
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

50

Manuscript received March 5, 2009
Manuscript revised March 20, 2009

An Efficient VLSI Architecture and FPGA Implementation of
High-Speed and Low Power 2-D DWT for (9, 7) Wavelet Filter

A. Mansouri, A. Ahaitouf, and F. Abdi.
UFR SSC, LSSC, Electrical Engineering Department Faculty of sciences & techniques BP: 2202 FES MOROCCO

Summary
This paper presents an efficient VLSI architecture of a high
speed, low power 2-D Discrete Wavelet Transform computing.
The proposed architecture, based on new and fast lifting scheme
approach for (9, 7) filter in DWT, reduces the hardware
complexity and memory accesses. Moreover, it has the ability of
performing progressive computations by minimizing the
buffering between the decomposition levels. The system is fully
compatible with JPEG2000 standard. Our designs were realized
in VHDL language and optimized in terms of throughput and
memory requirements. The implementations are completely
parameterized with respect to the size of the input image and the
number of decomposition levels. The proposed architecture is
verified by simulation and successfully implemented in a
Cyclone II and Stratix III FPGAs, and the estimated frequency of
operation is 350 MHz. The resulting computing rate is up to 48
frames (4096x2160) per second with 24 bpp. The architecture
has regular structure, simple control flow, small embedded
buffers and low power consumption. Thus, it is very suitable for
new generation image compression systems, such as JPEG2000.
Key words:
JPEG2000; 2D-DWT; VLSI architecture; FPGA implementation.

1. Introduction

Over the past several years, the wavelet transform has
gained widespread acceptance in signal processing in
general and in image compression research in particular.
In applications such as still image compression, Discrete
Wavelet Transform (DWT) based schemes have
outperformed other coding schemes like the ones based on
Discrete Cosine Transform (DCT). The DWT has been
introduced as a highly efficient and flexible method for
sub band decomposition of signals [1]. The two-
dimensional DWT (2D-DWT) is nowadays established as
a key operation in image processing. This is due to the fact
that DWT supports features like progressive image
transmission (by quality, by resolution), ease of
compressed image manipulation, region of interest, etc. In
addition to image compression, the DWT has important
applications in many areas, such as computer graphics,
numerical analysis, radar target distinguishing and so forth.
The high algorithmic performance of the 2D DWT in
image compression justifies its use as the kernel of both
the JPEG2000 still image compression standard [1] and

the MPEG-4 texture coding standard [2]. It is widely
recognized that the LeGall (5, 3) and the Daubechies (9, 7)
filters are among the best filters for DWT-based image
compression [3]. In fact, the JPEG2000 image coding
standard [1] employs the (5, 3) and the (9, 7) filters as the
default wavelet filters for respectively loss and lossy
compression. The JPEG2000 can compress images 100
times smaller than the original image. With this
compression ratio, the reconstructed image of the
JPEG2000 still provides good visual quality. The coding
efficiency of the JPEG2000 comes with the cost. Several
years passed by since the JPEG2000 standard was
approved in 2002. However, there are not many consumer
products that support most features of the JPEG2000
available today. The real-time constraint and cost
effectiveness are still major issues for the realization of the
JPEG2000 into consumer products. The 2D-DWT is one
of the main resources intensive components of JPEG2000;
it demands massive computations and represents one of
the critical parts in the design and implementation of the
JPEG2000 standard. Hence, it requires a parallel and
pipelined architecture to perform real-time or on-line
video and image coding and decoding, and to implement
high-efficiency application-specific integrated circuits
(ASIC) or field programmable gate array (FPGA).

Up to now, much work has been performed on DWT
theory and many VLSI architectures have been proposed.
Mallat combined the Wavelet transform and filter bank
into a single transformation [3]. Doubechies applies DWT
to image coding and proposed many famous wavelet
filters [4] including the (9, 7) filter. Swendens proposed
the Lifting Scheme [5] making DWT more
computationally efficient. Calderbank, Doubechies and
Swendens later proposed the Integer Wavelet Transform
(IWT) [6] that is more efficient without scarifying the
performance. In addition, several VLSI architectures have
been proposed for computing the 2D-DWT. They are
mainly based on convolution scheme and lifting scheme.
The lifting scheme can reduce the computational
complexity by exploiting the similarities between high and
low pass filters and it usually requires fewer multipliers
and adders than the convolution scheme. Some
architecture [7], [8], [9] and [10] for DWT have been

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

51

proposed to meet the real time requirement in many
applications for convolution scheme. The first architecture,
presented by Knowles [7], uses many large multiplexers
for storing intermediate results. Wu and Chen proposed a
2-D architecture that employs a folding technique [8]. Yu
et al. proposed a 2-D architecture that employs a
computation-schedule table [9]. Masud et al. proposed an
efficient architecture implemented by filter banks [10].
Xixin Cao et al. presented an efficient VLSI
implementation of Distributed Architecture for DWT in
order to minimize area requirement, but they have a
computation time which is proportional to input data N
[11]. More recently, several architectures [12] [13] [14]
[15]-[19] have been proposed for efficient computation of
DWT based on the lifting scheme. Andra et al. proposed a
2-D DWT architecture which composes of simple
processing units and computes one stage of DWT at a time
[12]. Dillen et al. presented a combined architecture for
the (5,3) and (9, 7) transforms with minimum area [13].
Wu and Lin proposed the fast pipeline architecture by
merging two equations into one equation [14]. Huang et al.
proposed a flipping structure by using an efficient VLSI
architecture for lifting-based discrete wavelet transform
[15]. S. V. Silva and S. Bampi presented Area and
throughput trade-offs in the design of pipelined discrete
wavelet transform architectures [16]. Martina, and Masera
proposed the low-complexity and efficient (9, 7) wavelet
filters VLSI implementation [17].

In this paper, we propose a pipeline, high performance;
low power and lifting based architecture design for the
2D-DWT. The default lossy filter of the latest image
compression standard JPEG2000, Daubechies (9, 7) is
implemented on FPGA-based platforms and compared in
terms of performance, area and power consumption. The
advantages of the proposed architectures are 100%
hardware utilization, small embedded buffers, regular
structure, simple control flow and low power.

The rest of the paper is structured as follows. Section 2
summarizes the discrete wavelet transform and the three
main important design architectures of 2D-DWT are
discussed in detail along with a comparison among them
in terms of the number of access to the external memory
and the size of the local memories. In section 3, the high
efficient architecture for the (9, 7) filter 2-D lifting-based
DWT is proposed, followed by the implementation and
performance analysis in section 4, and section 5 concludes
the work.

2. Discrete Wavelet Transform

One of the prominent features of JPEG2000 standard,
providing it the resolution scalability [3], is the use of the
two-dimensional Discrete Wavelet Transform (2D-DWT)
to convert the image samples into a more compressible
form. It is considered as the key difference between JPEG
and JPEG2000 standards. Since there is no need to divide
the input image into non-overlapping 2-D blocks and its
basis functions have variable length, wavelet-coding
schemes at higher compression ratios avoid blocking
artifacts. Hence the compression artifacts are dispersed
over a correspondingly larger area, and reducing the visual
impact.

2.1 One-Dimensional Discrete Wavelet Transform

Two main methods exist for the implementation of 1D-
DWT: the traditional convolution-based implementation
[18] and the lifting-based implementation [5, 12].

2.1.1 Convolution Based DWT

In the traditional implementation of DWT, a pair of finite
impulse response filters (FIR) is applied in parallel, high-
pass and low-pass filter. Each filtering operation is shown
in Fig. 1.
Mallat's pyramid algorithm [18] computes the one
dimensional (1-D) convolution based DWT at different
levels of resolution. The first level decomposition can be
represented by using the block diagram illustrated in Fig.1.

Fig. 1 Single 1D-DWT Block.

The input sequence X(n) in Fig. 1 is convolved with the
quadrature mirror filters H(z) and G(z) and the outputs
obtained are decimated by a factor of two. After down-
sampling, alternate samples of the output sequence from
the low pass filter and high pass filter are dropped. This
reduces the time resolution by half and conversely doubles
the frequency resolution by two. The 1D-DWT is a two-
channel sub-band decomposition of an input signal X(n)
that produces two sub-band coefficients YL(n) and YH(n)
for one-stage of decomposition [18] according to the
following equations.

)12()(
 1-

0
)(

L
−∑

=
= nxiH

i
nYL

τ
 (1)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

52

)12()(
 1-

0
)(

H
−∑

=
= nxiG

i
nYH

τ
 (2)

In the synthesis stage, scaling and wavelet coefficients
YL(n) and YH(n) are treated inversely by up-sampling and
filtering with low pass Ĥ(z) and high pass Ĝ(z) filters to
perform reconstruction. This stage is also called Inverse
Discrete Wavelet Transform (IDWT). Original and
reconstructed signals are generally different, unless the
two filters H and G satisfy some relationships [18]. The
perfect reconstruction condition consists in ensuring no
distortion and no aliasing of the reconstructed data. Early
research on filter-bank design proved that the execution of
1D-DWT can be accelerated by using the polyphase
matrix of the filter-bank, instead of the conventional
filtering and down-sampling structure of Fig. 1. As Fig. 2
shows, the signal is split into two signals (polyphase
components) at half of the original sampling rate. The
polyphase components of the signal are filtered in parallel
by the corresponding filter coefficients, producing the
same result as if the down-sampling was performed as
described in [18].

Fig. 2 The convolution-based implementation of the 1D-DWT by using
the polyphase matrix.

The analysis polyphase matrix E0(Z) in Fig. 2 is defined
(in the Z-domain) as:

⎥
⎦

⎤
⎢
⎣

⎡
=

)()(
)()(

)(0 zGzG
zHzH

zE
oe

oe (3)

Where)(zH e and)(zH o denote the even and odd
polyphase components of the corresponding low-pass
analysis filter, and)(zGe and)(zGo denote the even
and odd polyphase components of the corresponding high-
pass analysis filter. The wavelet decomposition can be
written using Eq.3 (in the Z-domain) as:

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
)(
)(

)(
)(
)(

zX
zX

zE
zY
zY

o

e
o

H

L (4)

Where)(zYL denotes the approximation at the coarser

resolution,)(zYH denotes the detail signal, and)(zX e

and)(zX o denote the even and odd polyphase

components of the signal)(zX .

2.1.2 Lifting based DWT

The convolution-based 1-D DWT requires both a large
number of arithmetic computations and a large memory
for storage. Such features are not desirable for either high-
speed or low-power image processing applications.
Recently, a new mathematical formulation for wavelet
transformation has been proposed by Swelden [5] as a
light-weighted computation method for performing
wavelet transform. The main feature of the lifting-based
wavelet transform is to break-up the high pass and the low
pass wavelet filters into a sequence of smaller filters. The
lifting scheme requires fewer computations compared to
the convolution-based DWT. Therefore the computational
complexity is reduced to almost a half of those needed
with a convolution approach [3] [5]. As a result, lifting has
been suggested for implementation of DWT in JPEG2000
standard. The lifting-based wavelet transform basically
consists of three steps, which are called split, lifting, and
scaling, respectively, as shown in Fig. 3.

Fig. 3 The lifting scheme implementation of the 1D-DWT.

The basic idea of lifting scheme is first to compute a trivial
wavelet (or lazy wavelet transform) by splitting the
original 1-D signal into odd and even indexed
subsequences, and then modifying these values using
alternating prediction and updating steps. The lifting
scheme algorithm can be described as follow:

- Split step: The original signal, X(n), is split into odd
and even samples (lazy wavelet transform).

- Lifting step: This step is executed as N sub-steps
(depending on the type of the filter), where the odd and
even samples are filtered by the prediction and update
filters, Pn(n) and Un(n).

- Normalization or Scaling step: After N lifting steps,
a scaling coefficients K and 1/K are applied respectively
to the odd and even samples in order to obtain the low-
pass band (YL(i)), and the high-pass sub-band (YH(i)). Fig.
4 illustrates how the lifting scheme can be implemented
using these steps. The diagram shows the lifting scheme
for Daubechies (9, 7) biorthogonal filter adopted in
JPEG2000 standard for lossy compression [1]. The lifting
scheme algorithm to the (9,7) filter is applied as:

Split step:
 Xe ← X(2i) Even Samples
 Xo ← X(2i+1) Odd Samples
Lifting Steps:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

53

For (9, 7) filter, N=2
Predict P1: D(i) = Xo(i) + a [Xe(i) + Xe(i+1)]
Update U1: S(i) = Xe(i) + b [D(i-1) + D(i)]
Predict P2: YH(i) = D(i) + c [S(i) + S(i+1)]
Update U2: YL(i) = S(i) + d [YH(i-1) + YH(i)]
Scaling Step:
 YH(i) = K YH(i)
 YL(i) = 1/K YL(i)

Where a=-1.586134342, b=-0.0529801185,
c=0.882911076, d=-0.443506852, and K=1.149604398
[1].
These mathematical equations can be illustrated by the
scheme in Fig. 4.

Fig. 4 The diagram of 1-D DWT using lifting scheme for (9, 7) filter.

To compare the complexity of the convolution and the
lifting approaches, we have performed a software
implementation in C++ language of both methods for (5,
3) and (9, 7) filters. Results of the simulation are presented
in table 1. This table shows the number of multiplications,
additions and shifts needed for (5, 3) and (9, 7) for both
methods. Simulation was performed by using Lena image
(512x512).

Table 1 Complexity comparison of convolution and lifting-based
implementation.

 Multiplication Addition Shift

(9, 7)
filter

Convolution

Lifting

3670216

1579108

4194504

2109540

None

None

(5, 3)
filter

Convolution

Lifting

490

None

2890

1940

3340

1420

This comparison as well as others works [19] reveals that
lifting-based DWT requires less computation than
convolution-based one. Consequently, convolution-based

DWT is computationally extensive and resulting to be area,
power, and memory hungry. Lifting scheme reduces the
computations up to 50%, which affect directly the memory,
surface and the power consumption of the system. To sum
up, lifting scheme will be more suitable for hardware
implementation with limited on-ship memory, lower
computational complexity, small area and low power.

2.2 Two-Dimensional Discrete Wavelet Transform

The basic idea of 2-D architecture is similar to 1-D
architecture. A 2-D DWT can be seen as a 1-D wavelet
transform along the rows and then a 1-D wavelet
transform along the columns, as illustrated in Figure 5.
The 2-D DWT operates in a straightforward manner by
inserting array transposition between the two 1-D DWT.
The rows of the array are processed first with only one
level of decomposition. This essentially divides the array
into two vertical halves, with the first half storing the
average coefficients, while the second vertical half stores
the detail coefficients. This process is repeated again with
the columns, resulting in four sub-bands (see Fig. 5a)
within the array defined by filter output. Fig. 5b shows a
three-level 2-D DWT decomposition of the Lena image.
The LL sub-band represents an approximation of the
original image, the LL1 sub-band can be considered as a
2:1 sub-sampled (both horizontally and vertically) version
of the original image. The other three sub-bands HL1,
LH1, and HH1 contain higher frequency detail
information (mostly local discontinuities in the edges of
the image). This process is repeated for as many levels of
decomposition as are desired. The JPEG2000 standard
specifies five levels of decomposition [1], although three
are usually considered acceptable in hardware. In order to
extend the 1-D filter to compute 2-D DWT in JPEG2000,
two points have to be taken into account:
Firstly, the 1-D DWT generates the control signal memory
to compute 2-D DWT and manages the internal memory
access. Secondly; we need to stores temporary results
generated by 2-D column filter. The amount of the
external memory access and the area occupied by the
embedded internal buffer are considered the most critical
issues for the implementation of 2D-DWT. In other words,
the design trade-off mainly comes from the external
memory access bandwidth and the internal buffer size. As
the cache is used to reduce the main memory access in the
general processor architectures, in similar fashion, the
internal buffer is used to reduce the external

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

54

Fig. 5 Three-level decomposition algorithm for 2-D DWT and Lena image decomposition.

memory access for 2D-DWT However, the internal buffer
would occupy much area. Three main architecture design
approaches were proposed in the literature with the aim to
implement efficiently the 2D-DWT [20]: level by level,
block-based, and line-based architecture. These
architectures address this difficulty in different ways. A
typical level-by-level architecture uses a single processing
module that first processes the rows, and then the columns.
Intermediate values between row and column processing
are stored in memory; since this memory must be large
enough to keep wavelet coefficients for the entire image,
external memory is usually used. Access to the external
memory is sometimes done in row-wise order, and
sometimes in column-wise order, so high-bandwidth
access modes cannot be used. As a result, external
memory access can become the performance bottleneck of
the system. In block-based architecture, the image is
broken into blocks small enough to fit in an embedded
memory that is processed separately. A typical Block-
based architecture scans the external memory block-by-
block, and the DWT coefficients are also computed block-
by-block. To perform the block-based wavelet transform,
it is necessary to store into memory an additional row of
coefficients and one additional column. The additional
row is located at the top of the block, and the additional
column is located to the left of the block, as illustrated in
Fig. 6. As a result, the input block has a size of (N +1) x
(N +1) pixels. At the top and to the left of the image, the
additional row or column is extracted from the extended
signal [20]. In a block-based approach, the filtering of the
image boundaries should be taken into account. The
treatment of this filtering has a potential impact on the
visual artifacts near the boundaries.

Fig. 6 Image divided into input blocks.
Both line-based and block-based approaches have been
proposed to improve the issues of memory usage and
memory-access of the conventional level-by-level
approach. A line-based architecture scan input image row-
by-row manner to produce the wavelet coefficients.
However, a block-based architecture scans the input image
block-by-block and produces the wavelet coefficients for
each block. Consequently, the main difference between
the two methods is the selected image traversal method
(based on complete image rows or on blocks). The line-
based architecture needs only few lines of the image to be
stored, whereas traditional methods almost need the whole
image (or tile) to be memorized. Thus, this technique does
not require extra memory or external memory to store the
intermediate data. Instead, some internal buffers are used
to store the intermediate data, and the required memory
size is proportional to image width or height [20]. There
have been several line-based architectures proposed for
the convolution-based hardware implementation of 2-D
DWT, such as [8], and also for lifting-based 2-D DWT
implementation [12] [21] [22]. The line-based architecture
uses local memories whereas it increases the processing
speed, reduces the memory access, the complexity of the
control system and the address generator. In the present
work, we propose an architecture which adopt the line-
based structure, it is similar to the level by level

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

55

architecture. We use an efficient line buffer scheme to
store intermediate data and respect the real-time
processing constraint. Our goal mainly focuses on the
high-performance, low power consumption and hardware
size.

3. Proposed architecture

The proposed architecture uses the popular Daubechies (9,
7) filter used in JPEG2000 [1] [3]. This architecture is a
pipeline and memory efficient based on the lifting scheme.
It improves the implementation of the 2D-DWT by
adopting an efficient usage of hardware resources, low
control complexity; reducing the embedded memory
requirements and external memory access. We exploit the
data dependency of the lifting scheme technique and
propose a new design of 1D-DWT architecture. The key
idea consists of pipelining and interleaving the operations
between row and column processing to increase
throughput and reduce latency. The architecture minimizes
the number of external memory access, reduces the power
consumption and employs small embedded memory for
intermediate data storage. The proposed hardware
architecture is shown in Fig. 7. It calculates the 2D-DWT
in row-column fashion on the input image. The row filter
calculates the DWT of each row of the external memory
image data. Then, the resulting decomposed high-pass and
low-pass coefficients are stored in intermediate buffers,
and the column filter calculates the vertical DWT as soon
as there are sufficient coefficients generated by the row
filter. The architecture framework is composed of the
following parts: two 1D-DWT blocks, internal buffers, LL
FIFO used for multilevel decomposition, Address
generator block and Controller block.

 Fig. 7 The block diagram of the proposed 2D-DWT architecture.

3.1 1D-DWT block

In the beginning of the transform, let’s focus on how many
bits are needed to preserve the precision.

3.1.1 The bit precision

The input to the 1D-DWT block is the YCrCb component
stored in the tile memory input. Each pixel of a YCrCb
component is about 8 bits or 9 bits. The (9, 7) filter is
called “irreversible” because the filter is defined using
irrational numbers [3]. In general it is not possible within a
finite precision floating-point architecture to guarantee
reversibility. Thus the (9, 7) filter is suitable only for lossy
compression applications [1] [3]. By tracing the
expression of the (9, 7) filter forward DWT, we find that
the output could be 8.265234 times larger than the input in
the worst case. Therefore, before prototyping the 2D-
DWT onto FPGA, intensive simulations have been done to
verify the design. Floating point implementation proves
very useful in helping us to conceptualize our design. It
also provides a solid base to compare the results of the
fixed point and hardware implementations. Hence, it is
worthwhile to develop the architecture in floating point
implementation using a high level language such as C
language, then translated into fixed-point for precision
analysis before RTL implementation. The development of
the 2-D DWT floating point algorithm uses a
configuration with the flowing parameters: (9, 7) lossy
filter, five levels wavelet decomposition and the size of the
test image (Baboon, Jet and Lena) is 512 x 512 pixels.
For an 8-bit decompressed image, PSNR is defined as:

)255(log10
2

10 MSE
 (5)

Where MSE refers to the Mean Squared Error between the
original image and the reconstructed image. As shown in
Fig. 8, the PSNR (dB) value of three test images under
different filter coefficient word lengths is presented.

4 6 8 10 12 14 16
10

15

20

25

30

35

40

45

50

55

 Baboon
 Jet
 Lena

PS
N

R
 (d

b)

Coefficient Length

Fig. 8 The coefficient length of Daubechies (9, 7) filters versus PSNR for

three commonly used images.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

56

We learned from it that using 8 bits for the fraction bits
has great quality and concluded that the PSNR saturates at
10-bit. The filter coefficients for the (9, 7) filter
considered range from 0.05298 ~ 1.58613. In order to
convert the filter coefficients to integer, the coefficients
are multiplied with 256 (i.e. shift left 8 bits). The range of
the coefficients is now 14 to 407, which implies that the
coefficients require 10 bits available to be represented in
2’s complement form. Then we consider the product after
the end of multiplication, the product will round off the
eight significant bits. Hence, we select 12 bits to represent
filter coefficients. The input signals are shifted left to
decrease the normalization errors. An extension bit is
introduced as the number of shifting bits. Fig. 9 shows that
the 16-bit signal width with extension bit equal to 5
satisfies both the required precision.

0 2 4 6 8
3 2

3 6

4 0

4 4

4 8

5 2

 B o b o o n
 J e t
 L e n a

PS
N

R
 (d

b)

E x te n d e d B it

Fig. 9 The Extended bit of the input signal versus PSNR for three

commonly used images.

Experiments show that the average mean square error of
the reconstructed images equals 1.54E-5, compared with
the result in [13], 4.83E-3. Therefore, our design improves
the data image accuracy.

 3.1.2 Symmetric Extension

The extension of the signal is needed to enable filtering at
both boundaries of the signal. This problem can be solved
by extending the signal at the boundaries as much as
needed to complete the filtering operation. In the proposed
filter’s design the symmetric extension is adopted. The
symmetric extension suggested in JPEG2000 is a simple
method for extending a finite length signal [1] [3]. In this
method the signal is extended so as it becomes periodic
and symmetric. An example of the one row signal
symmetric extension is shown in Fig. 10.

Fig. 10 The signal symmetric extension.
The filter’s operation consists of three phases:

Initialization phase: initially, the filter loads its inputs with
the appropriate number of samples in order to start the
filtering. Since these samples are present in the input,
symmetric extension takes place.
Filtering phase: the filter processes the input signal
samples present in the internal registers.
 Finalization phase: at the end of filter’s operation, when
the input samples are fully consumed, the input signal
must be extended to perform the remaining filtering
operations imposed by the algorithm.

3.1.3 1D-DWT architecture

The input signals in 1-D DWT are transformed into a high
(H) and a low (L) component signals by a 1-D filter bank.
Referring to the lifting scheme using the filter (9, 7)
presented in Fig.4, four lifting steps are required to
compute the high pass coefficients and the low pass
coefficients. So, to map the lifting scheme of the filter (9,
7) to the architecture, each lifting step can be assigned to a
computing module, as shown in Fig. 11.
Based on the operation of the row processing illustrated in
the Fig. 4, the straightforward implementation is to apply
the first step of the Lifting Calculation (LC1) to all the
input samples and store the transformed coefficients, and
then apply the second step (LC2). The same process is
repeated for the third and fourth steps. However, this
approach requires high embedded memory usage (to store
intermediates coefficients), large amount of access to
external memory (to access the even index input samples
for LC2), and will results in huge latency. To overcome all
these issues, we propose to start the computation of LC2,
LC3 and LC4 as soon as enough data are available (2
coefficients are produced) in order to reduce the LC2, LC3
and LC4 latency. The register block is also used between
each processor to locally store the intermediate results
computed by the previous step and the even data.

Fig. 11 The block diagram of 1D-DWT architecture.
The 1D-DWT block reads two inputs data in one clock
cycle, because the even and odd image data are stored in

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

57

one memory case. Fig. 11 shows the internal architecture
of 1D-DWT block. It consists of four instances of the
Lifting Calculation blocks LC1, LC2, LC3 and LC4 and
the intermediate registers blocks denoted by Register_1,
Register_2, Register_3 and Register_4 to store the
intermediate data needed between the lifting steps. In
general, all the lifting steps are essentially in the form:

)(11 +− ++= iiii XXaXY (6)
Where a is multiplication factor. So we need a different
configuration of adders, and multipliers that are connected
in a manner that will support the computational structure
of the lifting steps. For the (9, 7) filter, there are four
multiplication factors, the Fig. 12 illustrates the
architecture of LC block, it composed from one multiplier
one adder and two delay registers.

Fig. 12 Basic architecture of each Lifting Calculation (LC).

Based on the bit precision analysis, the system data path
width is fixed at 16 bits. The adder and registers are
designed for 16-bit data. The adder computes the sum of
three input vectors in one clock cycle. The multiplier
multiplies a 16-bit number by a 12-bit number (filter
coefficient) and then rounds the product with twelve LSBs
and four MSBs to form a 16-bit output.
Pipelining the data path requires that values passed from
one pipe stage to the next pipe stage must be placed in
registers. After an initial latency, the 1D-DWT block
generates two coefficients (high pass and low pass) in
every clock cycle. As a result, delay registers are used
between the pipe stages in LC blocks. The register placed
between two LC blocks also work as pipeline registers to
store the values that will be used by the next LC block.
The same 1D-DWT block is used to compute the data
coming from the embedded buffers and performs vertical
filtering on the columns of the row-transformed image.

 3.2 The embedded buffers block

When performing the 2D-DWT, the 1D-DWT block reads
the row data from tile input memory in row-wise order and
performs the horizontal filtering. The resulted high
coefficients and the low pass coefficients are written into
the embedded buffers (internal buffers). Once a half of

three rows have been processed and stored in the
intermediate buffers, the 1D-DWT block for columns
starts processing and performs the column-wise filtering
along the odd rows and generates the four sub-bands LL,
LH , HL and HH into the output. Within this solution, the
size of the embedded buffers is reduced and the power
consumption becomes lower. To better improve the speed
of the proposed 2D-DWT architecture and to keep 1D-
DWT block for columns active continuously, the rows
have to be processed in a non sequential fashion as
presented in [12]. Fig. 13 shows the buffers organization
of internal buffer block. It composed from seven instances
of Altera buffers [23] (buff_1, buff_2, buff_3, buff_4,
buff_5, buff_6, and buff_7). Seven buffers are required for
the calculation of the column filtering along the rows. All
buffers have one read and one write port. The buffers from
buff_1 to buff_6 contain a quarter row of data (i.e. size is
1 x N/4, where N is the width of the input image).

Fig. 13 Internal buffers structure for (9, 7) filter.

The high pass coefficients coming from the 1D-DWT
block are write to the buff_1, buff_3, and buff_5 buffers,
while the low pass coefficients are write to the buff_2,
buff_4 and buff_6 buffers. Finally, the 1D-DWT block for
columns writes to buff_7, which has size of a half row of
data (1 x N/2). This arrangement of these buffers is due to
the nature of the computation system for vertical filtering
to calculate the HH, LH, HL, and LL sub-bands. So, only
2N ((6xN/4) + N/2) size of internal buffers are used to
store the intermediate data between horizontal filtering and
vertical filtering. The raison that the data is stored into
separate buffers is to perform read and write operations at
the same clock cycle and to reduce the complexity of
FIFOs control.
For multiple decompositions, The LL sub-band FIFO will
be read by the 1D-DWT block. The proposed architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

58

works until five levels of decomposition, and the
multiplexer component is used to select the appropriate
data input between tile image data or the LL_FIFO data.
Beyond one level of decomposition, the LL1 sub-band is
read and we apply the 2D-DWT transform in order to
produce HH2, LH2, HL2 and LL2 sub-bands. Similarly,
for the third decomposition, the LL2 sub-band is read to
produce HH3, LH3, HL3 and LL3. For other higher levels
of decomposition, the same procedure is repeated.

4. Implementation and performance analysis

The proposed architecture is described with VHDL
language (VHSIC Hardware Description Language). All
of the system components have been described with
structural architecture using generic parameters which
allow changing the number of stages of the filter, the word
length or the number of decomposition as desired. The
ModelSim HDL was used to simulate separately each
component and the top of the proposed architecture. The
2D-DWT algorithm for (9, 5) filter was also developed
using C language (ISO/IEC 15444-1 [1] compatibility) to
validate the architecture by comparison with the hardware
behavioral. The architecture has been synthesized for an
ALTERA Cyclone II and Stratix III [24] [25] FPGAs. In
table 2, we shown the area results and the maximum clock
frequency for the proposed architecture. We can see that
our design needs only 8K bits memory of intermediate
buffers and it also needs 512K bits size memory for LL
buffer in multi levels decomposition. The architecture
system spent 1.1 K gates which represents around 1% of
the total Stratix slices and performs at 350 MHz clock
frequency.

Table 2 Synthesis results of EBCOT block implemented in a Altera

Cyclone II and stratix III.

 Cyclone II Stratix III
Total logic elements 1,112 (2%) 1,112 (1%)

Total registers 286 163
Total memory bits 8190 (7%) 8190 (3%)

CLK (2-DDWT) 290 MHz 350 MHz

4.1 Performance comparison

The previous 2-D DWT architectures have the average N2
computation time for NxN image. For performance
analysis, we compare the number of multipliers, adders
and memory size and computation time. The performance
comparisons of our architecture and other similar
architectures are listed in Table 3.

Table 3 Performance of the proposed architecture compared with those
of other works.

Architectures Adders Multipliers
Internal
memory

size

Computation
time

Conventional
Lifting 16 12 N2 + N2/4 ∑

−

=
+

1

0 2
2

2

2 L

j j
NN

Andra [12] 8 4 4N ∑
−

=
+

1

0 2
2

2

2 L

j j
NN

Wu [14]

36

36

9N N

N
2

2

2
+

Huang [15] 12 10 14N NN 42 +

Jung [21]

12

9

12N ∑

−

=
+

1

0 2
2

2

2 L

j j
NN

Mei [26] 10 4 10N ∑
−

=
+

1

0 2
2

2

2 L

j j
NN

McCanny [27] 32 19 17N NN 22 +

Proposed

8

4

2N N
N

+
2

2

From Table 3, the proposed architecture may need the
same hardware cost than Andra architectures [12].
However, our architecture needs fewer memories size and
has shorten critical path than the above one. In addition,
the proposed architecture does not waste any clock cycle
to handle the boundary side. In order to compare our
architecture with the Andra’s one, we have implemented
Andra’s architecture on the same FPGA Altera Stratix III.
The total number of the used gate and the estimated work
frequency for the (9,7) lifting architecture is provided in
Table 4.

Table 4 The total number of the used gate and the estimated work

frequency.

 Architecture Total gates Clock frequency
Andra [12] 2,103 (2%) 260 MHz

Proposed 1,112 (1%) 350 MHz

A high processing frequency is achieved with a suitable
number of the clock cycles/image, thus the proposed
architecture is faster, with low number of the required
clock cycles. This increasing in the speed of the 2D-DWT
is mainly due to a pipeline structure, memory efficient and
reducing the size of the embedded buffers.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

59

 4.2 Power consumption

In this section, we provide energy measurements for the
implementations. We provide on-chip energy results,
excluding the image memory. To estimate the on-chip
power consumption of each schedule, we have used the
Stratix-power-estimator tool offered by Altera Quartus
v.8.1. We need multiple voltage supplies to power our
FPGA. We have used the default values in the Stratix-
power-estimator: Vccint 1.2V and Vccpd 3.3V. The IO
pins consume a large power since these are designed in a
larger geometry than the core to support sinking currents
for all of the IO standards. However, since all our designs
have the same IO pins, the power consumed would be
similar. IO power is approximately 0.02W for our designs.
The formulas used for power calculations in the program
are based on the intended behavior of our digital hardware
design.

 EFCVP 2= (7)

Where, P is the power in mW, C is the load capacitance in
Farads, E is the switching activity for the element and F is
the frequency of operation in Hz. The Stratix-power-
estimator tool requires design information such as the
resource utilization (LUTs, IOs, registers, DSPs), clock
frequency, clock fanout and the toggle rates to estimate the
dynamic power for our design.
Fig. 14 presents the energy consumed for the execution of
the proposed 2D-DWT architecture and conventional
lifting, relative to different image size N and 5 levels of
decomposition. Thus, the power consumption of the
proposed architecture starts at 135 mW for image size N=
256 and stretches to 487 mW for N = 1024. The power
consumption of conventional lifting is at relatively higher
levels, starting at 435 mW (N=256) and reaching 723 mW
(N=1024). This is due to the large number of cycles
associated with access to memory and the size of the
embedded buffer. The number of cycles is once more the
dominant factor in the energy calculations. That is, the
significantly smaller computation time (see table 3) results
in lower power consumption than others works.

256x256 512x512 1024x1024
0

2

4

6

 Conventional Lifting
 Proposed architecture

Es
tim

et
ed

 P
ow

er
 (m

V)

Image Size

Fig. 14 Power consumption comparison between conventional Lifting

and the proposed architecture for (9, 7) filter.

Finally, the proposed architecture is faster than others
previous works. Our design has two important advantages
than others works:
- It only uses 2xN size of embedded buffer and employs
an adder block to calculate the sum of three inputs vectors
in one clock cycle.
 - It has almost lower power consumption compared with
the conventional lifting.

5. Conclusion

In this paper, we have proposed an efficient VLSI
architecture for the 2D-DWT to meet the requirements of
real-time image and video processing. The advantages of
the proposed architecture are saving embedded memories,
fast computing time, low power consumption, and low
control complexity. This hardware is designed to be used
as part of a complete high performance and low power
JPEG2000 encoder system for digital cinema applications.
The proposed architecture has been correctly verified by
the VHDL Language. It routed in Altera Stratix III to
work at 350 MHz and Cyclone II FPGA at 290 MHz. The
FPGA implementation can code 48 frames (4096 x 2160)
per second with 24 bpp. Moreover, it can be applied very
well to the implementation of the coder used in real time
video processing, such as MPEG-4.

References
[1] ISO/IEC FCD15444-1: 2000, “JPEG 2000 image coding

system,” 2000.
[2] ISO/IEC JTC1/SC29/WG11, FCD 14496-1, “Coding of

moving pictures and audio,” 1998.
[3] D. S. Taubman and M. W. Marcellin, JPEG2000: “Image

Compression Fundamentals, Standards and Practice”,
Norwell, MA: Kluwer, 2002.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

60

[4] A. Cohen, I. Daubechies, and J. Feauveau, “Bi-othogonal
bases of compactly supported wavelets”, Comm. Pure Appl.
Math., vol. 45, pp. 485-560, 1992.

[5] W. Sweldens, “The Lifting Scheme: A Custom-Design
Construction of Biorthogonal Wavelets”, Applied and
Computational Harmonic Analysis, Vol. 3, NO. 15, pp. 186-
200, 1996.

[6] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L.
Yeo, “Wavelet transforms that map integers to integers”,
Technical report, Deportment of Mathematics, Princeton
University, 1996.

[7] G. Knowles, “VLSI architecture for the discrete wavelet
transform”, Electronic Letters, vol. 26, no.5, pp. 1184-1185,
July 1990.

[8] P.-C. Wu and L.-G. Chen, “An efficient architecture for
two-dimensional discrete wavelet transform”, IEEE Trans.
Circuits and Syst. Video Tech., vol. 11, no. 4, pp. 536-545,
April 2001.

[9] C. Yu and S.-J. Chen, “Design of an efficient VLSI
architecture for 2D discrete wavelet transforms”, IEEE
Trans. Consumer electronics, vol. 45, no. 1, February 1999.

[10] S. Masud, J. V. McCanny, “Rapid design of biorthogonal
wavelet transforms,” in Proc. IEE Circuits, Devices and
Systems, vol. 147, pp. 293-296, Oct. 2000.

[11] Xixin Cao, Qingqing Xie, Chungan Peng, Qingchun Wang,
Dunshan Yu, “An Efficient VLSI Implementation of
Distributed Architecture for DWT”, IEEE Trans. Circuits
and Syst. Video Tech., 0-7803-9752-5/06. 2006.

[12] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI
architecture for lifting-based forward and inverse wavelet
transform”, IEEE Trans. Signal Processing, vol. 50, no. 4,
pp. 966-977, April 2002.

[13] G. Dillen, B. Georis, J.-D. Legat, and O. Cantineau,
Combined line-based architecture for the 5-3 and 9-7
wavelet transform of JPEG2000,” IEEE Trans. Circuits and
Syst. Video Tech., vol. 13, no. 9, September 2003.

[14] B.-F. Wu and C.-F Lin, “A rescheduling and fast pipeline
VLSI architecture for lifting-based discrete wavelet
transform,” in Proc. IEEE int. Symp. Circuits and Systems,
vol. 2, May 2003.

[15] C.-T. Huang, P.-C. Tseng, L.-G. Chen, “Flipping structure:
an efficient VLSI architecture for lifting-based discrete
wavelet transform”, IEEE Trans. Signal Processing, vol. 52,
no. 4, April 2004.

[16] S. V. Silva and S. Bampi, “Area and throughput trade-offs
in the design of pipelined discrete wavelet transform
architectures,” in Proc. IEEE Design, Automation and Test
in Europe, 2005.

[17] Maurizio Martina and Guido Masera, “Low-Complexity,
Efficient 9/7 Wavelet Filters VLSI Implementation”, IEEE
Trans on circuits and systems_II: Express Briefs, Vol. 53,
No. 11, November 2006.

[18] S. Mallat, “A theory for multiresolution signal
decomposition: The wavelet representation,” IEEE
transactions on Pattern Analysis and Machine Intelligence,
vol. 11, no. 7, 1989, pp. 674–693.

[19] Omid Fatemi Sara Bolouki, “Architecture for the 2- D
Discrete Wavelet Transform using Lifting Scheme”,
Department of Electronics and Computer Engineering

University of Tehran, Iran, Proc. SPIE, Vol. 5150,
1121 (2003).

[20] N. D. Zervas, G. P. Anagnostopoulos, V. Spiliotopoulos, Y.
Andreopoulos, and C. E.Goutis, “Evaluation of Design
Alternatives for the 2D-Discrete Wavelet Transform”, IEEE
Trans. Circ. and Syst. for Video Tech, 2001.

[21] G. C. Jung, D. Y. Jin, and S. M. Park, “An efficient line
based VLSI architecture for 2-D lifting DWT”, in IEEE Int.
Symp. Circuits and Systems, July 2004.

[22] C. Zhang, C. Wang, and M. O. Ahmad, “A VLSI
architecture for a high-speed computation of the 1D discrete
wavelet transform”, in Circuits and Systems, 2005. ISCAS
2005. IEEE International Symposium, pp. 461-1464, May
2005.

[23] Altera Megawizard buffers : Complete Data Sheet.
ALTERA. [Online]. Available: http://www.altera.com.

[24] Cyclone-II platform FPGAs: Complete Data Sheet.
ALTERA. [Online]. Available: http://www.altera.com.

[25] Stratix-III platform FPGAs: Complete Data Sheet.
ALTERA. [Online]. Available: http://www.altera.com.

[26] K. Z. Mei, N. N. Zheng, C. Huang, Y. Liu, and Q. Zeng
“VLSI Design of a High-Speed and Area-Efficient
PEG2000 Encoder”, IEEE Trans. Circuits Syst. Video
Technol., vol. 17, no. 8, pp. 1065–1078, Agu. 2007.

[27] P. McCanny, S. Masud, and J. McCanny, “An efficient
architecture for the 2-D biorthogonal discrete wavelet
transform”, in Proc. IEEE Image Processing, Oct. 2001.

Author Biographies

Anass MANSOURI received the B.S. and M.S. degrees in
electrical engineering from Faculty of sciences & techniques, Fes,
MOROCCO, in 2003 and 2005, respectively, where he is
currently working toward the Ph.D. degree in the Department of
Electrical Engineering. His major research interests include
VLSI architecture design and algorithms for Image, Audio and
video processing, reconfigurable computing for multimedia
systems. He is a member of the LSSC laboratory.

Ali AHAITOUF received the Ph.D. degrees in electronics from
the Metz University in France 1992. He is a Professor in
electrical engineering department at Faculty of sciences &
techniques, Fes, MOROCCO, when he obtained the Doctor Title
in Physics at 1998. His major research interests include Digital
and Analog VLSI architecture, EMC Simulation and Physics of
Semiconductor Components. He is managing the
Microelectronics and Components research group.

Farid ABDI received the Ph.D. degrees in Physics from the
Metz University in France 1992. He is a professor in electrical
engineering department at Faculty of sciences & techniques, Fes,
MOROCCO. His major research interests include Optical
Components, Image, Audio and video processing. He is
managing the optical and image processing research group.

