
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

40

Manuscript received March 5, 2009
Manuscript revised March 20, 2009

Performance Evaluation of a Secure Low Level Reader Protocol
(LLRP) Connection

Sana Qadir† and Mohammad Umar Siddiqi††,

International Islamic University Malaysia, Kuala Lumpur, Malaysia

Summary
The recently ratified Low Level Reader Protocol (LLRP)
specifies the interaction between a RFID Reader and
Client. It has been of much interest in the RFID
community but adoption is being stalled by its lack of
formal scrutiny especially with regard to its security. This
paper surveys the work that has been undertaken on this
protocol, assesses its security vulnerabilities and examines
possible security solutions. It then presents the design and
implementation of LLRP endpoints that use Transport
Layer Security (TLS) to setup a secure LLRP connection.
Based on previous performance studies, appropriate
metrics are selected to indicate the performance of the
resulting TLS-LLRP connection. Specifically, the
overhead of securing a LLRP connection using TLS is
quantified and a detailed analysis of the results is
undertaken to determine the TLS cipher suites and
parameters that provide the best compromise between the
level of security and performance.
Key words:
LLRP, TLS, Performance, cipher suite.

1. Introduction

EPCglobal Inc. is the company in charge of the
development of standards to govern the deployment of
RFID technology for supply chain management. These
standards are intended to lead to the development of the
EPCglobal Network. Basically, this is the effect achieved
when companies employ EPCglobal standards and core
services to manage their supply chains and for interacting
with business partners and with EPCglobal [1]. The
advantage of the creation of EPCglobal Network is to
automate supply chain management and eventually to
enable enterprises to seamlessly and securely exchange
relevant data on a global scale.
Several EPCglobal Standards are still under development
but those that can be deployed within an enterprise have
been specified. An example of an intra-enterprise RFID
setup that shows two very important EPCglobal Standards
is given in Fig. 1.

The Electronic Product Code (EPC) is a 96-bit code stored
on a RFID tag. The product, to which this tag is attached,
is identified by reading the EPC using the air interface
protocol called UHF Class 1 Gen 2. The RFID Reader
passes on this data along with other information to a Client
using the Low Level Reader Protocol (LLRP). It is this
latter standard that is the focus of this paper.
An important condition for fully benefiting from any
RFID setup is the security of the communication channels.
Security is especially important for the communication
channel that connects a RFID Reader to a company’s
intranet. Progress on this front has been impeded in the
past due to the resource constraints of RFID devices and
to the unacceptable delay in performance resulting from
the inclusion of security mechanisms. Improvements in
technology are however diminishing the impact of these
limitations. This paper will first assess the security
requirements of a LLRP connection and then select a
security protocol to secure the connection. Finally, a
performance evaluation of the secure LLRP connection is
carried out. This is intended to provide relevant input to
security experts, protocol designers and system
implementers of how a security protocol affects the
performance of a system.

UHF Class 1 Gen 2

t
a
g

RFID
Reader

Enterprise’s

Network

t
a
g

t
a
g

Client

Low
Level
Reader
Protocol

RFID
Reader

Ethernet /
Wireless

RF Signal

t
a
g

Fig. 1: Example of an intra-enterprise setup of EPCglobal Network

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

41

2. Introduction to LLRP and Related Work

LLRP is one of the latest EPCglobal standard and ‘is
specifically concerned with providing the formats and
procedures of communication between a Client and a
Reader’ [2]. Clients use the protocol to get and set Reader
configuration, discover capabilities of a Reader and to
manage a Reader’s access and inventory operations [3].
Readers use the protocol to report their status, the result of
RF surveys, access and inventory operations [3].
Communication via LLRP is in the form of protocol data
units called messages that are sent to and from the Reader
and Client. Each message is encoded in binary before
being sent over TCP [4].
The first major work on LLRP was the development of a
class library for the specification by Joe Hoag of the
University of Arkansas. The library, written in Java, helps
to encode/decode LLRP messages to and from their binary
representation. This library was used by Pramari, a
company specializing in the development of virtual RFID
Readers. They utilized it to enable a LLRP virtual Reader
to be simulated by their Pramari Virtual Reader software
[3]. Their objective is to enable researchers to simulate a
particular Reader before it is available in the market [3].
The library was also later used to develop a LLRP Reader
agent called LLRPReaderAgent [3]. This agent is
capable of talking to any LLRP Reader and was integrated
into TagCentric (an open source agent-based RFID
middleware application).
The LLRP has been more warmly received by the vendor
community than its predecessor, the Reader Protocol. This
is because the Reader Protocol provided a more ‘abstract,
event-driven approach’ to controlling the operation of a
Reader while the LLRP is more directly involved with a
Reader’s operation [5]. In particular, it is aware of the
specific air protocol used to communicate with tags and
therefore provides air ‘protocol-specific parameters and
control’ [5]. It also allows control of other hardware
aspects of a Reader. Another advantage of LLRP is that it
provides more support for vendor extensions e.g. in the
form of custom messages. It is for these reasons that the
RFID company Impinj Inc. has recently released a
LLRPv1.0.1 compliant Reader (Speedway® Reader).
They also claim that using LLRP improves the
performance of a RFID system [6]. Vendors are likely to
follow Impinj and more releases of LLRP compliant
Readers are expected. Although Impinj’s implementation
of LLRP is propriety, the company is also involved in
developing an open source programming toolkit for LLRP.
The purpose of this project is to provide libraries in many
languages ‘for the development of LLRP-based
applications and smart readers' [7]. The main development
languages being used are Java, C++ and Perl [7]. These
libraries are to facilitate the building and parsing of LLRP

messages and will be handy to Reader and software
vendors [7].

3. Security Assessment of LLRP

Security and privacy are services that EPCglobal aims to
provide its users. To achieve this, their specifications
either include security features or recommend the best
security practice [1]. However, any supply chain
management system built using current RFID components
is vulnerable to several security threats. This is because
recommended security features have simply not been
adopted. The main reason for this is that such features are
regarded as features that can be added on later or ignored
because they can seriously degrade system performance.
As a result, most RFID systems have no security
mechanisms implemented at all and data is transmitted
without being checked or encrypted. [8] proposes ‘a
secure web service framework applying to an industry-
wide EPCglobal Network utilizing Web Services Security
(WSS) technology’. They use Web services because their
focus is on the security of information exchanged between
trading partners, i.e. an inter-enterprise setup. This is in
contrast to an intra-enterprise setup where LLRP operates.
Reference [9] undertook to assess the security of the
components that comprise the EPCglobal Network. They
found that the most significant threats in an intra-
enterprise scenario are posed by:
• malicious or compromised Readers, and

• eavesdropping, spoofing, man-in-the-middle and
replay attacks on the communication channel between
Reader and Client.

The security services that should be adopted are [9] [2]:
• Reader-Client mutual authentication and authorization,

and

• privacy protection and integrity protection of LLRP
messages

The LLRP standard itself merely states that a LLRP Client
and Reader MAY implement Transport Layer Security
(TLS) [2]. In other words, including TLS is permissible
within the scope of the standard but no recommendation is
made. Even [9] suggests TLS as a solution for the security
requirements of a Reader-Client Interface.
Some Readers nowadays (e.g. handheld models), include a
wireless interface (802.11b/g) to communicate with a
Client. For usage over a wireless connection, TLS was
fine-tuned to a new ‘lighter’ protocol called Wireless
Transport Layer Security (WTLS). Despite its existence,
WTLS was not recommended by EPCglobal for use with
LLRP. It was considered more important to remain
interoperable with wired systems that use the ubiquitous

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

42

TCP/IP stack and public key infrastructure (including
X.509 certificates). Moreover, WTLS is part of the
Wireless Application Protocol (WAP) suite and that
requires the application protocol to be HTTP. In our case,
LLRP not HTTP, is the application protocol being
considered.

4. Securing LLRP Connection and TLS

To the authors’ knowledge no other work has been done
on securing LLRP connections. TLS has many advantages
because of which it is the primary choice for securing a
LLRP connection. In addition to providing the security
services listed above, it is light weight and has been
proved to be reliable and secure by millions of users [2].
The TLS protocol v1.0 is the result of IETF’s effort to
standardize Netscape’s Secure Socket Layer (SSL)
protocol v3.1. It comprises two main sub-protocols called
the Handshake Protocol and Record Protocol as shown in
Fig. 2 [10]. Their functions are summarized in Table 1
[10]. The Record Layer is a layered protocol in which data
is fragmented, compressed (optional), used for the
generation of a message authentication code and finally
encrypted. The security parameters needed by the Record
Layer are negotiated during the TLS Handshake. The TLS
Handshake protocol is mainly responsible for
authenticating the identities of the communicating
endpoints but it also negotiates other cryptographic
parameters needed by a TLS session [10].
A full handshake is carried out only when a new session is
requested and an abbreviated handshake is used when a
previous session is being resumed. In the latter type of
handshake, no public key operations are used so we
consider only those cases where a full handshake takes
place. Even in a full handshake, the key exchange method
and the endpoints being authenticated determine the exact
message flow [10].
We focus on cases where the identity of both endpoints’ is
being verified and when both endpoints employ identical
type of certificates.
In general, full handshakes are based on either Rivest-

Fig.:2: Sub-protocols of TLS

Table 1: Functions of main TLS sub-protocols
Protocol Responsibility Mechanism:

Privacy Encryption
(via symmetric
cryptography)

Record
Protocol

Message Integrity Keyed
message
authentication
digest

Authentication of
communicating peers

Public-key
cryptography

Handshak
e Protocol

Setting the
cryptographic
parameters of the
session state
(i.e. negotiate
encryption algorithm
and cryptographic
session keys)

Public-key
cryptography

Shamir-Adleman (RSA) or Elliptic Curve Cryptography
(ECC) as shown in Fig. 3 and Fig. 4 respectively [10][11].
In the ClientHello message, a list of preferred cipher
suites is sent from the TLS Client to the TLS Server. Each
cipher suite is a specification of the key exchange
algorithm, symmetric cipher and MAC algorithm that can
be used on the TLS connection. The Server is required to
select one cipher suite from this list and send it to the TLS
Client in the ServerHello message. If a cipher suite is
not agreed upon, the handshake fails and the connection is
terminated. A list of predefined cipher suites is included
for use in the TLS standard. The strength of TLS is
flexible and can easily be changed by the communicating
endpoints negotiating a different cipher suite during a TLS
handshake [2].

5. Review of Related Performance Studies

It is acknowledged that security protocols introduce
overhead into the performance of a system. This was the
case with TLS when it was being adopted for securing
Web servers. To quantify the delay incurred because of
TLS become urgent because the slow response time of the
secure Web Servers was translating into loss of revenue
for e-commerce sites.
There are also a number of trends that make evaluation of
performance imperative and the continued use of RSA
difficult to justify. These trends include the need to secure
simpler, more constrained devices, the larger number of
applications requiring security and the demands for higher
level of security [12].
In line with this, a succession of performance evaluation

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

43

Client Server

ClientHello (Initial proposal)

 ServerHello (Cipher suite negotiated)
 Certificate
 ServerKeyExchange*

(Conveys server’s RSA encryption key (e,n))

 CertificateRequest
 ServerHelloDone

Certificate
ClientKeyExchange (Client verifies server’s key and sends encrypted

random secret: re mod n)
CertificateVerify*

[ChangeCipherSpec]
Finished (Server decrypts secret:

r = (re mod n)d mod n)
 [ChangeCipherSpec]
 Finished
 Ready for bulk encryption, authenticated

Application Data Application Data

Fig. 3: RSA-based Full Handshake

 Client Server

 ClientHello (Initial proposal)
 ServerHello (Cipher suite negotiated)
 Certificate (Conveys server’s ECDSA-capable

public key signed with ECDSA)
 ServerKeyExchange (Conveys server’s ephemeral ECDH

public key signed using ECDSA)
 CertificateRequest
 ServerHelloDone

(Conveys client’s ECDSA-
capable public key signed

with ECDSA)

Certificate

(Conveys client’s ECDH
public key)

ClientKeyExchange

 CertificateVerify
(ECDH computation used to
generate pre-master secret)

[ChangeCipherSpec]

 Finished (ECDH computation used to generate
pre-master secret)

 [ChangeCipherSpec]
 Finished
 Ready for bulk encryption, authenticated
 Application Data Application Data

Fig. 4: ECC-based Full Handshake

studies have been carried out and in majority of them TLS
is used to secure HTTP transactions. Other application
protocols, like LLRP, differ from HTTP in terms of the
nature of the messages, usage profile and security
requirements. Nonetheless, several useful points can be
noted from these studies. Firstly, the public key operations
in the TLS Handshake Protocol are responsible for
majority of the overhead of securing HTTP transactions
[13] [14]. Secondly, the overhead due to the cryptographic
operations performed by the Record Layer is relatively
small and only significant for larger transactions [13]. [13]

and [14] are not only dated but their focus on server
authentication only and on RSA is a serious limitation.
Nonetheless, like in their studies, we use the duration of
handshake as a very important metric of performance. We
also use the metric Propagation Time of TLS-LLRP
message to indicate overhead of the Record Protocol.
With the increasing popularity of ECC, [15] and [16]
compared the improvements that can be expected if RSA
is replaced with ECC. Specifically, [15] compared the
time spent during a handshake on RSA operations with
time spent on ECDH_ECDSA operations if they are used

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

44

instead. They concluded that ECC cipher suites results in
better performance of both the SSL client and server and
that the performance advantage of ECC increases as
higher levels of security are used. [16] reached a similar
conclusion (the cipher suite
TLS_ECDH_ECDSA_WITH_RC4_128_SHA performs
better than TSL_RSA_WITH_RC4_128_SHA) although
different performance metrics were used. To be more
specific, these metrics accurately reflected performance
from the user’s viewpoint and recorded the rate at which
the secure Web server was able to fulfill web page
requests. The authors of [16] highlight the importance of
their results, by stating that public key operations are the
most computationally expensive part of SSL and finding
techniques that reduce this computational overhead should
be a high priority. Their study is however, restricted to the
specific Web browser and server used as well as by their
custom implementation of ECC. The latest study to be
carried out [12] was in line with the trend of requiring or
recommending the inclusion of ECC in security
mechanisms. It finds that ‘replacing RSA with ECC
reduces that server’s processing time for new SSL
connections across the entire range of page sizes from
10KB to 70KB’ [12]. Although [12] is the most recent
study, it does not include RSA key sizes larger than 2048
bits, nor does it deal with the impact of using AES or with
mutual authentication.
The performance evaluation of public-key cryptosystems
in WTLS is carried out in [17]. Their metrics ‘client
processing time of public-key operations’, ‘server
processing time of public-key operations’ and ‘the amount
of data exchanged between the client and server’ all show
that in WTLS, ECC curves outperform RSA
cryptosystems [17].

6. Design and Implementation

All design and implementation decisions were made by
the authors since EPCglobal does not currently provide
any specifications for the implementation of security
features [8].
TLS always lies above TCP and consequently will lie
below LLRP. This means that the initiation of a TLS-
LLRP connection comprises of the following sequence: a
TCP handshake, a TLS handshake and a LLRP connection
initiation sequence. Likewise the termination of a TLS-
LLRP connection comprises of the sequence: a LLRP
connection termination, a TLS connection termination and
a TCP connection termination.
The steps that have to be taken when sending and
receiving
LLRP messages over a TLS-LLRP connection are shown
in Fig. 5.

Development can commence only after open source
implementations of LLRP Reader and LLRP Client have
been selected. The Accada EPC Network Prototyping
platform (developed using Java) is at the forefront of
enabling a quick-setup of EPC-compliant systems [18].
However, its main Reader Core module is an
implementation of the Reader Protocol and not LLRP.
Furthermore, since LLRP is seen as a replacement of the
Reader protocol, it does not make sense to use Accada.
The only open source LLRP Reader in the market is the
Rifidi Emulator v1.5 [19]. It is written in Java.
Although still a prototype, Rifidi’s virtual LLRP
Reader

Sending
Message
via TLS-
LLRP
Connection

Receiving
Message
via TLS-
LLRP
Connection

Fig. 5: Messages sent and received over TLS-LLRP

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

45

functions like a real Reader down to the packet level and
can emulate TCP connections. It can therefore be extended
by adding TLS so that instead of operating like a TCP
server, it operates like a TLS server. The default port for
accepting TLS-LLRP connections is also set to 5085 as
specified in [2].
To establish a TLS-LLRP connection, a TLS-LLRP Client
is also required. To get an accurate assessment of
performance, it is important that the TLS-LLRP Client
estimates workload properly. In the case of LLRP, not
only are there no benchmarks available but also no sample
usage data. Therefore, as a starting point, we select an
open source Java program called
LLRPHelloWorldClient that is based on the typical
LLRP timeline given in the LLRP standard [2: p21] [20].
This program is extended to include the function of
establishing a TLS-LLRP connection with the TLS-LLRP
Reader described in the preceding paragraph.
The TLS implementation to be used to extend each LLRP
endpoint had to be carefully selected. In the end, the Java
Secure Socket Extension (JSSE) implementation of
TLSv1.0 was chosen. Although written in Java and
probably not as fast as C/C++ implementations of TLS
like cryptlib and OpenSSL, JSSE is chosen for this
work because it is the best implementation of TLS in Java.
A Java implementation is compulsory. This is because it
has to be used to extend the Java programs Rifidi
Emulatorv1.5 and LLRPHelloWorldClient.
When configured to work with Network Security Services
(NSS) libraries, JSSE provides support for 34 cipher suites.
It should be noted that despite the advantages of Java like
portability and simplicity, support for the language is only
just beginning to be included in RFID Readers (e.g.
Intermec’s IF 5 Fixed Reader, Symbol’s XR 440 Fixed
Reader and INfinity 510 by Sirit Inc). Such basic support
is however not enough for a Java TLS-LLRP
implementation (like the one developed in this work), to
be practical on current RFID Readers. A Java TLS-LLRP
implementation is only practical on RFID Readers that use
Java to operate and it is not unreasonable that given the
current trend in the market, such Readers will be released
in the near future.

7. Performance Metrics and Experimental
Procedure

The experiments require two identical machines (one for
each program) linked via a wireless 11 Mbps connection.
Public keys, private keys and certificates for both TLS-
LLRP endpoints are generated using keytool.
Evaluation of performance requires suitable choice of
metrics, i.e. metrics that accurately estimate ‘perceived’
performance [15]. We chose two main metrics to indicate

performance. The experimental procedure as well as the
TLS-LLRP Client used differs for each of the two main
metrics. Details of the two main metrics are given below:
i. Handshake Duration: to estimate the

performance of the Handshake Protocol
12 of the most important cipher suites and other
options provided by TLS were arranged into 26
different combinations (see column one and two
of Table 3). Each run is defined by launching the
TLS-LLRP Reader on one machine and running
the TLS-LLRP Client to completion on the other
machine.10 runs are carried out for each of the 26
different TLS combinations.
The TLS-LLRP Client used in these runs
establishes a TLS-LLRP connection with the
TLS-LLRP Reader, exchanges 34 LLRP
messages with it and then terminates the TLS-
LLRP connection (see Fig. 6). The network
protocol analyzer, Wireshark, is used to
confirm the exchange of TLS-LLRP packets
between the two machines.
Timestamps were generated using the Java
function System.nanoTime().

ii. Propagation Time of TLS-LLRP Message: to
estimate the performance of the Record Protocol.
A different TLS-LLRP Client was written to
record this metric accurately. This was because
measuring propagation time using the TLS-LLRP
Client shown in Fig. 6 revealed very high
variability. The only difference between this new

Fig. 6: Diagram of TLS-LLRP Client based on typical LLRP timeline

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

46

TLS-LLRP Client and the one used in i is that
this TLS-LLRP Client sends one LLRP message
multiple times to the TLS-LLRP Reader before
terminating (See Fig. 7).
Generating timestamps for this metric was a very
difficult task. Firstly, it required the use Network
Time Protocol (NTP) to synchronize the clocks
on the two machines. Secondly, a Java Native
Interface (JNI) for C functions that return the
precise time under Windows XP had to be written
so that these function could be called from the
Java TLS-LLRP programs.

Two other metrics that were used to indicate performance
from a user’s viewpoint are:
iii. The performance of the TLSL-LLRP Client –

indicated by recording the time it took to
initialize and interact with the TLS-LLRP Reader.

iv. The performance of the TLS-LLRP Reader –
indicated by recording the time it took to serve
the TLS-LLRP Client.

8. Performance Evaluation

In a business context, performance is paramount and large
delays in these metrics because of the inclusion of TLS are
unacceptable.
Without TLS, the time taken by metric i, iii and iv is given
in the second column of Table 2.
The minimum overhead of adding TLS on Handshake
Duration is 419.8 ms
(TLS_RSA_WITH_AES_128_CBC_SHA, 1024 bit RSA
keys) while the maximum is 1026.0 ms
(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 3072

Fig. 7: Diagram of TLS-LLRP Client to investigate the Propagation Time
of TLS-LLRP messages

bit RSA keys).
The mean overhead on metrics i, iii and iv when different
combinations of TLS are used is given in Table 3. It is
easy to note that the largest overhead in all three metrics is
observed when 3072 bit RSA keys are used and thus these
combinations of TLS should be avoided.
Fig. 8 shows a plot of the five TLS combinations that
result in minimum overhead on these three metrics.
TLS_RSA_WITH_AES_128_CBC_SHA results in
minimum overhead and this is probably the reason why it
is the mandatory cipher suite should a Reader Protocol
implementation support HTTPS [21].
RSA 1024 keys are to be replaced in the near future and
larger RSA keys should be avoided as was mentioned
above. It is thus imperative that a cipher suite should be
identified that provides a higher level of security (than
TLS_RSA_WITH_AES_128_CBC_SHA) but
simultaneously has the smallest possible impact on
performance. Since it is acknowledged that public key
operations are most computationally expensive part of a
TLS handshake, we use hypothesis testing (α = 0.1) to
arrange the key exchange methods shown in Table 3 in
order of causing significant increase to the mean value of
the performance metrics:
• ECDH_ECDSA / ECDHE_ECDSA

• RSA

• ECDHE_RSA

• DHE_RSA

We are thus able to recommend
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
(with ECC 224 bit keys and certificates signed using
SHA1withECDSA) as the next best cipher suite when
using TLS to secure a LLRP connection.
The above recommendation is based on the mean
handshake duration but it remains to analyze the
performance of TLS-LLRP connection as measured by the
Propagation Time of TLS-LLRP messages. Essentially,
the

Table 2: Mean values of metrics i,, iii and iv
Metric
(ms)

Mean
value

(without
TLS)

Minimal
overhead
of adding

TLS

Maximum
overhead

 of adding TLS

i 0 419.8 1026.0
iii 16206.9 895.6 1521.3
iv 16141.1 385 992.3

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

47

Table 3: Overhead of TLS combinations on metrics i, iii and iv (ms)

Cipher Suite Alg / Key Size / Sign Alg. i iii iv

TLS_RSA_WITH_AES_128_CBC_SHA * 419.8 895.6 385

TLS_RSA_WITH_AES_256_CBC_SHA 457.2 942.2 422.4

TLS_DHE_RSA_WITH_AES_256_CBC_SHA 507.5 986.7 473.1

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

RSA /
1024 bits /

SHA512withRSA

483.5 962 448.1

TLS_RSA_WITH_AES_128_CBC_SHA 460.1 947.9 425.1

TLS_RSA_WITH_AES_256_CBC_SHA 429.7 914.6 394.2

TLS_DHE_RSA_WITH_AES_256_CBC_SHA 585.8 1073.9 551.3

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

RSA /

2048 bits /
SHA512withRSA

684.2 1175.9 652.1

TLS_RSA_WITH_AES_256_CBC_SHA 678.6 1172 642.4

TLS_DHE_RSA_WITH_AES_256_CBC_SHA 935.6 1432.2 902.4

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

RSA /

3072 bits /
SHA512withRSA 991.8 1482.7 956.1

TLS_DHE_RSA_WITH_AES_256_CBC_SHA 494.7 968 461.3

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

RSA /
1024 bits /

SHA1withRSA 472.9 946 438.6

TLS_DHE_DSS_WITH_AES_256_CBC_SHA

DSA /
1024 bits /

SHA1withDSA 561.6 1035.2 527

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

RSA /
2048 bits /

SHA1withRSA 703.1 1185.4 668.6

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

RSA /
3072 bits /

SHA1withRSA 1011.2 1495.7 976.5

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 480.2 964.6 445.5

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA

EC /
224 bits /

SHA1withECDSA 427.4 905.5 391.9

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 464.7 951.1 429.1

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA

EC /
256 bits /

SHA1withECDSA 440.4 931.2 405.7

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 454.7 933.7 419.2

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

EC / 256 bits /
SHA1withECDSA

488.8 975.6 453.9

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA * 1026.0 1521.3 992.3

TLS_DHE_RSA_WITH_AES_128_CBC_SHA

RSA / 3072 bits /
SHA1withRSA

967.5 1456.8 934.2

TLS_DHE_DSS_WITH_AES_128_CBC_SHA

DSA /
1024 bits /

SHA1withDSA 539.4 1022.1 505.5

TLS_RSA_WITH_AES_256_CBC_SHA

RSA /
2048 bits /

SHA1withRSA 685.3 1168.6 645.3

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

48

350.0

450.0

550.0

650.0

750.0

850.0

950.0

TL
S
_R

S
A
_W

IT
H
_A

E
S
_1

28
_C

B
C
_S

H
A
 (R

S
A
 /

10
24

 b
its

 /
S
H
A
51

2w
ith

R
S
A
)

TL
S
_E

C
D
H
_E

C
D
S
A
_W

IT
H
_A

E
S
_2

56
_C

B
C
_S

H
A

(E
C
C
 /

22
4

bi
ts

 /
S
H
A
1w

ith
E
C
D
S
A
)

TL
S
_R

S
A
_W

IT
H
_A

E
S
_2

56
_C

B
C
_S

H
A
 (R

S
A
 /

20
48

 b
its

 /
S
H
A
51

2w
ith

R
S
A
)

TL
S
_E

C
D
H
_E

C
D
S
A
_W

IT
H
_A

E
S
_2

56
_C

B
C
_S

H
A

(E
C
C
 /

25
6

bi
ts

 /
S
H
A
1w

ith
E
C
D
S
A
)

TL
S
_E

C
D
H
_E

C
D
S
A
_W

IT
H
_A

E
S
_1

28
_C

B
C
_S

H
A

(E
C
C
 /

25
6

bi
ts

 /
S
H
A
1w

ith
E
C
D
S
A
)

Details of Combination

O
ve

rh
ea

d
of

 T
LS

 (m
s)

Overhead of TLS on Mean Handshake Duration

Overhead of TLS Combination on Mean Time for TLS-LLRP Client to Initialize and Interact with TLS-
LLRP Reader
Overhead of TLS Combination on Mean Time for TLS-LLRP Reader to serve TLS-LLRP Client

Fig. 8: Five TLS combinations that cause minimum overhead on metrics i, iii and iv

performance of the Record Protocol is affected by the use
of AES-128 or AES-256. If we analyze the mean
propagation time data for LLRP messages
SetReaderConfig and GetReaderCapabilities
(as shown in Table 4), we find:
• Using TLS (i.e. AES-128) increases mean

propagation time by almost 3 times.

• Hypothesis testing (α = 0.05) reveals that the mean
propagation time of SetReaderConfig and
GetReaderCapabilities is statistically larger
when AES-256 is used compared to when AES-128 is
used.

Table 4: Analysis of Mean Propagation Time of TLS-LLRP message (ms)
LLRP Message No

TLS
TLS_RSA
WITH

AES_128_
CBC_SHA

TLS_RSA
WITH

AES_256_
CBC_SHA

SetReader
Config

2.2 6.6 8.5

GetReader
Capabilities

1.1 3.1 4.8

9. Conclusion

This work is an initial but important input into the security

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

49

of the new LLRP standard. Security requirements and
possible solutions are discussed and TLS is selected for
the securing a LLRP connection. A description of the
development of the first TLS-LLRP endpoints is then
given. This work also details the metrics selected to
indicate performance and outlines the experimental
procedures accordingly. The data collected revealed that
adding TLS introduces an overhead of at least 419 ms due
to its handshake protocol and almost triples the
propagation time of LLRP messages. Further analysis
showed that if the level of security is to be raised (i.e.
beyond RSA 1024 bits), then
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
(with 224 bit ECC keys and certificates signed using
SHA1withECDSA) should be adopted because of its
minimal impact on performance.
Future work could include carrying out performance
studies using C/C++ implementations of TLS. This will be
possible only when open source C/C++ implementations
of LLRP endpoints become available. Likewise,
performance evaluation can be fine-tuned once a more
accurate model of the workload of a LLRP session has
been developed.

References
[1] The EPCglobal Architecture Framework [Online].

EPCglobal Standard. Available:
http://www.epcglobalinc.org/standards/architecture/architec
ture_1_2-framework-20070910.pdf, 2007.

[2] Low Level Reader Protocol (LLRP) [Online]. EPCglobal
Standard. Available:
http://www.epcglobalinc.org/standards/llrp/llrp_1_0_1-
standard-20070813.pdf, 2007.

[3] S. Samanta, “RFID reader agent based on low level reader
protocol (LLRP) standard,” M.S. thesis, Dept. Comp. Sci. &
Comp. Eng., Univ. of Arkansas, United States, 2007.

[4] Rifidi. (2007). “LLRP HelloWorld Quick Start Guide”
[Online]. Available:
http://www.rifidi.org/llrp/LLRPQuickStartGuide.pdf.

[5] D. M. Dobkin. (2007, September). “A Brief Introduction to
Low Level Reader Protocol (LLRP)” [Online]. Available:
http://www.rfidtribe.com/home/index.php?option=com_con
tent&task=view&id=138.

[6] Impinj Inc. (2007). “LLRP-Reader Control Simplified”
[Online]. Available:
http://www.impinj.com/WorkArea/downloadasset.aspx?id=
2481.

[7] llrp.org. (2007). “llrp.org” [Online]. Available:
http://www.llrp.org.

[8] D-H. Shih and P-L. Sun. (2005), Securing industry-wide
EPCglobal Network with WS-security. Industrial
Management & Data Systems. 105(7), pp. 972-996.

[9] D.M. Konidala, W-S Kim, and K. Kim. (2006). “Security
assessment of EPCglobal architecture framework” [Online].
Available:

http://www.autoidlabs.org/uploads/media/AUTOIDLABS-
WP-SWNET-017.pdf.

[10] T. Dierks and E. Rescorla, The Transport Layer Security
(TLS) protocol version 1.1 [Online]. Available:
http://www.ietf.org/rfc/rfc4346.txt. 2006.

[11] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk and B.
Moeller. Elliptic Curve Cryptography (ECC) cipher Suites
for Transport Layer Security (TLS) [Online]. Available:
http://www.ietf.org/rfc/rfc4492.txt. 2006.

[12] V. Gupta, D. Stebila and S.C. Shantz. (2004). “Integrating
elliptic curve cryptography into the Web’s security
infrastructure” [Online]. Available:
http://research.sun.com/projects/crypto/p915-gupta-final.pdf.

[13] G. Apostolopoulos, V. Peris and D.Saha, “Transport layer
security: how much does it really cost?” in Proc. IEEE
INFOCOM, March 1999, pp.717-725.

[14] G. Apostolopoulos, V. Peris, P. Pradhan and D. Saha, (2000,
July / August). Securing electronic commerce: reducing the
SSL overhead, IEEE Network. pp. 8-16.

[15] V. Gupta, S. Gupta and S. Chang, “Performance analysis of
elliptic curve cryptography for SSL,” presented at WiSE’02
[Online]. Atlanta, Georgia, USA, 2002. Available:
http://research.sun.com/projects/crypto/performance.pdf.

[16] V. Gupta, D. Stebila, S. Fung, S. C. Shantz, N. Gura, and H.
Eberle, (2004) “Speeding up secure web transactions using
elliptic curve cryptography” [Online]. Available:
http://research.sun.com/projects/crypto/ecc-ssl-
ndss2004.pdf.

[17] A, Levi and E. Savas, “Performance evaluation of public-
key cryptosystems in WTLS protocol,” presented at the 8th
IEEE Int. Symp. on Computers and Communication (ISCC
2003), Kemer-Antalya, Turkey., June-July, 2003.

[18] - (2007). “Accada EPC Network Prototyping Platform”
[Online]. Available: http://www.accada.org. 2007.

[19] Rifidi. (2008), “Rifidi” [Computer Program] [Online].
Available: http://wiki.rifidi.org/index.php/Main_Page.

[20] Rifidi. (2007). “LLRP HelloWorld Sample Application”
[Computer Program] [Online]. Available:
http://www.rifidi.org/llrp/LLRPHelloWorldClient.zip.

[21] EPCglobal Reader Protocol Standard [Online]. EPCglobal
Standard. Available:
http://www.epcglobalinc.org/standards/rp/rp_1_1-standard-
20060621.pdf, 2006.

[22] D. Hook, Beginning Cryptography with Java. Indianapolis:
Wiley Publishing, 2005.

