
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009 
 

 
 

446

Manuscript received  February 5, 2009 

Manuscript revised  February 20, 2009 

A New Variant Nevine Maurice Ebied’s Key Randomization 
Counter Measures to Power Analysis Attacks on Elliptic 

Curve Cryptosystems 
 

ABSTRACT 
It is essential to secure the implementation of 
cryptosystems in embedded  devices against side-channel 
attacks. Namely, in order to resist differential (DPA) 
attacks, randomization techniques should be employed to 
decorrelate the data processed by the device from secret 
key parts resulting in the value of this data. This peak 
appears only if the attacker’s guess of a bit or a digit of 
the secret key is correct. The attacker’s goal is to retrieve 
partial or full information about a long-term key that is 
employed in several ECSM executions. In this paper we 
proposed secret key to calculate the number of bits or 
digits processed in an n-bit prime integer for SPA attacks 
in the execution of elliptic curve scalar multiplication 
executions. 
Key Words: Elliptic curve cryptography, Simple power 
Analysis, Differential Power analysis 
 
1. Elliptic Curve Cryptosystems and Side-
Channel Attacks 
 
1.1.Introduction 
 
Elliptic curve cryptosystems (ECCs) are suitable for 
implementation on devices with limited memory and 
computational capability such as smart cards and also 
with limited power such as wireless handheld devices. 
This is due to the fact that elliptic curves over large finite 
fields provide the same security level as other 
cryptosystems such as RSA for much smaller key sizes. 

Considering power analysis attacks, there are two 
main types that were presented by Kocher et al. These are 
simple and differential power analysis attacks (referred to 
as SPA and DPA respectively).  

 
Both of them are based on monitoring the power 

consumption of a cryptographic token while executing an 
algorithm that manipulates the secret key. The traces of 
the measured power are then analyzed to obtain 

significant information about the key. In some cases the 
key can be totally compromised and in others the search 
space of the key can be reduced to a computationally 
affordable size. In SPA, a single power trace can reveal 
large features of the algorithm being executed such as the 
iterations of the loop. Moreover, cryptosystem-specific 
operations such as point doubling and adding in ECCs can 
be identified [3]. In order to resist this SPA attack, the 
steps of the algorithm need to be uniform across different 
executions. 
 

Hence, DPA attacks are, in general, more 
powerful than the SPA attack. Randomization of the data 
processed at some instant is essential in resisting this type 
of attacks. Electromagnetic emanations present another 
powerful side channel since the information is leaked 
from the device via more than one channel and is a 
function of space as well as of time. In [2], Agrawal et al. 
presented both simple (SEMA) and differential (DEMA) 
electromagnetic analysis attacks on smart cards and on a 
Palm pilot in [21]. In [AARR], they conclude that 
software countermeasures rely on signal information 
reduction, which is achieved by “randomization and/or 
frequent key refreshing within the computation”, which 
agrees with the concept of resisting DPA attacks.  
 
1.2. Elliptic Curve Cryptosystems 
 
Let K be a finite field and E be an elliptic curve (EC) over 
K defined by the following Weierstrass equation    
  E: y 2  + a 1 xy + a 3 y = x 3  + a 2 x 2  + a 4 x   + a 6   (2.1)  

where a i ∈K and Δ ≠ 0, where Δ  is the discriminant of 
E and is defined in  [13 Section 3.1]. 

Let L be an extension field of K. Then E(L) 
denotes the set of L-rational points (x, y) on E, where (x, 
y) 2 L × L and satisfy (2.1), together with the point at 
infinity ∂.  The addition of two points on the curve is 
performed using a chord-and-tangent rule. E(L) and this 
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addition operation form an abelian group where ∂ is the 
identity. The point addition operation consists of finite 
field operations carried in the underlying field K. We 
denote the field inversion by I, the multiplication by M, 
the squaring by S. The point addition is denoted by A. 
When the two operands of the addition are the same point, 
the operation is referred to as point doubling and is 
denoted by D. 

 
1.2.1 Elliptic curves over prime fields 
 
If K = Fp, where p > 3 is a prime, (2.1) can be simplified 
to 1 
                 E : y 2  = x 3  + ax + b,             (2.2)  
 
where a and b∈Fp. The discriminant of this curve isΔ   = 
−16 (4a3+27b2). The negative of a point P = (x, y) is −P = 
(x,−y) such that P + (−P) =   ∂.  This simplification is 
generally applicable when the characteristic of K is not 2 
or 3. 

The affine coordinate (A) representation of a 
point P = (x, y) can be replaced by projective coordinates 
representations in order to render the point addition and 
doubling operations less costly in terms of field operations. 
The following representations are the best known  
• standard (homogeneous) projective coordinates (P); the 
projective point  (X : Y : Z), Z ≠ 0, corresponds to the 
affine point (X/Z, Y/Z), ∂ corresponds to   (0 : 1 : 0) and 
the negative of (X : Y : Z) is (X : −Y : Z). • Jacobian 
projective  coordinates  (J ); the projective point (X : Y : 
Z), Z 6= 0, corresponds to the affine point (X/Z2, Y/Z3), 
O corresponds to (0 : 1 : 0) and the negative of (X : Y : Z) 
is  (X : −Y : Z). 
• Chudnovsky coordinates (C); the Jacobian point (X : Y : 
Z) is represented as   (X : Y : Z : Z 2  : Z 3 ). 
 
1.2.2 Elliptic curves over binary fields  
 
If K = F∈ m, (2.1) can be simplified to   
  E : y 2  = x 3  + ax + b,,       (2.3) 

where a and b ∈  F 2 m The discriminant of this curve is 
Δ  = b and the negative of a point P = (x, y) is −P = (x, x 
+ y). Such a curve is known as  
non-super singular. 

Standard and Jacobian projective coordinates are 
used to represent points on this type of curves in the same 
way as on the prime curves with the difference that the 
negative of (X : Y : Z) is (X : X + Y : Z).  

 
1.2.3 Elliptic Curve Scalar Multiplication  
 
Scalar multiplication in the group of points of an elliptic 
curve is analogous to exponentiation in the multiplicative 

group of integers modulo a fixed integer. Thus, it is   the 
fundamental operation in EC-based cryptographic systems. 
The scalar multiplication, denoted kP, is the result of 
adding the point P to itself k times, where k is a positive  
integer, that is  kP = P + P + · · · + P | {z } k copies and 
−kP = k(−P). u is said to be the order of P if u is the 
smallest integer such that uP = ∂. 
 

In many applications, the scalar k is a short-term 
(ephemeral ) or long-term (private) secret (key). From 
now on, we will always assume that k is a n-bit integer, 
where n is the bit length of u, the order of the group of 
points of interest in an ECC. Also the point P may be 
fixed (e.g., the base point of the ECC) or unknown a priori. 

 
Let (k 1−n , k 2−n , . . . , k 1 , k 0 ) 2 2 be the binary 

representation of k,  
i.e., k i  ∈  {0, 1} for 0  ≤ i < n − 1. Thus,  

           kP = ( ∑
−

=

1

0

n

i
k i 2 i )P 

                 = 2(2(· · · 2(2(k 1−n  P) + k 2−n P) + · · · ) 

                            + k 1 P) + k 0 P   (2.4) 

                 = (k 1−n 2 1−n P) + · · · (k 1 2P) + (k 0 P)   (2.5) 
 

Hence, kP can be computed using the 
straightforward double-and-add approach in n iterations. 
In fact, there are two algorithms that can be used. 
Algorithm 2.1, which corresponds to the expansion in 
(2.4), scans the bits of the scalar k from left to right, i.e., 
from the most significant bit to the least significant one. 
Algorithm 2.2, corresponding to (2.5), scans the bits of k 
from right to left. These algorithms are   analogous to the 
square-and-multiply algorithms employed in 
exponentiation-based cryptosystems.  

 
Algorithm 1.1. Left-to-Right Double-and- Add 
Algorithm 
Input: k = (k 1−n . . . k 0 ) 2 and  P ∈  E(F q ). 

Output: KP. 
1. Q   ∂ 
2. for  i  from n − 1 down to 0 do 
2.1 Q   2Q. 
2.2 if (k i = 1) then 

      Q   Q + P. 
3. Return (Q). 
 
Algorithm 1.2. Right-to-Left Double-and- Add 
Algorithm 

 Input: k = (k 1−n , k 0 )2 and  P ∈  (F q ). 

Output: KP. 
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1. Q    ∂;     R    P. 
2. for i from 0 to n − 1 do 
2.1 if (k i  = 1) then 
     Q   Q + R. 
2.2 R   2R. 
3. Return(Q). 
 
The expected number of point addition (A) and point 
doubling (D) operations performed in the binary 
algorithm  (left-to-right or right-to-left) 
is 

  (n − 1)   D + 
2
n

  A. 

 
If affine coordinates are used, the field operation 

count is 2.5n S + 3n M + 1.5n I. Algorithm 2.1 is usually 
preferred since one of the addition operands is the base 
point P which is constant through the algorithm. This has 
the advantage of saving a register if P is a fixed point 
known a priori. Moreover, it allows the use of mixed 
coordinates addition. That is, when one of the operands to 
the addition operation is fixed, the Z-coordinate of that 
operand is set to and remains 1, this reduces the number 
of field multiplications needed to perform the point 
addition as illustrated in Table 2.1 and Table 2.2. 

 
Hence if Q is stored in Jacobian coordinates and 

P in affine coordinates, Jacobian coordinates can be used 
for doubling in Algorithm 2.1 and mixed Jacobian-affine 
for the  Elliptic Curve  Cryptosystems and Side-Channel 
Attacks addition. The field operation count is then 8n M + 
5.5n S + (1 I + 3 M + 1 S), where the last three terms are 
needed to convert the resulting point back to affine 
coordinates.  

 
1.2.4.Non-Adjacent form (NAF)  
 
The key k can be represented in Non-adjacent Form 
(NAF) k’ = (k’ n   , . . . , k1 , k 0  )2, where k i  ∈  {0,±1} 
and no two consecutive digits are non zero; that is, 
k 1+i k’ i = 0  
for i ≥ 0 [Rei60; Sol00]. The NAF of an integer is unique 
and is at most one digit longer than its binary 
representation. The average density of nonzero digits 
among all NAFs of length n is n/3. 
 

This key representation requires the slight 
modification of the binary algorithm that is to subtract, 
rather than add, P when k’ i  = −1, i.e., to add −P. This is 
advantageous for ECCs since the negative of a point can 
be obtained with a minor cost as we mentioned in Section 
2.1, e.g., a modular negation for curves over prime fields 

and a bit-wise XOR operation for curves over binary 
fields.  

 
1.2.5. Window methods  
 
This method is sometimes referred to as m−ary method. 
There are different versions of window methods [17;26]. 
What is common among them is that, if the window width 
is w, some multiples of the point P up to (2 w  − 1)P are  
precomputed and stored and k is processed w bits at a 
time. k is recoded to the  radix 2 w . k can be recoded in a 
way so that the average density of the nonzero digits in 
the recoding is 1/(w + ξ ), where   0 ≤≤ ξ  2 depends on 
the algorithm. Let the number of precomputed points be t, 
in the precomputation stage, each point requires either a 
doubling or an addition to be computed also depending on 
the algorithm.  
 

This ECSM method is suitable for unknown or 
fixed point P. The cost is Storage: t points, where 2 2−w   ≤ 
t ≤2 1−w   depending on the algorithm. 
 Precomputation: t point operations (A or D). 
 Expected running time:  

         (n − 1) D + n
ξ+w

n
 A,  

where 0≤ 2≤ξ  depending on the algorithm. Note that 
the number of doubling is between n − w and 
n − 1. 
 
1.2.6.Simultaneous multiple point multiplication  
 
This method is used to compute kP +lS where P may be a 
known point. This algorithm was referred to as Shamir’s 
trick in [10]. If k and l are n-bit integers, then their binary 
representations are written in a 2 × n matrix called the 
exponent array. Given width w, the values iP +jS are 
calculated for wji 2,0 <≤ . Now the algorithm performs 

d = ⎡ ⎤wn / iterations. In every iteration, the accumulator 
point is doubled w times and the current 2 × w window 
over the exponent array determines the precomputed point 
that is to be added to the   accumulator. 
 
Algorithm 1.3. Simultaneous multiple point 
multiplication (Shamir-Strauss method) 
Input: Window width w, d = ⎡ ⎤wn / , 

 k = (K 1−d , . . . ,K 1 ,K 0 ) w2
  l= (L 1−d , ..,L 1 ,L 0 ) w2

,   and P, S 

∈  E(F q ). 3Also according to [Ber01], it is originally due to 

Straus [Str64]. 
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Output: kP + lS. 
 
1. Precomputation. Compute iP + jS for     all    

i, j ∈ [0, 2 w  − 1]. 
2. Q  K 1−d P + L 1−d S. 
3. for i from d − 2 down to 0 do 

3.1 Q   2 w Q. 
3.2 Q   Q + (K i P + L i S). 
4. Return(Q). 

Storage: 2 w2  − 1 points. For w = 1, 3 points.  
For w = 2, 15 points. 
Precomputation:  

(2 )1(2 −w  − 2 1−w ) D + (3 · 2 )1(2 −w − 2 1−w − 1) A. 
For w = 1, 1 A. 
For w = 2, 1 D + 11 A. 
 
Expected running time:  

(d − 1)w D + w

w

2

2

2
12( −

d − 1) A. 

For w = 1, (n − 1) D +(
4
3

n − 1) A. 

For w = 2, (n − 1) D +( 
32
15

n -1) A.  

Using sliding windows can save about 1 4 of the 
precomputed points and decrease the number of additions 

to 
)3/1(+w

n
, which is about 9% saving for w ∈ {2, 3}. 

 
Interleaving method  
 
This method is also a multiple point multiplication 
method, that is we want to compute ∑ j

j Pk  for points 

P j  and integers k j . In the comb and simultaneous  
multiplication methods, each of the precomputed values is 
a sum of the multiples of the input points. In the 
interleaving method, each precomputed value is simply a 
multiple of one of the input points. Hence, the required 
storage and the number of point additions at the 
precomputation phase is decreased at the expense of the 
number of point additions in the main loop. This method 
is flexible in that each k j  can have a different 
representation, e.g., different window size, as if a separate 
execution of a window method is performed for each k j  
P j  with the doubling step performed jointly on a 
common accumulator, as shown in [12]. As an illustration, 
we provide the following algorithm that computes kP + lS 
where both k and l are represented to the same base 2 w . 

1.2. 7Algorithm 1.4. Interleaving method 
 
Input: width w, d = ⎡ ⎤wn / , 

 k = (K 1−d , . . . ,K 1 ,K 0 ) w2
  l= (L 1−d , . . . ,L 1 ,L 0 ) w2

, and  P, 

S ∈  E(F q ). 

Output: kP + lS. 
 

1. Precomputation. Compute iP and iS for all i ∈  [0, 2 w  − 1]. 
2. Q   K 1−d P. 

3. Q   Q L 1−d S. 
4. for i from d − 2 down to 0 do 

4.1 Q   2 w Q. 
4.2 Q   Q + K i P. 

4.3 Q   Q + L i S. 
5. Return(Q). 

Storage: 2 1+w  − 2 points. 

Precomputation: 2(w-1) D + 2(2 w  − w − 1) A. 

Expected running time: w(d − 1) D + (2d − 1). w

w

2

2

2
)12( −

A 

In general, if different basis and/or 
representations are used for k and l, we have 
Storage: 2t points, where 2 2−w   ≤ t ≤2 1−w   depending on 
the particular window algorithm used as discussed in 
Section 2.1.3. 
Precomputation: 2t point operations   (A or D). 

Expected running time: (n − 1) D + 2 
iw

n
+

 A, where 1 

2≤≤ i  depending on the algorithm 
 
2. Koblitz curves  
 
Koblitz curves [15]—originally named anomalous binary 
curves—are the curves E a , a ∈ {0, 1}, defined over 

 F 2  Ea: y 2  + xy = x 3  + ax 2 + 1,    (2.6) 

which is a special case of (2.3) where b = 1. E a  (F m
2 ) is 

the group of F m
2 -rational points on E a . Let μ = (−1) a−1  

that is μ ∈ {−1, 1}. The order of the group is computed as   
  # Ea (F m

2 ) = 2 m  + 1 − V m ,    (2.7) 

where {Vh} is the Lucas sequence defined by 
V 0  = 2, V 1  = μ and V 1+h   

   = μV h − 2V 1−h  for h ≥ 1. 

The value of m is chosen to be a prime number 
so that # Ea (F m

2 ) = h · u is very nearly prime, that is u > 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009 
 

 

450

2 is prime and h = 3 − μ. The main advantage of Koblitz 
curves when used in public-key cryptography is that 
scalar multiplication of the points in the main  subgroup, 
the group of order u, can be performed without the use of 
point doubling operations . This is due to the following 
property. Since these curves are defined over F m

2  then if   

 P = (x, y) is a point on E a , then the point (x 2 , y 2 ) is on 
the curve, as well. That is the Frobenius  (squaring, in this 
case) endomorphism _ : E a (F 2 m)  E a (F 2 m) defined 
by    
(x, y) a  (x 2 , y 2 ),   ∂a  ∂ 
 is well defined. It can also be verified by point addition 
on E a  tha 

     (x 4 , y 4 ) + 2(x, y) = μ · (x 2 , y 2 ). 
 Hence, the squaring map can be considered as a 
multiplication by the complex number τ  
Satisfying τ 2  + 2 = μτ , (2.8) 

  that is  τ  = 
2
1

(μ + 7− ). 

The norm of τ is 2. Thus, it is beneficial to represent the 
key k as an element of the ring Z[τ  ],  

 K= ∑
−

=

1

0

l

i

i
ik τ                                 (2.9) 

for some l. We can therefore carry the scalar 
multiplication kP of a point P on E a  more efficiently by 
replacing the doubling operation in the double-an-add 
algorithm by the squaring map. In [25], Solinas has shown 
how to represent k as in (2.9) in its τ -adic non adjacent 
form (τ NAF) where  k i  ∈ {−1, 0, 1} and k 1+i  k i = 0 for 

 i ≥ 0abusing the notation, we will refer to k i as a sbit. 
However, this results in l ≈ 2m. Therefore, he proposed a 
reduced τ -adic non adjacent form (RTNAF) for k where 
k is reduced modulo δ  = (τ 1−m )/(τ −1), hence l = m+ a. 
He has proved that in a τ NAF representation the number 

of 0s is 
3
2

 on average. He also mentioned that 1 and -1 

are equally likely on average.  
 
3. Power and Electromagnetic Analysis 
Attacks on ECCs 
 

 The elliptic curve scalar multiplication 
 Q = kP, where both P and Q are points on the curve and k 
is an integer, is the fundamental computation performed 
in ECCs. Usually both P and Q are public information and 
k is the secret key stored securely in he cryptosystem. The 
security of the system lies in the difficulty of extracting k 

from P and Q, which is the hard problem known as EC 
discrete logarithm problem (ECDLP).  

However, the mathematically proved security of 
a cryptosystem does not imply its implementation security 
against side-channel attacks. Among those attacks are 
those that monitor the power consumption and or the  
electromagnetic emanations of a device, e.g., a smart card 
or a handheld device, and can infer important information 
about the instructions being executed or the operands 
being manipulated at a specific instant of interest. 

These attacks are broadly divided into two 
categories; simple and differential analysis attacks. We 
will refer to the former category as SPA attacks and the 
latter as DPA attacks. Though SPA and DPA are the 
acronyms for simple power analysis and differential 
power analysis, respectively, are used in this thesis to 
include simple and differential electromagnetic analysis as 
well due to their extensive usage in the literature. Also, in 
subsequent discussions, we may only focus on power 
analysis attacks, since the countermeasures that we are 
interested in were proposed to prevent information 
leakage on side-channels, the power consumption and the 
electromagnetic emanations. 

Power analysis attacks use the fact that the 
instantaneous power consumption of a hardware device is 
related to the instantaneous computed instructions and the 
manipulated data. The attacker could measure the power 
consumption during the execution of a cryptographic 
algorithm, store the waveform using a digital oscilloscope 
and process the information to learn the secret key. 
Kocher et al., in [16], first introduced this type of attack 
on smart cards performing the DES operation. Then 
Messerges et al. [19] augmented Kocher’s work by 
providing further analysis and detailed examples of actual 
attacks they mounted on smart cards. 

 
In general, SPA attacks are those based on 

retrieving valuable information about the secret key from 
a single leaked information—power consumption or 
electromagnetic emanation—trace. On the other hand, 
DPA attacks generally include all attacks that require 
more than one such trace along with some statistical 
analysis tools to extract the implicit information from 
those traces. 

 
3.1 SPA Attack on ECCs and its 
Countermeasures 
 

Coron [3] has transferred the power analysis 
attacks to ECCs and has shown that an unaware 
implementation of EC operations can easily be exploited 
to mount an SPA attack. Monitoring of the power 
consumption enables us to visually identify large features 
of an ECC implementation such as the main loop in 
Algorithms 2.2 and 2.1. Moreover, it may also enable to 
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recognize the exact instruction that has been executed. For 
example, if the difference in power consumption between 
point doubling (D) and point addition (A) is obvious in 
their respective power traces, then, by investigating one 
power trace of a complete execution of a double-and-add 
algorithm, the bits of the scalar k are revealed. That is, 
whenever a D is followed by A, the corresponding bit is 
k i  = 1, otherwise if D is followed by another D, then k i  
= 0. This sequence of point operations is referred to as the 
DA sequence. 

Window methods process the key on a digit 
(window) level. The basic version of this method, that is 
where _ = 0 in Section 2.1.3, is inherently uniform since 
in most iterations, w D operations are followed by 1 A, 
except for possibly when the digit is 0. Therefore, fixed-
sequence window methods were proposed [20;23;27] in 
order to recode the digits of the key such that the digit set 
does not include 0.  

 
3.2 DPA Attack on ECCs and its 
Countermeasures 
 

When the relation between the instructions 
executed by a cryptographic algorithm and the key bits is 
not directly observable from the power signal, an attacker 
can apply differential power analysis (DPA). DPA attacks 
are in general more threatening and more powerful than 
SPA attacks because the attacker does not need to know 
as many details about how the algorithm was 
implemented. The technique also gains strength by using 
statistical analysis and digital signal processing techniques 
on a large number of power consumption signals to 
reduce noise and to amplify the differential signal. The 
latter is indicated by a peak, if any, in the plot of the 
processed data. This peak appears only if the attacker’s 
guess of a bit or a digit of the secret key is correct. The 
attacker’s goal is to retrieve partial or full information 
about a long-term key that is employed in several ECSM 
executions. 

 As for the SPA attack, Kocher et al. were the 
first to introduce the DPA attack on a smart card 
implementation of DES [16]. Techniques to strengthen the 
attack and a theoretical basis for it were presented by 
Messerges et al. in [18;3,19]. Coron applied the DPA 
attack to ECCs [3].  

In order to resist DPA attacks, it is important to 
randomize the value of the long-term key involved in the 
ECSM across the different executions. Some of the 
countermeasures that were based on randomizing the key 
representation [22;12] were proven to be inadequate since 
the intermediate point computed in the accumulator Q at 
certain iteration remained one of two possible values [11]. 
The constancy of the value of this intermediate point is an 
integral part in the success of first-order DPA attacks.  

A potential DPA countermeasure is known as 
key splitting [14]. It is based on randomly splitting the 
key into two parts such that each part is different in every 
ECSM execu+tion. An additive splitting using subtraction 
is attributed to Clavier and Joye [CJ01]4. It is based on 
computing  
         
  kP = (k − r)P + rP, (I)  
The authors mention that the idea of splitting the data was 
abstracted in [5].   where r is a n-bit random integer, that 
is, of the same bit length as k. Alternatively, Ciet and Joye 
[8] suggest the following additive splitting using division, 
that is, k is written as 
    k =  ⎣ ⎦rk /   + (k mod r).             (1) 

Hence, if we let k 1  = (k mod r), k 2 2 = ⎣ ⎦rk /  and  S = 

rP, we can compute    KP = k 1 p + k 2 P                  (II) 
where the bit length of r is n/2. They also suggest that (II) 
should be evaluated with Shamir-Strauss method as in 
Algorithm 2.3. However, they did not mention whether 
the same algorithm should be used to evaluate (I). The 
following multiplicative splitting was proposed by 
Trichina and Bellezza [0]  where r is a random integer 
invertible modulo u, the order of P. The scalar 
multiplication kP is then evaluated as     
  kP = [kr 1−  (mod u)] (rp)     (III)  
To evaluate (III), two scalar   multiplications are needed; 
first R = rP is computed, then kr 1− R is computed.  
 
4. Key Splitting Methods 
 
4.1. Introduction  
 
We discuss different the forms of key splitting along with 
their strengths and weaknesses. We also discuss the 
candidate SPA-resistant algorithms and compare the 
resulting performance when combined with each form of 
key splitting. At the end of the chapter, we present 
countermeasures to DPA attacks on the ECDSA and the 
ECMQV algorithms.  

This approach was suggested by Clavier and 
Joye in [CJ01] and revisited by Ciet [Cie03] as follows. In 
order to compute the point kP, the n-bit key k is written as 

        k = k 1  + k 2 , 

such that k 1 = k − r and k 2  = r, where r is a random 
integer of length n bits. Then kP is computed as 
        kP = k 1 P + k 2 P.          (5.1) 

It is important to note that each of the terms of 
(5.1) should be evaluated separately and their results 
combined at the end using point addition. That is the 
multiple-point multiplication methods that use a common 
accumulator to save doubling operations such as 
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Algorithms 2.3 and 2.4—whether at the bit level (w ≡ 1) 
or window level (w > 1)-should not be used, even when a 
countermeasure against SPA is employed. This 
observation is based on the following lemma. Let 
k ab→ denote ⎣ ⎦abk 2)2(mod 1+ or, simply, the bits of k 
from bit position b down to bit position a, with   b ≥ a. 

 
 Lemma 4.2 Let splitting scheme I in (6.1) be evaluated 
using Algorithm 2.3 with w = 1 (d = n). Then, at the end 
of some iteration j, 0 < j ≤ n − 1, there are only two 
possible values for Q, those are [k jIn −− ] P or [k jIn −−  − 
1] P.  
Proof. Algorithm 2.3—and similarly Algorithm 2.4—
computes the required point by scanning 
 k 1  = (k1 1−n  , . . . , k 1 0 )2 and  

k 2  = (k 2 1−n , . . . , k 2 0 ) 2  from the most significant end 
down to the least significant end. Hence, at the end of 
iteration j, the accumulator Q contains the value 
Q = k jIn −−1  P  + k jIn −−2  P        (5.2) 

   = [k jIn −−1  +  k jIn −−2  ] P. 

We can write k, k1  and k 2  as 

   k = k jjIn −−
2 j  + k 01−−j                             k i = 

k i jjIn −−
2 j  + k i 01−−j        (5.4) 

          Since k = k1  + k 2  we have 

   k 1 0−−Ij  + k 2 0−−Ij j = k 0−−Ij  + b 2 j  where b ∈ {0, 
1}              (5.5)  
and 
  k 1 jIn →−  + k 2 jIn →−  = k jIn →− -b 
            The DPA attack would proceed in the same way, 
whether the algorithm processes a single bit or a digit per 
iteration, though it would be more involved in the latter 
case depending on the digit size. The attacker can double 
the number of traces gathered and compute the necessary 
intermediate points as if there was no countermeasure in 
place. 
 
4.3 Modular Division: 
 
n the following algorithm, a and b are integers internally 
represented each by an array of w-bit digits. The length of 
each array is d = ⎡ ⎤wn /  digits. Note that for the modular   
inversion, as mentioned by Savas and Ko¸c [25], b needs 
not be less than the modulus u, but be in [1, 2 m −1], where 
m = dw. Also note that the values R 2  mod u, where R = 
2 m , and u’ are computed once per modulus, i.e., per curve. 

Algorithm  4.4. Modular division  
 
Input: u: a n-bit prime, d = ⎡ ⎤wn / , m = dw, R 2  (mod u) 

= (2m) 2  (mod u), u’ = u 1−  mod 2 w , a ∈   [1, p − 1] and 
b ∈  [1, 2 m  − 1]. 
Output: ab 1− (mod u). 
1. Compute b 1− R (mod u) using Algorithm 6.6. 
2. Compute x = a(b 1− R)R 1−  (mod u) using Algorithm 6.5. 
3. Return(x). 
The following algorithm is Algorithm 14.36 in [21]. We 
include it here for the sake of completeness. 
 
Algorithm 4.5Montgomery multiplication [21] 
 
Input: u: a n-bit prime, d = ⎡ ⎤wn / , m = dw, u’ = u 1−  

mod 2 w , x = (x 1−d . . . , x0)2 w  and  

y = (y 1−d . . . y0)2 w . 

Output: xy2 m−  (mod u). 
1. A   0.          // A = (ad, a 1−d , . . . , a0)2w 
2. for i from 0 to d − 1 do 
2.1 ui   (a 0  + x i y 0 ) mod 2 w  

2.2 A    (A + x i y 0  + u i m)/ 2 w  
3. if (A > u) then 
A   A  u. 
4. Return(A). 
The following algorithm was presented by Savas and 
Ko¸c in [25] as the modified  Kaliski-Montgomery 
Inverse. 
 
Algorithm 4.6. Montgomery inversion 
Input: u: a n-bit prime, d = ⎡ ⎤wn /  , m = dw, R 2  (mod 

u) = (2 m ) 2 (mod u), u '  = u 1−  mod 2 w  and b ∈  [1, 2 m  − 
1]. 
Output: b 1− R (mod u). 
1. Compute f and x = b 1− 2f (mod u) using Algorithm 6.7, 
 Where  n ≤ f ≤ m + n. 
2. if (f ≤ m) then 
2.1 x   xR 2 R 1− (mod u)                       using Algorithm 
6.5. // x = b 1− 2 fm+ (mod u) 
2.2 f   f + m. // f > m, x = b−12f (mod u) 
3. x   x2 fm−2 R 1−  (mod u)      using Algorithm 6.5. 
                                                           // x = b 1− 2 f  2 fm−2  
2 m−  = b 1− 2 m  (mod u) 
4. Return(x). 
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4.7. Existing System: 
 
 Nevine Maurice Ebied’s modified the almost 
Montgomery inverse algorithm of [ScKK00] to be 
resistant to SPA attacks as in the following algorithm. 
SwapAddress(c, d) denotes interchanging the memory 
addresses of the integer’s c and d. This is an inexpensive 
operation, hence its usage as a dummy operation to 
balance the branches of the main loop. We implemented 
the “if” statement in steps 3.4 and 3.5 such that the 
number of conditions checked per  loop iteration is always 
three. In assembly language, this can be easily ensured. 
Written in Java, step 3.4 is implemented as  
if( ( xLSb = = 0 ) && ( xLSb = = 0 ) &&(xLSb = = 0 ) ). 
If the condition is false, due to short-circuit evaluation, 
the flow control will move to the following “if” after the 
first check, otherwise, it will perform the check three 
times. The following “if”—step 3.5—is similar but with 
the condition checked only two times  
   if( ( yLSb = = 0 ) && ( yLSb = = 0 ) ). 
 
Algorithm 4.7. Almost Montgomery inverse  
 
Input: u: a n-bit prime,  
d = ⎡ ⎤wn / , m = dw and b ∈  [1, 2 m  − 1]. 

Output: f and b 1− 2 f  (mod u), where n ≤ f ≤ m + n. 
1. x←    u; y  ←  b; r ←   0; s  ←  1. 
2. f ←    0. 
3. while (v > 0) do 
3.1 U ←    x − y;    V←   −U. 
3.2 T  ←   r + s. 
3.3 f  ←     f + 1. 
3.4 if (((lsb(x) = 0))) then                                              // 
This “if” is special 
SwapAddress(x, U); SwapAddress 
(x,   U)                      // dummy 
SHR(x); SHL(s). 
3.5 else if ((lsb(y) = 0)) then                                          // 
This “if” is special 
SwapAddress(y, V); SwapAddress 
(y, V)                    // dummy 
SHR(y); SHL(r). 
3.6 else if (V >= 0) then 
SwapAddress(y, V);  
SwapAddress(s, T ) 
SHR(y); SHL(r). 
3.7 else 
SwapAddress(x, U);  
SwapAddress(r, T ) 
SHR(x); SHL(s). 
4. T ←   u − r; V←    u + T . 
5. if (T > 0) then 
Return(f, T ) 
else 

Return(f, V). 
 
The drawback of this algorithm is that an SPA of 

the number of iterations of the main loop directly leaks 
the value of f. If f is uniformly distributed, the search 

space of b is reduced from 2 w  to 2
mm 2log− , which is not a 

significant reduction. It is interesting to study how f is 
actually distributed. 

 
4.8.Proposed System  
 
We  modified the  Nevine Maurice Ebied’s Almost 
Montgomery inverse  and  A NEW VARIANT  of  
[ScKK00] to be resistant to SPA attacks as in the 
following  algorithm.  
Linear Congruence’s 
 
            A congruence of the form    
   
                  ax   ≡ b (mod m) 
 
 where m is a positive integer, a and b are integers , and x 
is a variable, is called Linear congruence . Such 
congruences arise throughout number theory and its 
applications. 
  
Definition :  If a and b are integers, then a is said to be 
congruent to b modulo n, write a ≡ b ( mod n ), if n 
divides ( a – b ). The integer n is called the modulus of the 
congruence.  
Definition : The equivalence class modulo n of an 
integer b is the set of all integers congruent to  b modulo n.  
Definition :  The ring of integers modulo n, denoted by 
Zn , is the set of (equivalence classes of) is the integers  
{0,1,2,, n–1}.  Addition, subtraction, and multiplication in 
Zn are performed modulo n.  
 
Algorithm 4.9:  Modified Montgomery Inversion 
 
Input: u: a n-bit prime, d = ⎡ ⎤wn /  ,  

m = dw, R 2  (mod u) = (2 m ) 2 (mod u), u '  = u 1−  mod 2 w  
and b ∈  [1, 2 m  − 1]. 
t: No of precomputed points     1≤ t ≤n 
w: Window width Least  significant of bit     2 zw−   

12 −≤ wt  
Output: b 1− R (mod u). 

1. Select a number b such that  ( ) 12, =mb  

2. Compute b 1−  such that     bb 1−  ≡  1(mod 2 m ) 
3. If f > m then x = b 1− 2 f (mod u)                      Q 

x =   b 1− 2 f (mod u) 
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4. If f   ≤ m  then  
5. x   ←  R )(mod12 uR −   Q R =   2 m  

6. x  =  b 1− 2 fm+ (mod u)                                             
f ←  m+f 

7. Return(x) 
 
                    In the modified Montgomery Inverse 
Algorithm of Savas and Koc , we select f such that gcd 
( ) 12, =mb , m ≤ f   ≤  m +n . So b is not reduced from  

2 m    to  2
mm 2log− . Therefore this is significant reduction 

and hence f is not uniformly distributed and it can’t leaks 
the value  
 
5. Conclusion 
 

We  modified the  Nevine Maurice Ebied’s 
Almost Montgomery inverse  and  A New Variant  of  
[ScKK00] of Montgomery Inversion  i.e  Modified 
Montgomery Algorithm  to be resistant to SPA attacks . 
Also the proposed algorithm of Modified Montgomery 
Algorithm eliminate an SPA of the number of iterations of 
the main loop directly leaks the value of f and f is 
uniformly distributed with a significant reduction. 
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