in the same way,
whether the algorithm processes a single bit or a digit per
iteration, though it would be more involved in the latter
case depending on the digit size. The attacker can double
the number of traces gathered and compute the necessary
intermediate points as if there was no countermeasure in
place.

4.3 Modular Division:

n the following algorithm, a and b are integers internally
represented each by an array of w-bit digits. The length of
each array is d = ⎡ ⎤wn / digits. Note that for the modular
inversion, as mentioned by Savas and Ko¸c [25], b needs
not be less than the modulus u, but be in [1, 2 m −1], where
m = dw. Also note that the values R 2 mod u, where R =
2 m , and u’ are computed once per modulus, i.e., per curve.

Algorithm 4.4. Modular division

Input: u: a n-bit prime, d = ⎡ ⎤wn / , m = dw, R 2 (mod u)

= (2m) 2 (mod u), u’ = u 1− mod 2 w , a ∈ [1, p − 1] and
b ∈ [1, 2 m − 1].
Output: ab 1− (mod u).
1. Compute b 1− R (mod u) using Algorithm 6.6.
2. Compute x = a(b 1− R)R 1− (mod u) using Algorithm 6.5.
3. Return(x).
The following algorithm is Algorithm 14.36 in [21]. We
include it here for the sake of completeness.

Algorithm 4.5Montgomery multiplication [21]

Input: u: a n-bit prime, d = ⎡ ⎤wn / , m = dw, u’ = u 1−

mod 2 w , x = (x 1−d . . . , x0)2 w and

y = (y 1−d . . . y0)2 w .

Output: xy2 m− (mod u).
1. A 0. // A = (ad, a 1−d , . . . , a0)2w
2. for i from 0 to d − 1 do
2.1 ui (a 0 + x i y 0) mod 2 w

2.2 A (A + x i y 0 + u i m)/ 2 w
3. if (A > u) then
A A u.
4. Return(A).
The following algorithm was presented by Savas and
Ko¸c in [25] as the modified Kaliski-Montgomery
Inverse.

Algorithm 4.6. Montgomery inversion
Input: u: a n-bit prime, d = ⎡ ⎤wn / , m = dw, R 2 (mod

u) = (2 m) 2 (mod u), u ' = u 1− mod 2 w and b ∈ [1, 2 m −
1].
Output: b 1− R (mod u).
1. Compute f and x = b 1− 2f (mod u) using Algorithm 6.7,
 Where n ≤ f ≤ m + n.
2. if (f ≤ m) then
2.1 x xR 2 R 1− (mod u) using Algorithm
6.5. // x = b 1− 2 fm+ (mod u)
2.2 f f + m. // f > m, x = b−12f (mod u)
3. x x2 fm−2 R 1− (mod u) using Algorithm 6.5.
 // x = b 1− 2 f 2 fm−2
2 m− = b 1− 2 m (mod u)
4. Return(x).

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

453

4.7. Existing System:

 Nevine Maurice Ebied’s modified the almost
Montgomery inverse algorithm of [ScKK00] to be
resistant to SPA attacks as in the following algorithm.
SwapAddress(c, d) denotes interchanging the memory
addresses of the integer’s c and d. This is an inexpensive
operation, hence its usage as a dummy operation to
balance the branches of the main loop. We implemented
the “if” statement in steps 3.4 and 3.5 such that the
number of conditions checked per loop iteration is always
three. In assembly language, this can be easily ensured.
Written in Java, step 3.4 is implemented as
if((xLSb = = 0) && (xLSb = = 0) &&(xLSb = = 0)).
If the condition is false, due to short-circuit evaluation,
the flow control will move to the following “if” after the
first check, otherwise, it will perform the check three
times. The following “if”—step 3.5—is similar but with
the condition checked only two times
 if((yLSb = = 0) && (yLSb = = 0)).

Algorithm 4.7. Almost Montgomery inverse

Input: u: a n-bit prime,
d = ⎡ ⎤wn / , m = dw and b ∈ [1, 2 m − 1].

Output: f and b 1− 2 f (mod u), where n ≤ f ≤ m + n.
1. x← u; y ← b; r ← 0; s ← 1.
2. f ← 0.
3. while (v > 0) do
3.1 U ← x − y; V← −U.
3.2 T ← r + s.
3.3 f ← f + 1.
3.4 if (((lsb(x) = 0))) then //
This “if” is special
SwapAddress(x, U); SwapAddress
(x, U) // dummy
SHR(x); SHL(s).
3.5 else if ((lsb(y) = 0)) then //
This “if” is special
SwapAddress(y, V); SwapAddress
(y, V) // dummy
SHR(y); SHL(r).
3.6 else if (V >= 0) then
SwapAddress(y, V);
SwapAddress(s, T)
SHR(y); SHL(r).
3.7 else
SwapAddress(x, U);
SwapAddress(r, T)
SHR(x); SHL(s).
4. T ← u − r; V← u + T .
5. if (T > 0) then
Return(f, T)
else

Return(f, V).

The drawback of this algorithm is that an SPA of

the number of iterations of the main loop directly leaks
the value of f. If f is uniformly distributed, the search

space of b is reduced from 2 w to 2
mm 2log− , which is not a

significant reduction. It is interesting to study how f is
actually distributed.

4.8.Proposed System

We modified the Nevine Maurice Ebied’s Almost
Montgomery inverse and A NEW VARIANT of
[ScKK00] to be resistant to SPA attacks as in the
following algorithm.
Linear Congruence’s

 A congruence of the form

 ax ≡ b (mod m)

 where m is a positive integer, a and b are integers , and x
is a variable, is called Linear congruence . Such
congruences arise throughout number theory and its
applications.

Definition : If a and b are integers, then a is said to be
congruent to b modulo n, write a ≡ b (mod n), if n
divides (a – b). The integer n is called the modulus of the
congruence.
Definition : The equivalence class modulo n of an
integer b is the set of all integers congruent to b modulo n.
Definition : The ring of integers modulo n, denoted by
Zn , is the set of (equivalence classes of) is the integers
{0,1,2,, n–1}. Addition, subtraction, and multiplication in
Zn are performed modulo n.

Algorithm 4.9: Modified Montgomery Inversion

Input: u: a n-bit prime, d = ⎡ ⎤wn / ,

m = dw, R 2 (mod u) = (2 m) 2 (mod u), u ' = u 1− mod 2 w
and b ∈ [1, 2 m − 1].
t: No of precomputed points 1≤ t ≤n
w: Window width Least significant of bit 2 zw−

12 −≤ wt
Output: b 1− R (mod u).

1. Select a number b such that () 12, =mb

2. Compute b 1− such that bb 1− ≡ 1(mod 2 m)
3. If f > m then x = b 1− 2 f (mod u) Q

x = b 1− 2 f (mod u)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

454

4. If f ≤ m then
5. x ← R)(mod12 uR − Q R = 2 m

6. x = b 1− 2 fm+ (mod u)
f ← m+f

7. Return(x)

 In the modified Montgomery Inverse
Algorithm of Savas and Koc , we select f such that gcd
() 12, =mb , m ≤ f ≤ m +n . So b is not reduced from

2 m to 2
mm 2log− . Therefore this is significant reduction

and hence f is not uniformly distributed and it can’t leaks
the value

5. Conclusion

We modified the Nevine Maurice Ebied’s
Almost Montgomery inverse and A New Variant of
[ScKK00] of Montgomery Inversion i.e Modified
Montgomery Algorithm to be resistant to SPA attacks .
Also the proposed algorithm of Modified Montgomery
Algorithm eliminate an SPA of the number of iterations of
the main loop directly leaks the value of f and f is
uniformly distributed with a significant reduction.

Reference
[1] Nevine Maurice Ebied’s Key Randomization

Counter Measures To Power Analysis Attacks On
Elliptic Curve Cryptosystems Ph.D. thesis,
University of Waterloo, Ontario, Canada, 2007

[2] D. Agrawal, B. Archambeault, J. R. Rao & P.
Rohatgi. The EM Side- Channel(s): Attacks and
Assessment Methodologies. Internet Security Group,
IBM Watson Research Center.ps. 2, 3

[3] J.-S. Coron. “Resistance against differential power
analysis for elliptic curve cryptosystems”. In
Cryptographic Hardware and Embedded Systems –
CHES ’99, LNCS, vol. 1717, pp. 292–302.
Springer-Verlag, 1999. 2, 22, 24, 158, 170, 180, 181,
186

[4] M. Ciet. Aspects of Fast and Secure Arithmetics for
Elliptic Curve Cryp- tography. Ph.D. thesis,
Universit´e Catholique de Louvain, 2003. 120, 170,
171, 180

[5] S. Chari, C. S. Jutla, J. R. Rao & P. Rohatgi.
“Towards sound approaches to counteract power-
analysis attacks.” In Advances in Cryptology –
CRYPTO ’99, LNCS, vol. 1666, pp. 398–412.
Springer-Verlag, 1999. 24

[6] [Cie03] M. Ciet. Aspects of Fast and Secure
Arithmetics for Elliptic Curve Cryp- tography. Ph.D.
thesis, Universit´e Catholique de Louvain, 2003. 120,
170, 171, 180

[7] C. Clavier & M. Joye. “Universal exponentiation
algorithm a first step towards provable SPA-
resistance”. In Cryptographic Hardware and
Embedded Systems – CHES ’01, LNCS, vol. 2162,
pp. 300–308. Springer-Verlag, 2001. 4, 24, 120

[8] M. Ciet & M. Joye. “(Virtually) free randomization
techniques for elliptic curve cryptography”. In
Information and Communications Security –
ICICS ’03, LNCS, vol. 2836, pp. 348–359. Springer-
Verlag, 2003. 4, 25, 122, 164, 181

[9] M. Ciet, J.-J. Quisquater & F. Sica. “Preventing
differential analysis in GLV elliptic curve scalar
multiplication”. In Cryptographic Hardware and
Embedded Systems – CHES ’02, LNCS, vol. 2523,
pp. 540–550. Springer- Verlag, 2003. 4, 25, 126, 173,
179

[10] T. ElGamal. “A public key cryptosystem and a
signature scheme based on discrete logarithms”.
IEEE Transactions on Information Theory,
31(4):469– 472, 1985.

[11] P.-A. Fouque, F. Muller, G. Poupard & F. Valette.
“Defeating countermeasures based on randomized
BSD representations”. In Cryptographic Hardware
and Embedded Systems – CHES ’04, LNCS, vol.
3156, pp. 312–327. Springer-Verlag, 2004. 4, 24, 76,
101, 174

[12] J. Ha & S. Moon. “Randomized signed-scalar
multiplication of ECC to resist power attacks”. In
Cryptographic Hardware and Embedded Systems –
CHES ’02, LNCS, vol. 2523, pp. 551–563. Springer-
Verlag, 2002. 3, 24, 27, 31, 40, 58, 70, 75, 93, 101,
173

[13] D. Hankerson, A. Menezes & S. Vanstone. Guide to
Elliptic Curve Cryptography. Springer-Verlag, 2004.
8, 9, 10, 11, 18, 130, 131, 138, 145, 168, 197 [HP] C.
Heuberger & H. Prodinger. Personal communication.
August, 2003. 210 [HVZ02] V. C. Hamacher, Z. G.
Vranesic & S. G. Zaky. Computer Organization.
Boston: McGraw-Hill, fifth ed., 2002. 136

[14] M.Joy “ Defenes against side channel analysis”. In
I.F.Blake G. Seroussi & N.P. smart, editors,
Advances in Elliptic Curve Cryptography, chap5.
Cambridge University Press, 2005. 2, 24.

[15] N. Koblitz. “CM curves with good cryptographic
properties”. In Advances in Cryptology –
CRYPTO ’91, LNCS, vol. 576, pp. 279–287.
Springer-Verlag, 1992. 19, 8

[16] P. Kocher, J. Jaffe & B. Jun. “Differential power
analysis”. In Advances in Cryptology –
CRYPTO ’99, LNCS, vol. 1666. Springer-Verlag,
1999. 2, 22, 24, 172, 194

[17] A. Miyaji, T. Ono & H. Cohen. “Efficient elliptic
curve exponentiation”. In Information and
Communication Security, First International
Conference – CICS ’97, LNCS, vol. 1334, pp. 282–

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

455

290. Springer-Verlag, 1997. 15 [Mon87] P.-L.
Montgomery. “Speeding the Pollard and elliptic
curve methods of factorization”. Mathematics of
Computation, 48:243–264, 1987. 23, 131, 161

[18] T. S. Messerges, E. A. Dabbish & R. H. Sloan.
“Investigations of power analysis attacks on smart
cards”. In USENIX Workshop on Smart- card
Technology, pp. 151–161. May 1999. 2, 24, 172

[19] [T. S. Messerges, E. A. Dabbish & R. H. Sloan.
“Examining smart card security under the threat of
power analysis attacks”. IEEE Transactions on
Computers, 51(5):541–552, May 2002. 22, 24

[20] B. M¨oller. “Securing elliptic curve point
multiplication against sidechannel attacks”. In
International Security Conference – ISC ’01, LNCS,
vol. 2200, pp. 324–334. Springer-Verlag, 2001.
Extended version.pdf. 23, 164,196

[21] A. J. Menezes, P. C. van Oorschot & S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press,
1996. 139

[22] E. Oswald & M. Aigner. “Randomized addition-
subtraction chains as a ountermeasure against power
attacks”. In Cryptographic Hardware and Embedded

[23] Systems – CHES ’01, LNCS, vol. 2162, pp. 39–50.
Springer-Verlag, 2001. 3, 24, 27, 28, 70, 173

[24] K. Okeya & T. Takagi. “The width-w NAF method
provides small memory and fast elliptic scalar
multiplications secure against side channel attacks”.
In Topics in Cryptology – CT-RSA ’03, LNCS, vol.
2612, pp. 328– 343. Springer-Verlag, 2003. 23, 128,
164, 197

[25] P. Rohatgi, D. Agrawal, B. Archambeault, S. Chari
& J. R. Rao. “Power, EM and all that: Is your crypto
device really secure?” A talk given as part of the 7th
Workshop on Elliptic Curve Cryptography – ECC
2003, 2003. 3 G. W. Reitwiesner. “Binary
arithmetic”. Advances in Computers, 1:231– 308,
1960. 14, 15, 31, 51, 58, 70

[26] E. Savas & C¸ etin Kaya Koc¸. “The Montgomery
modular inverserevisited.” IEEE Transactions on
Computers, 49(7):763–766, 2000. 138, 139, 140

[27] J. A. Solinas. “Efficient arithmetic on Koblitz
curves”. Designs, Codes and Cryptography, 19:195–
249, 2000. 4, 14, 15, 20, 37, 46, 50, 58, 70, 89, 90,
91, 92, 95, 110, 112

[28] N. Th´eriault. “SPA resistant left-to-right integer
recodings”. In Selected Areas in Cryptography –
SAC ’05, LNCS, vol. 3897, pp. 345–358. Springer-
Verlag, 2006. 23, 128, 133, 164

 Authors Biography

 I am E.kesavulu Reddy
 working as Assistant Professor
 in Dept. of. Computer Science
 (MCA) SVU College of
 CMIS, Tirupati (AP)and also
 worked as a Head in Dept
 of Computer Applications
 at SiTech Tirupati (AP) in
 India. I have six years
 experience in teaching and
 three years in the area of
 Cryptography and Network
 Security. I obtained MCA
 degree with First Class
 from SV University and
 M.Phil 2nd Class from
 Madurai Kamaraj University,
 Madurai. Now I am doing the
 PhD in Part-Time in
 Dept.of.Computer Science
 under the guidance of Prof. P.
 Govinda Rajulu in Dept.of
 Computer Science
 SV University Tirupati

