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Summary 
The recently ratified Low Level Reader Protocol (LLRP) 
specifies the interaction between a RFID Reader and 
Client. It has been of much interest in the RFID 
community but adoption is being stalled by its lack of 
formal scrutiny especially with regard to its security. This 
paper surveys the work that has been undertaken on this 
protocol, assesses its security vulnerabilities and examines 
possible security solutions. It then presents the design and 
implementation of LLRP endpoints that use Transport 
Layer Security (TLS) to setup a secure LLRP connection. 
Based on previous performance studies, appropriate 
metrics are selected to indicate the performance of the 
resulting TLS-LLRP connection. Specifically, the 
overhead of securing a LLRP connection using TLS is 
quantified and a detailed analysis of the results is 
undertaken to determine the TLS cipher suites and 
parameters that provide the best compromise between the 
level of security and performance. 
Key words: 
LLRP, TLS, Performance, cipher suite. 

1. Introduction 

EPCglobal Inc. is the company in charge of the 
development of standards to govern the deployment of 
RFID technology for supply chain management. These 
standards are intended to lead to the development of the 
EPCglobal Network. Basically, this is the effect achieved 
when companies employ EPCglobal standards and core 
services to manage their supply chains and for interacting 
with business partners and with EPCglobal [1]. The 
advantage of the creation of EPCglobal Network is to 
automate supply chain management and eventually to 
enable enterprises to seamlessly and securely exchange 
relevant data on a global scale.  
Several EPCglobal Standards are still under development 
but those that can be deployed within an enterprise have 
been specified. An example of an intra-enterprise RFID 
setup that shows two very important EPCglobal Standards 
is given in Fig. 1. 

 

 
The Electronic Product Code (EPC) is a 96-bit code stored 
on a RFID tag. The product, to which this tag is attached, 
is identified by reading the EPC using the air interface 
protocol called UHF Class 1 Gen 2. The RFID Reader 
passes on this data along with other information to a Client 
using the Low Level Reader Protocol (LLRP). It is this 
latter standard that is the focus of this paper. 
An important condition for fully benefiting from any 
RFID setup is the security of the communication channels. 
Security is especially important for the communication 
channel that connects a RFID Reader to a company’s 
intranet. Progress on this front has been impeded in the 
past due to the resource constraints of RFID devices and 
to the unacceptable delay in performance resulting from 
the inclusion of security mechanisms. Improvements in 
technology are however diminishing the impact of these 
limitations. This paper will first assess the security 
requirements of a LLRP connection and then select a 
security protocol to secure the connection. Finally, a 
performance evaluation of the secure LLRP connection is 
carried out. This is intended to provide relevant input to 
security experts, protocol designers and system 
implementers of how a security protocol affects the 
performance of a system. 
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Fig. 1: Example of an intra-enterprise setup of EPCglobal Network 
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2. Introduction to LLRP and Related Work 

LLRP is one of the latest EPCglobal standard and ‘is 
specifically concerned with providing the formats and 
procedures of communication between a Client and a 
Reader’ [2]. Clients use the protocol to get and set Reader 
configuration, discover capabilities of a Reader and to 
manage a Reader’s access and inventory operations [3].  
Readers use the protocol to report their status, the result of 
RF surveys, access and inventory operations [3]. 
Communication via LLRP is in the form of protocol data 
units called messages that are sent to and from the Reader 
and Client. Each message is encoded in binary before 
being sent over TCP [4].  
The first major work on LLRP was the development of a 
class library for the specification by Joe Hoag of the 
University of Arkansas. The library, written in Java, helps 
to encode/decode LLRP messages to and from their binary 
representation. This library was used by Pramari, a 
company specializing in the development of virtual RFID 
Readers. They utilized it to enable a LLRP virtual Reader 
to be simulated by their Pramari Virtual Reader software 
[3]. Their objective is to enable researchers to simulate a 
particular Reader before it is available in the market [3]. 
The library was also later used to develop a LLRP Reader 
agent called LLRPReaderAgent [3]. This agent is 
capable of talking to any LLRP Reader and was integrated 
into TagCentric (an open source agent-based RFID 
middleware application). 
The LLRP has been more warmly received by the vendor 
community than its predecessor, the Reader Protocol. This 
is because the Reader Protocol provided a more ‘abstract, 
event-driven approach’ to controlling the operation of a 
Reader while the LLRP is more directly involved with a 
Reader’s operation [5]. In particular, it is aware of the 
specific air protocol used to communicate with tags and 
therefore provides air ‘protocol-specific parameters and 
control’ [5]. It also allows control of other hardware 
aspects of a Reader. Another advantage of LLRP is that it 
provides more support for vendor extensions e.g. in the 
form of custom messages. It is for these reasons that the 
RFID company Impinj Inc. has recently released a 
LLRPv1.0.1 compliant Reader (Speedway® Reader). 
They also claim that using LLRP improves the 
performance of a RFID system [6]. Vendors are likely to 
follow Impinj and more releases of LLRP compliant 
Readers are expected. Although Impinj’s implementation 
of LLRP is propriety, the company is also involved in 
developing an open source programming toolkit for LLRP. 
The purpose of this project is to provide libraries in many 
languages ‘for the development of LLRP-based 
applications and smart readers' [7]. The main development 
languages being used are Java, C++ and Perl [7]. These 
libraries are to facilitate the building and parsing of LLRP 

messages and will be handy to Reader and software 
vendors [7]. 

3. Security Assessment of LLRP 

Security and privacy are services that EPCglobal aims to 
provide its users. To achieve this, their specifications 
either include security features or recommend the best 
security practice [1]. However, any supply chain 
management system built using current RFID components 
is vulnerable to several security threats. This is because 
recommended security features have simply not been 
adopted. The main reason for this is that such features are 
regarded as features that can be added on later or ignored 
because they can seriously degrade system performance. 
As a result, most RFID systems have no security 
mechanisms implemented at all and data is transmitted 
without being checked or encrypted. [8] proposes ‘a 
secure web service framework applying to an industry-
wide EPCglobal Network utilizing Web Services Security 
(WSS) technology’. They use Web services because their 
focus is on the security of information exchanged between 
trading partners, i.e. an inter-enterprise setup. This is in 
contrast to an intra-enterprise setup where LLRP operates. 
Reference [9] undertook to assess the security of the 
components that comprise the EPCglobal Network. They 
found that the most significant threats in an intra-
enterprise scenario are posed by: 
• malicious or compromised Readers, and  

• eavesdropping, spoofing, man-in-the-middle and 
replay attacks on the communication channel between 
Reader and Client.  

The security services that should be adopted are [9] [2]: 
• Reader-Client mutual authentication and authorization, 

and  

• privacy protection and integrity protection of LLRP 
messages 

The LLRP standard itself merely states that a LLRP Client 
and Reader MAY implement Transport Layer Security 
(TLS) [2]. In other words, including TLS is permissible 
within the scope of the standard but no recommendation is 
made. Even [9] suggests TLS as a solution for the security 
requirements of a Reader-Client Interface.  
Some Readers nowadays (e.g. handheld models), include a 
wireless interface (802.11b/g) to communicate with a 
Client. For usage over a wireless connection, TLS was 
fine-tuned to a new ‘lighter’ protocol called Wireless 
Transport Layer Security (WTLS). Despite its existence, 
WTLS was not recommended by EPCglobal for use with 
LLRP. It was considered more important to remain 
interoperable with wired systems that use the ubiquitous 
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TCP/IP stack and public key infrastructure (including 
X.509 certificates). Moreover, WTLS is part of the 
Wireless Application Protocol (WAP) suite and that 
requires the application protocol to be HTTP. In our case, 
LLRP not HTTP, is the application protocol being 
considered. 

4. Securing LLRP Connection and TLS 

To the authors’ knowledge no other work has been done 
on securing LLRP connections. TLS has many advantages 
because of which it is the primary choice for securing a 
LLRP connection. In addition to providing the security 
services listed above, it is light weight and has been 
proved to be reliable and secure by millions of users [2].  
The TLS protocol v1.0 is the result of IETF’s effort to 
standardize Netscape’s Secure Socket Layer (SSL) 
protocol v3.1. It comprises two main sub-protocols called 
the Handshake Protocol and Record Protocol as shown in 
Fig. 2 [10]. Their functions are summarized in Table 1 
[10]. The Record Layer is a layered protocol in which data 
is fragmented, compressed (optional), used for the 
generation of a message authentication code and finally 
encrypted. The security parameters needed by the Record 
Layer are negotiated during the TLS Handshake. The TLS 
Handshake protocol is mainly responsible for 
authenticating the identities of the communicating 
endpoints but it also negotiates other cryptographic 
parameters needed by a TLS session [10].  
A full handshake is carried out only when a new session is 
requested and an abbreviated handshake is used when a 
previous session is being resumed. In the latter type of 
handshake, no public key operations are used so we 
consider only those cases where a full handshake takes 
place. Even in a full handshake, the key exchange method 
and the endpoints being authenticated determine the exact 
message flow [10].  
We focus on cases where the identity of both endpoints’ is 
being verified and when both endpoints employ identical 
type of certificates.  
In general, full handshakes are based on either Rivest- 
 

 

Fig.:2:  Sub-protocols of TLS 
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Shamir-Adleman (RSA) or Elliptic Curve Cryptography 
(ECC) as shown in Fig. 3 and Fig. 4 respectively [10][11]. 
In the ClientHello message, a list of preferred cipher 
suites is sent from the TLS Client to the TLS Server. Each 
cipher suite is a specification of the key exchange 
algorithm, symmetric cipher and MAC algorithm that can 
be used on the TLS connection. The Server is required to 
select one cipher suite from this list and send it to the TLS 
Client in the ServerHello message. If a cipher suite is 
not agreed upon, the handshake fails and the connection is 
terminated. A list of predefined cipher suites is included 
for use in the TLS standard. The strength of TLS is 
flexible and can easily be changed by the communicating 
endpoints negotiating a different cipher suite during a TLS 
handshake [2]. 

5. Review of Related Performance Studies 

It is acknowledged that security protocols introduce 
overhead into the performance of a system. This was the 
case with TLS when it was being adopted for securing 
Web servers. To quantify the delay incurred because of 
TLS become urgent because the slow response time of the 
secure Web Servers was translating into loss of revenue 
for e-commerce sites.  
There are also a number of trends that make evaluation of 
performance imperative and the continued use of RSA 
difficult to justify. These trends include the need to secure 
simpler, more constrained devices, the larger number of 
applications requiring security and the demands for higher 
level of security [12]. 
In line with this, a succession of performance evaluation  
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Client  Server  

    
ClientHello   (Initial proposal) 

  ServerHello (Cipher suite negotiated) 
  Certificate 
  ServerKeyExchange* 

(Conveys server’s RSA encryption key (e,n)) 

  CertificateRequest  
  ServerHelloDone  

Certificate    
ClientKeyExchange    (Client verifies server’s key and sends encrypted 

random secret: re mod n) 
CertificateVerify*    

[ChangeCipherSpec]    
Finished   (Server decrypts secret: 

r = (re mod n)d mod n) 
  [ChangeCipherSpec]  
  Finished  
   Ready for bulk encryption, authenticated 

Application Data  Application Data  

Fig. 3: RSA-based Full Handshake 

 
 Client  Server  
     
 ClientHello   (Initial proposal) 
   ServerHello (Cipher suite negotiated) 
   Certificate (Conveys server’s ECDSA-capable 

public key signed with ECDSA) 
   ServerKeyExchange (Conveys server’s ephemeral ECDH 

public key signed using ECDSA) 
   CertificateRequest  
   ServerHelloDone  

(Conveys client’s ECDSA-
capable public key signed 

with ECDSA) 

Certificate    

(Conveys client’s ECDH 
public key) 

ClientKeyExchange     

 CertificateVerify    
(ECDH computation used to 
generate pre-master secret) 

[ChangeCipherSpec]    

 Finished   (ECDH computation used to generate 
pre-master secret) 

   [ChangeCipherSpec]  
   Finished  
    Ready for bulk encryption, authenticated
 Application Data  Application Data  

Fig. 4: ECC-based Full Handshake 

 
studies have been carried out and in majority of them TLS 
is used to secure HTTP transactions. Other application 
protocols, like LLRP, differ from HTTP in terms of the 
nature of the messages, usage profile and security 
requirements. Nonetheless, several useful points can be 
noted from these studies. Firstly, the public key operations 
in the TLS Handshake Protocol are responsible for 
majority of the overhead of securing HTTP transactions 
[13] [14]. Secondly, the overhead due to the cryptographic 
operations performed by the Record Layer is relatively 
small and only significant for larger transactions [13]. [13] 

and [14] are not only dated but their focus on server 
authentication only and on RSA is a serious limitation. 
Nonetheless, like in their studies, we use the duration of 
handshake as a very important metric of performance. We 
also use the metric Propagation Time of TLS-LLRP 
message to indicate overhead of the Record Protocol. 
With the increasing popularity of ECC, [15] and [16] 
compared the improvements that can be expected if RSA 
is replaced with ECC. Specifically, [15] compared the 
time spent during a handshake on RSA operations with 
time spent on ECDH_ECDSA operations if they are used 
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instead. They concluded that ECC cipher suites results in 
better performance of both the SSL client and server and 
that the performance advantage of ECC increases as 
higher levels of security are used. [16] reached a similar 
conclusion (the cipher suite 
TLS_ECDH_ECDSA_WITH_RC4_128_SHA performs 
better than TSL_RSA_WITH_RC4_128_SHA) although 
different performance metrics were used. To be more 
specific, these metrics accurately reflected performance 
from the user’s viewpoint and recorded the rate at which 
the secure Web server was able to fulfill web page 
requests. The authors of [16] highlight the importance of 
their results, by stating that public key operations are the 
most computationally expensive part of SSL and finding 
techniques that reduce this computational overhead should 
be a high priority. Their study is however, restricted to the 
specific Web browser and server used as well as by their 
custom implementation of ECC. The latest study to be 
carried out [12] was in line with the trend of requiring or 
recommending the inclusion of ECC in security 
mechanisms. It finds that ‘replacing RSA with ECC 
reduces that server’s processing time for new SSL 
connections across the entire range of page sizes from 
10KB to 70KB’ [12]. Although [12] is the most recent 
study, it does not include RSA key sizes larger than 2048 
bits, nor does it deal with the impact of using AES or with 
mutual authentication. 
The performance evaluation of public-key cryptosystems 
in WTLS is carried out in [17]. Their metrics ‘client 
processing time of public-key operations’, ‘server 
processing time of public-key operations’ and ‘the amount 
of data exchanged between the client and server’ all show 
that in WTLS, ECC curves outperform RSA 
cryptosystems [17]. 

6. Design and Implementation 

All design and implementation decisions were made by 
the authors since EPCglobal does not currently provide 
any specifications for the implementation of security 
features [8].  
TLS always lies above TCP and consequently will lie 
below LLRP. This means that the initiation of a TLS-
LLRP connection comprises of the following sequence: a 
TCP handshake, a TLS handshake and a LLRP connection 
initiation sequence. Likewise the termination of a TLS-
LLRP connection comprises of the sequence: a LLRP 
connection termination, a TLS connection termination and 
a TCP connection termination.  
The steps that have to be taken when sending and 
receiving 
LLRP messages over a TLS-LLRP connection are shown 
in Fig. 5.  

Development can commence only after open source 
implementations of LLRP Reader and LLRP Client have 
been selected. The Accada EPC Network Prototyping 
platform (developed using Java) is at the forefront of 
enabling a quick-setup of EPC-compliant systems [18]. 
However, its main Reader Core module is an 
implementation of the Reader Protocol and not LLRP. 
Furthermore, since LLRP is seen as a replacement of the 
Reader protocol, it does not make sense to use Accada. 
The only open source LLRP Reader in the market is the 
Rifidi Emulator v1.5 [19]. It is written in Java. 
Although still a prototype, Rifidi’s virtual LLRP 
Reader 
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Fig. 5: Messages sent and received over TLS-LLRP 
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functions like a real Reader down to the packet level and 
can emulate TCP connections. It can therefore be extended 
by adding TLS so that instead of operating like a TCP 
server, it operates like a TLS server. The default port for 
accepting TLS-LLRP connections is also set to 5085 as 
specified in [2]. 
To establish a TLS-LLRP connection, a TLS-LLRP Client 
is also required. To get an accurate assessment of 
performance, it is important that the TLS-LLRP Client 
estimates workload properly. In the case of LLRP, not 
only are there no benchmarks available but also no sample 
usage data. Therefore, as a starting point, we select an 
open source Java program called 
LLRPHelloWorldClient that is based on the typical 
LLRP timeline given in the LLRP standard [2: p21] [20]. 
This program is extended to include the function of 
establishing a TLS-LLRP connection with the TLS-LLRP 
Reader described in the preceding paragraph.  
The TLS implementation to be used to extend each LLRP 
endpoint had to be carefully selected. In the end, the Java 
Secure Socket Extension (JSSE) implementation of 
TLSv1.0 was chosen. Although written in Java and 
probably not as fast as C/C++ implementations of TLS 
like cryptlib and OpenSSL, JSSE is chosen for this 
work because it is the best implementation of TLS in Java. 
A Java implementation is compulsory. This is because it 
has to be used to extend the Java programs Rifidi 
Emulatorv1.5 and LLRPHelloWorldClient. 
When configured to work with Network Security Services 
(NSS) libraries, JSSE provides support for 34 cipher suites. 
It should be noted that despite the advantages of Java like 
portability and simplicity, support for the language is only 
just beginning to be included in RFID Readers (e.g. 
Intermec’s IF 5 Fixed Reader, Symbol’s XR 440 Fixed 
Reader and INfinity 510 by Sirit Inc). Such basic support 
is however not enough for a Java TLS-LLRP 
implementation (like the one developed in this work), to 
be practical on current RFID Readers. A Java TLS-LLRP 
implementation is only practical on RFID Readers that use 
Java to operate and it is not unreasonable that given the 
current trend in the market, such Readers will be released 
in the near future. 

7. Performance Metrics and Experimental 
Procedure 

The experiments require two identical machines (one for 
each program) linked via a wireless 11 Mbps connection. 
Public keys, private keys and certificates for both TLS-
LLRP endpoints are generated using keytool.  
Evaluation of performance requires suitable choice of 
metrics, i.e. metrics that accurately estimate ‘perceived’ 
performance [15]. We chose two main metrics to indicate 

performance. The experimental procedure as well as the 
TLS-LLRP Client used differs for each of the two main 
metrics. Details of the two main metrics are given below: 
i. Handshake Duration: to estimate the 

performance of the Handshake Protocol 
12 of the most important cipher suites and other 
options provided by TLS were arranged into 26 
different combinations (see column one and two 
of Table 3). Each run is defined by launching the 
TLS-LLRP Reader on one machine and running 
the TLS-LLRP Client to completion on the other 
machine.10 runs are carried out for each of the 26 
different TLS combinations.  
The TLS-LLRP Client used in these runs 
establishes a TLS-LLRP connection with the 
TLS-LLRP Reader, exchanges 34 LLRP 
messages with it and then terminates the TLS-
LLRP connection (see Fig. 6). The network 
protocol analyzer, Wireshark, is used to 
confirm the exchange of TLS-LLRP packets 
between the two machines.  
Timestamps were generated using the Java 
function System.nanoTime(). 

ii. Propagation Time of TLS-LLRP Message: to 
estimate the performance of the Record Protocol. 
A different TLS-LLRP Client was written to 
record this metric accurately. This was because 
measuring propagation time using the TLS-LLRP 
Client shown in Fig. 6 revealed very high 
variability. The only difference between this new  
 

 

Fig. 6: Diagram of TLS-LLRP Client based on typical LLRP timeline 
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TLS-LLRP Client and the one used in i is that 
this TLS-LLRP Client sends one LLRP message 
multiple times to the TLS-LLRP Reader before 
terminating (See Fig. 7). 
Generating timestamps for this metric was a very 
difficult task. Firstly, it required the use Network 
Time Protocol (NTP) to synchronize the clocks 
on the two machines. Secondly, a Java Native 
Interface (JNI) for C functions that return the 
precise time under Windows XP had to be written 
so that these function could be called from the 
Java TLS-LLRP programs. 

Two other metrics that were used to indicate performance 
from a user’s viewpoint are: 
iii. The performance of the TLSL-LLRP Client – 

indicated by recording the time it took to 
initialize and interact with the TLS-LLRP Reader.  

iv. The performance of the TLS-LLRP Reader – 
indicated by recording the time it took to serve 
the TLS-LLRP Client. 

8. Performance Evaluation 

In a business context, performance is paramount and large 
delays in these metrics because of the inclusion of TLS are 
unacceptable.  
Without TLS, the time taken by metric i, iii and iv is given 
in the second column of Table 2. 
The minimum overhead of adding TLS on Handshake 
Duration is 419.8 ms 
(TLS_RSA_WITH_AES_128_CBC_SHA, 1024 bit RSA 
keys) while the maximum is 1026.0 ms  
(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 3072 
 

 

Fig. 7: Diagram of TLS-LLRP Client to investigate the Propagation Time 
of TLS-LLRP messages 

bit RSA keys). 
The mean overhead on metrics i, iii and iv when different 
combinations of TLS are used is given in Table 3. It is 
easy to note that the largest overhead in all three metrics is 
observed when 3072 bit RSA keys are used and thus these 
combinations of TLS should be avoided. 
Fig. 8 shows a plot of the five TLS combinations that 
result in minimum overhead on these three metrics. 
TLS_RSA_WITH_AES_128_CBC_SHA results in 
minimum overhead and this is probably the reason why it 
is the mandatory cipher suite should a Reader Protocol 
implementation support HTTPS [21].  
RSA 1024 keys are to be replaced in the near future and 
larger RSA keys should be avoided as was mentioned 
above. It is thus imperative that a cipher suite should be 
identified that provides a higher level of security (than 
TLS_RSA_WITH_AES_128_CBC_SHA) but 
simultaneously has the smallest possible impact on 
performance. Since it is acknowledged that public key 
operations are most computationally expensive part of a  
TLS handshake, we use hypothesis testing (α = 0.1) to 
arrange the key exchange methods shown in Table 3 in 
order of causing significant increase to the mean value of 
the performance metrics: 
• ECDH_ECDSA / ECDHE_ECDSA 

• RSA 

• ECDHE_RSA 

• DHE_RSA 

We are thus able to recommend 
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 
(with ECC 224 bit keys and certificates signed using 
SHA1withECDSA) as the next best cipher suite when 
using TLS to secure a LLRP connection. 
The above recommendation is based on the mean 
handshake duration but it remains to analyze the 
performance of TLS-LLRP connection as measured by the 
Propagation Time of TLS-LLRP messages. Essentially, 
the 

Table 2: Mean values of metrics i,, iii and iv 
Metric
(ms) 

Mean 
value 

(without 
TLS) 

Minimal 
overhead 
of adding 

TLS 

Maximum 
overhead 

 of adding TLS

i 0 419.8 1026.0 
iii 16206.9 895.6 1521.3 
iv 16141.1 385 992.3 
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Table 3: Overhead of TLS combinations on metrics i, iii and iv (ms) 

 
Cipher Suite Alg / Key Size / Sign Alg. i iii iv 

TLS_RSA_WITH_AES_128_CBC_SHA * 419.8 895.6 385 

TLS_RSA_WITH_AES_256_CBC_SHA 457.2 942.2 422.4

TLS_DHE_RSA_WITH_AES_256_CBC_SHA 507.5 986.7 473.1

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 

RSA /  
1024 bits /  

SHA512withRSA 

483.5 962 448.1

TLS_RSA_WITH_AES_128_CBC_SHA 460.1 947.9 425.1

TLS_RSA_WITH_AES_256_CBC_SHA 429.7 914.6 394.2

TLS_DHE_RSA_WITH_AES_256_CBC_SHA 585.8 1073.9 551.3

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA  

 
RSA /  

2048 bits /  
SHA512withRSA 

684.2 1175.9 652.1

TLS_RSA_WITH_AES_256_CBC_SHA  678.6 1172 642.4

TLS_DHE_RSA_WITH_AES_256_CBC_SHA  935.6 1432.2 902.4

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 

 
RSA /  

3072 bits /  
SHA512withRSA 991.8 1482.7 956.1

TLS_DHE_RSA_WITH_AES_256_CBC_SHA 494.7 968 461.3

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 

RSA /  
1024 bits /  

SHA1withRSA 472.9 946 438.6
 
TLS_DHE_DSS_WITH_AES_256_CBC_SHA 

DSA /  
1024 bits /  

SHA1withDSA 561.6 1035.2 527 

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 

RSA /  
2048 bits /  

SHA1withRSA 703.1 1185.4 668.6

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 

RSA /  
3072 bits /  

SHA1withRSA 1011.2 1495.7 976.5

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 480.2 964.6 445.5

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 

EC /  
224 bits /  

SHA1withECDSA 427.4 905.5 391.9

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 464.7 951.1 429.1

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 

EC /  
256 bits /  

SHA1withECDSA 440.4 931.2 405.7

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 454.7 933.7 419.2

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 

EC / 256 bits / 
SHA1withECDSA 

488.8 975.6 453.9

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA * 1026.0 1521.3 992.3

TLS_DHE_RSA_WITH_AES_128_CBC_SHA 

RSA / 3072 bits / 
SHA1withRSA 

967.5 1456.8 934.2

TLS_DHE_DSS_WITH_AES_128_CBC_SHA 

DSA /  
1024 bits /  

SHA1withDSA 539.4 1022.1 505.5

TLS_RSA_WITH_AES_256_CBC_SHA 

RSA /  
2048 bits /  

SHA1withRSA 685.3 1168.6 645.3
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Fig. 8: Five TLS combinations that cause minimum overhead on metrics i, iii and iv 

 
performance of the Record Protocol is affected by the use 
of AES-128 or AES-256. If we analyze the mean 
propagation time data for LLRP messages 
SetReaderConfig and GetReaderCapabilities 
(as shown in Table 4), we find: 
• Using TLS (i.e. AES-128) increases mean 

propagation time by almost 3 times. 

• Hypothesis testing (α = 0.05) reveals that the mean 
propagation time of SetReaderConfig and 
GetReaderCapabilities is statistically larger 
when AES-256 is used compared to when AES-128 is 
used. 

Table 4: Analysis of Mean Propagation Time of TLS-LLRP message (ms) 
LLRP Message No 

TLS
TLS_RSA 
_WITH_ 

AES_128_ 
CBC_SHA 

TLS_RSA
_WITH_ 

AES_256_
CBC_SHA

SetReader 
Config 

2.2 6.6 8.5 

GetReader 
Capabilities

1.1 3.1 4.8 

9. Conclusion 

This work is an initial but important input into the security 
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of the new LLRP standard. Security requirements and 
possible solutions are discussed and TLS is selected for 
the securing a LLRP connection. A description of the 
development of the first TLS-LLRP endpoints is then 
given. This work also details the metrics selected to 
indicate performance and outlines the experimental 
procedures accordingly. The data collected revealed that 
adding TLS introduces an overhead of at least 419 ms due 
to its handshake protocol and almost triples the 
propagation time of LLRP messages. Further analysis 
showed that if the level of security is to be raised (i.e. 
beyond RSA 1024 bits), then 
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 
(with 224 bit ECC keys and certificates signed using 
SHA1withECDSA) should be adopted because of its 
minimal impact on performance. 
Future work could include carrying out performance 
studies using C/C++ implementations of TLS. This will be 
possible only when open source C/C++ implementations 
of LLRP endpoints become available. Likewise, 
performance evaluation can be fine-tuned once a more 
accurate model of the workload of a LLRP session has 
been developed. 
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