
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009 
 

 

50 

Manuscript received March 5, 2009 
Manuscript revised March 20, 2009 

An Efficient VLSI Architecture and FPGA Implementation of 
High-Speed and Low Power 2-D DWT for (9, 7) Wavelet Filter 

A. Mansouri, A. Ahaitouf, and F. Abdi. 
UFR SSC, LSSC, Electrical Engineering Department Faculty of sciences & techniques BP: 2202 FES MOROCCO  

  
 

Summary 
This paper presents an efficient VLSI architecture of a high 
speed, low power 2-D Discrete Wavelet Transform computing. 
The proposed architecture, based on new and fast lifting scheme 
approach for (9, 7) filter in DWT, reduces the hardware 
complexity and memory accesses. Moreover, it has the ability of 
performing progressive computations by minimizing the 
buffering between the decomposition levels. The system is fully 
compatible with JPEG2000 standard. Our designs were realized 
in VHDL language and optimized in terms of throughput and 
memory requirements. The implementations are completely 
parameterized with respect to the size of the input image and the 
number of decomposition levels. The proposed architecture is 
verified by simulation and successfully implemented in a 
Cyclone II and Stratix III FPGAs, and the estimated frequency of 
operation is 350 MHz. The resulting computing rate is up to 48 
frames (4096x2160) per second with 24 bpp. The architecture 
has regular structure, simple control flow, small embedded 
buffers and low power consumption. Thus, it is very suitable for 
new generation image compression systems, such as JPEG2000. 
Key words: 
JPEG2000; 2D-DWT; VLSI architecture; FPGA implementation. 

1. Introduction 

Over the past several years, the wavelet transform has 
gained widespread acceptance in signal processing in 
general and in image compression research in particular. 
In applications such as still image compression, Discrete 
Wavelet Transform (DWT) based schemes have 
outperformed other coding schemes like the ones based on 
Discrete Cosine Transform (DCT). The DWT has been 
introduced as a highly efficient and flexible method for 
sub band decomposition of signals [1]. The two-
dimensional DWT (2D-DWT) is nowadays established as 
a key operation in image processing. This is due to the fact 
that DWT supports features like progressive image 
transmission (by quality, by resolution), ease of 
compressed image manipulation, region of interest, etc. In 
addition to image compression, the DWT has important 
applications in many areas, such as computer graphics, 
numerical analysis, radar target distinguishing and so forth. 
The high algorithmic performance of the 2D DWT in 
image compression justifies its use as the kernel of both 
the JPEG2000 still image compression standard [1] and 

the MPEG-4 texture coding standard [2]. It is widely 
recognized that the LeGall (5, 3) and the Daubechies (9, 7) 
filters are among the best filters for DWT-based image 
compression [3]. In fact, the JPEG2000 image coding 
standard [1] employs the (5, 3) and the (9, 7) filters as the 
default wavelet filters for respectively loss and lossy 
compression. The JPEG2000 can compress images 100 
times smaller than the original image. With this 
compression ratio, the reconstructed image of the 
JPEG2000 still provides good visual quality. The coding 
efficiency of the JPEG2000 comes with the cost. Several 
years passed by since the JPEG2000 standard was 
approved in 2002. However, there are not many consumer 
products that support most features of the JPEG2000 
available today. The real-time constraint and cost 
effectiveness are still major issues for the realization of the 
JPEG2000 into consumer products. The 2D-DWT is one 
of the main resources intensive components of JPEG2000; 
it demands massive computations and represents one of 
the critical parts in the design and implementation of the 
JPEG2000 standard. Hence, it requires a parallel and 
pipelined architecture to perform real-time or on-line 
video and image coding and decoding, and to implement 
high-efficiency application-specific integrated circuits 
(ASIC) or field programmable gate array (FPGA).  

Up to now, much work has been performed on DWT 
theory and many VLSI architectures have been proposed. 
Mallat combined the Wavelet transform and filter bank 
into a single transformation [3]. Doubechies applies DWT 
to image coding and proposed many famous wavelet 
filters [4] including the (9, 7) filter. Swendens proposed 
the Lifting Scheme [5] making DWT more 
computationally efficient. Calderbank, Doubechies and 
Swendens later proposed the Integer Wavelet Transform 
(IWT) [6] that is more efficient without scarifying the 
performance. In addition, several VLSI architectures have 
been proposed for computing the 2D-DWT. They are 
mainly based on convolution scheme and lifting scheme. 
The lifting scheme can reduce the computational 
complexity by exploiting the similarities between high and 
low pass filters and it usually requires fewer multipliers 
and adders than the convolution scheme. Some 
architecture [7], [8], [9] and [10] for DWT have been 
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proposed to meet the real time requirement in many 
applications for convolution scheme. The first architecture, 
presented by Knowles [7], uses many large multiplexers 
for storing intermediate results. Wu and Chen proposed a 
2-D architecture that employs a folding technique [8]. Yu 
et al. proposed a 2-D architecture that employs a 
computation-schedule table [9]. Masud et al. proposed an 
efficient architecture implemented by filter banks [10]. 
Xixin Cao et al. presented an efficient VLSI 
implementation of Distributed Architecture for DWT in 
order to minimize area requirement, but they have a 
computation time which is proportional to input data N 
[11]. More recently, several architectures [12] [13] [14] 
[15]-[19] have been proposed for efficient computation of 
DWT based on the lifting scheme. Andra et al. proposed a 
2-D DWT architecture which composes of simple 
processing units and computes one stage of DWT at a time 
[12]. Dillen et al. presented a combined architecture for 
the (5,3) and (9, 7) transforms with minimum area [13]. 
Wu and Lin proposed the fast pipeline architecture by 
merging two equations into one equation [14]. Huang et al. 
proposed a flipping structure by using an efficient VLSI 
architecture for lifting-based discrete wavelet transform 
[15]. S. V. Silva and S. Bampi presented Area and 
throughput trade-offs in the design of pipelined discrete 
wavelet transform architectures [16]. Martina, and Masera 
proposed the low-complexity and efficient (9, 7) wavelet 
filters VLSI implementation [17].  

In this paper, we propose a pipeline, high performance; 
low power and lifting based architecture design for the 
2D-DWT. The default lossy filter of the latest image 
compression standard JPEG2000, Daubechies (9, 7) is 
implemented on FPGA-based platforms and compared in 
terms of performance, area and power consumption. The 
advantages of the proposed architectures are 100% 
hardware utilization, small embedded buffers, regular 
structure, simple control flow and low power. 

The rest of the paper is structured as follows. Section 2 
summarizes the discrete wavelet transform and the three 
main important design architectures of 2D-DWT are 
discussed in detail along with a comparison among them 
in terms of the number of access to the external memory 
and the size of the local memories. In section 3, the high 
efficient architecture for the (9, 7) filter 2-D lifting-based 
DWT is proposed, followed by the implementation and 
performance analysis in section 4, and section 5 concludes 
the work. 

 

2. Discrete Wavelet Transform 

One of the prominent features of JPEG2000 standard, 
providing it the resolution scalability [3], is the use of the 
two-dimensional Discrete Wavelet Transform (2D-DWT) 
to convert the image samples into a more compressible 
form. It is considered as the key difference between JPEG 
and JPEG2000 standards. Since there is no need to divide 
the input image into non-overlapping 2-D blocks and its 
basis functions have variable length, wavelet-coding 
schemes at higher compression ratios avoid blocking 
artifacts. Hence the compression artifacts are dispersed 
over a correspondingly larger area, and reducing the visual 
impact. 

2.1 One-Dimensional Discrete Wavelet Transform 

Two main methods exist for the implementation of 1D-
DWT: the traditional convolution-based implementation 
[18] and the lifting-based implementation [5, 12]. 

2.1.1 Convolution Based DWT 

In the traditional implementation of DWT, a pair of finite 
impulse response filters (FIR) is applied in parallel, high-
pass and low-pass filter. Each filtering operation is shown 
in Fig. 1.  
Mallat's pyramid algorithm [18] computes the one 
dimensional (1-D) convolution based DWT at different 
levels of resolution. The first level decomposition can be 
represented by using the block diagram illustrated in Fig.1. 

 
Fig. 1 Single 1D-DWT Block. 

 
The input sequence X(n) in Fig. 1 is convolved with the 
quadrature mirror filters H(z) and G(z) and the outputs 
obtained are decimated by a factor of two. After down-
sampling, alternate samples of the output sequence from 
the low pass filter and high pass filter are dropped. This 
reduces the time resolution by half and conversely doubles 
the frequency resolution by two. The 1D-DWT is a two-
channel sub-band decomposition of an input signal X(n) 
that produces two sub-band coefficients YL(n) and YH(n) 
for one-stage of decomposition [18] according to the 
following equations. 
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In the synthesis stage, scaling and wavelet coefficients 
YL(n) and YH(n) are treated inversely by up-sampling and 
filtering with low pass Ĥ(z) and high pass Ĝ(z) filters to 
perform reconstruction. This stage is also called Inverse 
Discrete Wavelet Transform (IDWT). Original and 
reconstructed signals are generally different, unless the 
two filters H and G satisfy some relationships [18]. The 
perfect reconstruction condition consists in ensuring no 
distortion and no aliasing of the reconstructed data. Early 
research on filter-bank design proved that the execution of 
1D-DWT can be accelerated by using the polyphase 
matrix of the filter-bank, instead of the conventional 
filtering and down-sampling structure of Fig. 1. As Fig. 2 
shows, the signal is split into two signals (polyphase 
components) at half of the original sampling rate. The 
polyphase components of the signal are filtered in parallel 
by the corresponding filter coefficients, producing the 
same result as if the down-sampling was performed as 
described in [18]. 

 
 

Fig. 2 The convolution-based implementation of the 1D-DWT by using 
the polyphase matrix. 

 
The analysis polyphase matrix E0(Z) in Fig. 2 is defined 
(in the Z-domain) as: 
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Where )(zH e  and )(zH o  denote the even and odd 
polyphase components of the corresponding low-pass 
analysis filter, and )(zGe and )(zGo  denote the even 
and odd polyphase components of the corresponding high-
pass analysis filter. The wavelet decomposition can be 
written using Eq.3 (in the Z-domain) as: 
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Where )(zYL  denotes the approximation at the coarser 

resolution, )(zYH  denotes the detail signal, and )(zX e  

and )(zX o  denote the even and odd polyphase 

components of the signal )(zX . 

2.1.2 Lifting based DWT 

The convolution-based 1-D DWT requires both a large 
number of arithmetic computations and a large memory 
for storage. Such features are not desirable for either high-
speed or low-power image processing applications. 
Recently, a new mathematical formulation for wavelet 
transformation has been proposed by Swelden [5] as a 
light-weighted computation method for performing 
wavelet transform. The main feature of the lifting-based 
wavelet transform is to break-up the high pass and the low 
pass wavelet filters into a sequence of smaller filters. The 
lifting scheme requires fewer computations compared to 
the convolution-based DWT. Therefore the computational 
complexity is reduced to almost a half of those needed 
with a convolution approach [3] [5]. As a result, lifting has 
been suggested for implementation of DWT in JPEG2000 
standard. The lifting-based wavelet transform basically 
consists of three steps, which are called split, lifting, and 
scaling, respectively, as shown in Fig. 3. 
 

  
Fig. 3 The lifting scheme implementation of the 1D-DWT. 

 
The basic idea of lifting scheme is first to compute a trivial 
wavelet  (or lazy wavelet transform) by splitting the 
original 1-D signal into odd and even indexed 
subsequences, and then modifying these values using 
alternating prediction and updating steps. The lifting 
scheme algorithm can be described as follow: 

- Split step: The original signal, X(n), is split into odd 
and even samples (lazy wavelet transform). 

- Lifting step: This step is executed as N sub-steps 
(depending on the type of the filter), where the odd and 
even samples are filtered by the prediction and update 
filters, Pn(n) and Un(n). 

- Normalization or Scaling step: After N lifting steps, 
a scaling coefficients K and 1/K are applied respectively 
to the odd and even samples in order to obtain the low-
pass band (YL(i)), and the high-pass sub-band (YH(i)). Fig. 
4 illustrates how the lifting scheme can be implemented 
using these steps. The diagram shows the lifting scheme 
for Daubechies (9, 7) biorthogonal filter adopted in 
JPEG2000 standard for lossy compression [1]. The lifting 
scheme algorithm to the (9,7) filter is applied as: 

Split step:   
               Xe ← X(2i)                 Even Samples 
               Xo ← X(2i+1)            Odd Samples 
Lifting Steps: 
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For (9, 7) filter, N=2         
Predict P1: D(i)  =  Xo(i) + a [Xe(i)  + Xe(i+1)]              
Update U1:  S(i)     =  Xe(i) + b [D(i-1) + D(i)]              
Predict P2:   YH(i) =  D(i) + c [S(i) + S(i+1)]  
Update U2:  YL(i) =  S(i) + d [YH(i-1) + YH(i)]      
Scaling Step: 
                        YH(i) =  K YH(i) 
                        YL(i) =  1/K YL(i) 
 

Where a=-1.586134342, b=-0.0529801185, 
c=0.882911076, d=-0.443506852, and K=1.149604398 
[1]. 
These mathematical equations can be illustrated by the 
scheme in Fig. 4. 

 
 
Fig. 4 The diagram of 1-D DWT using lifting scheme for  (9, 7) filter. 
 
To compare the complexity of the convolution and the 
lifting approaches, we have performed a software 
implementation in C++ language of both methods for (5, 
3) and (9, 7) filters. Results of the simulation are presented 
in table 1. This table shows the number of multiplications, 
additions and shifts needed for (5, 3) and (9, 7) for both 
methods. Simulation was performed by using Lena image 
(512x512). 
 

Table 1 Complexity comparison of convolution and lifting-based 
implementation. 
 

 Multiplication  Addition Shift
 

(9, 7) 
filter 

Convolution 
 

Lifting 

3670216 
 

1579108 

4194504 
 

2109540 

None
 

None

 
(5, 3)  
filter 

Convolution 
 

Lifting 

490 
 

None 

2890 
 

1940 

3340
 

1420

This comparison as well as others works [19] reveals that 
lifting-based DWT requires less computation than 
convolution-based one. Consequently, convolution-based 

DWT is computationally extensive and resulting to be area, 
power, and memory hungry. Lifting scheme reduces the 
computations up to 50%, which affect directly the memory, 
surface and the power consumption of the system. To sum 
up, lifting scheme will be more suitable for hardware 
implementation with limited on-ship memory, lower 
computational complexity, small area and low power. 

2.2 Two-Dimensional Discrete Wavelet Transform  

The basic idea of 2-D architecture is similar to 1-D 
architecture. A 2-D DWT can be seen as a 1-D wavelet 
transform along the rows and then a 1-D wavelet 
transform along the columns, as illustrated in Figure 5. 
The 2-D DWT operates in a straightforward manner by 
inserting array transposition between the two 1-D DWT. 
The rows of the array are processed first with only one 
level of decomposition. This essentially divides the array 
into two vertical halves, with the first half storing the 
average coefficients, while the second vertical half stores 
the detail coefficients. This process is repeated again with 
the columns, resulting in four sub-bands (see Fig. 5a) 
within the array defined by filter output.  Fig. 5b shows a 
three-level 2-D DWT decomposition of the Lena image. 
The LL sub-band represents an approximation of the 
original image, the LL1 sub-band can be considered as a 
2:1 sub-sampled (both horizontally and vertically) version 
of the original image. The other three sub-bands HL1, 
LH1, and HH1 contain higher frequency detail 
information (mostly local discontinuities in the edges of 
the image). This process is repeated for as many levels of 
decomposition as are desired. The JPEG2000 standard 
specifies five levels of decomposition [1], although three 
are usually considered acceptable in hardware. In order to 
extend the 1-D filter to compute 2-D DWT in JPEG2000, 
two points have to be taken into account:  
Firstly, the 1-D DWT generates the control signal memory 
to compute 2-D DWT and manages the internal memory 
access. Secondly; we need to stores temporary results 
generated by 2-D column filter. The amount of the 
external memory access and the area occupied by the 
embedded internal buffer are considered the most critical 
issues for the implementation of 2D-DWT. In other words, 
the design trade-off mainly comes from the external 
memory access bandwidth and the internal buffer size. As 
the cache is used to reduce the main memory access in the 
general processor architectures, in similar fashion, the 
internal buffer is used to reduce the external  
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Fig. 5 Three-level decomposition algorithm for 2-D DWT and Lena image decomposition. 

 
memory access for 2D-DWT However, the internal buffer 
would occupy much area. Three main architecture design 
approaches were proposed in the literature with the aim to 
implement efficiently the 2D-DWT [20]: level by level, 
block-based, and line-based architecture. These 
architectures address this difficulty in different ways. A 
typical level-by-level architecture uses a single processing 
module that first processes the rows, and then the columns. 
Intermediate values between row and column processing 
are stored in memory; since this memory must be large 
enough to keep wavelet coefficients for the entire image, 
external memory is usually used. Access to the external 
memory is sometimes done in row-wise order, and 
sometimes in column-wise order, so high-bandwidth 
access modes cannot be used. As a result, external 
memory access can become the performance bottleneck of 
the system. In block-based architecture, the image is 
broken into blocks small enough to fit in an embedded 
memory that is processed separately. A typical Block-
based architecture scans the external memory block-by-
block, and the DWT coefficients are also computed block-
by-block. To perform the block-based wavelet transform, 
it is necessary to store into memory an additional row of 
coefficients and one additional column. The additional 
row is located at the top of the block, and the additional 
column is located to the left of the block, as illustrated in 
Fig. 6. As a result, the input block has a size of (N +1) x 
(N +1) pixels. At the top and to the left of the image, the 
additional row or column is extracted from the extended 
signal [20]. In a block-based approach, the filtering of the 
image boundaries should be taken into account. The 
treatment of this filtering has a potential impact on the 
visual artifacts near the boundaries.  
 

 
 

Fig. 6 Image divided into input blocks. 
Both line-based and block-based approaches have been 
proposed to improve the issues of memory usage and 
memory-access of the conventional level-by-level 
approach. A line-based architecture scan input image row-
by-row manner to produce the wavelet coefficients. 
However, a block-based architecture scans the input image 
block-by-block and produces the wavelet coefficients for 
each block. Consequently, the main difference between 
the two methods is the selected image traversal method 
(based on complete image rows or on blocks). The line-
based architecture needs only few lines of the image to be 
stored, whereas traditional methods almost need the whole 
image (or tile) to be memorized. Thus, this technique does 
not require extra memory or external memory to store the 
intermediate data. Instead, some internal buffers are used 
to store the intermediate data, and the required memory 
size is proportional to image width or height [20]. There 
have been several line-based architectures proposed for 
the convolution-based hardware implementation of 2-D 
DWT, such as [8], and also for lifting-based 2-D DWT 
implementation [12] [21] [22]. The line-based architecture 
uses local memories whereas it increases the processing 
speed, reduces the memory access, the complexity of the 
control system and the address generator. In the present 
work, we propose an architecture which adopt the line-
based structure, it is similar to the level by level 
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architecture. We use an efficient line buffer scheme to 
store intermediate data and respect the real-time 
processing constraint. Our goal mainly focuses on the 
high-performance, low power consumption and hardware 
size.  

3. Proposed architecture  

The proposed architecture uses the popular Daubechies (9, 
7) filter used in JPEG2000 [1] [3]. This architecture is a 
pipeline and memory efficient based on the lifting scheme. 
It improves the implementation of the 2D-DWT by 
adopting an efficient usage of hardware resources, low 
control complexity; reducing the embedded memory 
requirements and external memory access. We exploit the 
data dependency of the lifting scheme technique and 
propose a new design of 1D-DWT architecture. The key 
idea consists of pipelining and interleaving the operations 
between row and column processing to increase 
throughput and reduce latency. The architecture minimizes 
the number of external memory access, reduces the power 
consumption and employs small embedded memory for 
intermediate data storage. The proposed hardware 
architecture is shown in Fig. 7. It calculates the 2D-DWT 
in row-column fashion on the input image. The row filter 
calculates the DWT of each row of the external memory 
image data. Then, the resulting decomposed high-pass and 
low-pass coefficients are stored in intermediate buffers, 
and the column filter calculates the vertical DWT as soon 
as there are sufficient coefficients generated by the row 
filter. The architecture framework is composed of the 
following parts: two 1D-DWT blocks, internal buffers, LL 
FIFO used for multilevel decomposition, Address 
generator block and Controller block.  

 
 Fig. 7 The block diagram of the proposed 2D-DWT architecture. 

3.1 1D-DWT block  

In the beginning of the transform, let’s focus on how many 
bits are needed to preserve the precision. 

3.1.1 The bit precision  

The input to the 1D-DWT block is the YCrCb component 
stored in the tile memory input. Each pixel of a YCrCb 
component is about 8 bits or 9 bits. The (9, 7) filter is 
called “irreversible” because the filter is defined using 
irrational numbers [3]. In general it is not possible within a 
finite precision floating-point architecture to guarantee 
reversibility. Thus the (9, 7) filter is suitable only for lossy 
compression applications [1] [3]. By tracing the 
expression of the (9, 7) filter forward DWT, we find that 
the output could be 8.265234 times larger than the input in 
the worst case. Therefore, before prototyping the 2D-
DWT onto FPGA, intensive simulations have been done to 
verify the design. Floating point implementation proves 
very useful in helping us to conceptualize our design. It 
also provides a solid base to compare the results of the 
fixed point and hardware implementations. Hence, it is 
worthwhile to develop the architecture in floating point 
implementation using a high level language such as C 
language, then translated into fixed-point for precision 
analysis before RTL implementation. The development of 
the 2-D DWT floating point algorithm uses a 
configuration with the flowing parameters:  (9, 7) lossy 
filter, five levels wavelet decomposition and the size of the 
test image (Baboon, Jet and Lena)  is 512 x 512 pixels. 
For an 8-bit decompressed image, PSNR is defined as: 

                      )255(log10
2

10 MSE
                           (5) 

Where MSE refers to the Mean Squared Error between the 
original image and the reconstructed image. As shown in 
Fig. 8, the PSNR (dB) value of three test images under 
different filter coefficient word lengths is presented. 
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Fig. 8 The coefficient length of Daubechies (9, 7) filters versus PSNR for 

three commonly used images. 
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We learned from it that using 8 bits for the fraction bits 
has great quality and concluded that the PSNR saturates at 
10-bit.  The filter coefficients for the (9, 7) filter 
considered range from 0.05298 ~ 1.58613.  In order to 
convert the filter coefficients to integer, the coefficients 
are multiplied with 256 (i.e. shift left 8 bits). The range of 
the coefficients is now 14 to 407, which implies that the 
coefficients require 10 bits available to be represented in 
2’s complement form. Then we consider the product after 
the end of multiplication, the product will round off the 
eight significant bits. Hence, we select 12 bits to represent 
filter coefficients. The input signals are shifted left to 
decrease the normalization errors. An extension bit is 
introduced as the number of shifting bits. Fig. 9 shows that 
the 16-bit signal width with extension bit equal to 5 
satisfies both the required precision. 
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Fig. 9 The Extended bit of the input signal versus PSNR       for three 

commonly used images. 
 

Experiments show that the average mean square error of 
the reconstructed images equals 1.54E-5, compared with 
the result in [13], 4.83E-3. Therefore, our design improves 
the data image accuracy. 

 3.1.2 Symmetric Extension 

The extension of the signal is needed to enable filtering at 
both boundaries of the signal. This problem can be solved 
by extending the signal at the boundaries as much as 
needed to complete the filtering operation. In the proposed 
filter’s design the symmetric extension is adopted. The 
symmetric extension suggested in JPEG2000 is a simple 
method for extending a finite length signal [1] [3]. In this 
method the signal is extended so as it becomes periodic 
and symmetric. An example of the one row signal 
symmetric extension is shown in Fig. 10. 

 
 

Fig. 10 The signal symmetric extension. 
The filter’s operation consists of three phases:  

Initialization phase: initially, the filter loads its inputs with 
the appropriate number of samples in order to start the 
filtering. Since these samples are present in the input, 
symmetric extension takes place.  
Filtering phase: the filter processes the input signal 
samples present in the internal registers. 
 Finalization phase: at the end of filter’s operation, when 
the input samples are fully consumed, the input signal 
must be extended to perform the remaining filtering 
operations imposed by the algorithm. 

3.1.3 1D-DWT architecture  

The input signals in 1-D DWT are transformed into a high 
(H) and a low (L) component signals by a 1-D filter bank. 
Referring to the lifting scheme using the filter (9, 7) 
presented in Fig.4, four lifting steps are required to 
compute the high pass coefficients and the low pass 
coefficients. So, to map the lifting scheme of the filter (9, 
7) to the architecture, each lifting step can be assigned to a 
computing module, as shown in Fig. 11. 
Based on the operation of the row processing illustrated in 
the Fig. 4, the straightforward implementation is to apply 
the first step of the Lifting Calculation (LC1) to all the 
input samples and store the transformed coefficients, and 
then apply the second step (LC2). The same process is 
repeated for the third and fourth steps. However, this 
approach requires high embedded memory usage (to store 
intermediates coefficients), large amount of access to 
external memory (to access the even index input samples 
for LC2), and will results in huge latency. To overcome all 
these issues, we propose to start the computation of LC2, 
LC3 and LC4 as soon as enough data are available (2 
coefficients are produced) in order to reduce the LC2, LC3 
and LC4 latency. The register block is also used between 
each processor to locally store the intermediate results 
computed by the previous step and the even data. 

 
 

Fig. 11 The block diagram of 1D-DWT architecture. 
The 1D-DWT block reads two inputs data in one clock 
cycle, because the even and odd image data are stored in 
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one memory case. Fig. 11 shows the internal architecture 
of 1D-DWT block. It consists of four instances of the 
Lifting Calculation blocks LC1, LC2, LC3 and LC4 and 
the intermediate registers blocks denoted by Register_1, 
Register_2, Register_3 and Register_4 to store the 
intermediate data needed between the lifting steps. In 
general, all the lifting steps are essentially in the form: 
 

)( 11 +− ++= iiii XXaXY                        (6) 
Where a is multiplication factor. So we need a different 
configuration of adders, and multipliers that are connected 
in a manner that will support the computational structure 
of the lifting steps. For the (9, 7) filter, there are four 
multiplication factors, the Fig. 12 illustrates the 
architecture of LC block, it composed from one multiplier 
one adder and two delay registers. 
 

 
 

Fig. 12 Basic architecture of each Lifting Calculation (LC). 
 

Based on the bit precision analysis, the system data path 
width is fixed at 16 bits. The adder and registers are 
designed for 16-bit data. The adder computes the sum of 
three input vectors in one clock cycle. The multiplier 
multiplies a 16-bit number by a 12-bit number (filter 
coefficient) and then rounds the product with twelve LSBs 
and four MSBs to form a 16-bit output. 
Pipelining the data path requires that values passed from 
one pipe stage to the next pipe stage must be placed in 
registers. After an initial latency, the 1D-DWT block 
generates two coefficients (high pass and low pass) in 
every clock cycle. As a result, delay registers are used 
between the pipe stages in LC blocks. The register placed 
between two LC blocks also work as pipeline registers to 
store the values that will be used by the next LC block. 
The same 1D-DWT block is used to compute the data 
coming from the embedded buffers and performs vertical 
filtering on the columns of the row-transformed image. 

 3.2 The embedded buffers block 

When performing the 2D-DWT, the 1D-DWT block reads 
the row data from tile input memory in row-wise order and 
performs the horizontal filtering. The resulted high 
coefficients and the low pass coefficients are written into 
the embedded buffers (internal buffers). Once a half of 

three rows have been processed and stored in the 
intermediate buffers, the 1D-DWT block for columns 
starts processing and performs the column-wise filtering 
along the odd rows and generates the four sub-bands LL, 
LH , HL and HH into the output. Within this solution, the 
size of the embedded buffers is reduced and the power 
consumption becomes lower.  To better improve the speed 
of the proposed 2D-DWT architecture and to keep 1D-
DWT block for columns active continuously, the rows 
have to be processed in a non sequential fashion as 
presented in [12]. Fig. 13 shows the buffers organization 
of internal buffer block. It composed from seven instances 
of Altera buffers [23] (buff_1, buff_2, buff_3, buff_4, 
buff_5, buff_6, and buff_7). Seven buffers are required for 
the calculation of the column filtering along the rows. All 
buffers have one read and one write port. The buffers from 
buff_1 to buff_6 contain a quarter row of data (i.e. size is 
1 x N/4, where N is the width of the input image). 
 

 
 

Fig. 13 Internal buffers structure for (9, 7) filter. 
 

The high pass coefficients coming from the 1D-DWT 
block are write to the buff_1, buff_3, and buff_5 buffers, 
while the low pass coefficients are write to the buff_2, 
buff_4 and buff_6 buffers. Finally, the 1D-DWT block for 
columns writes to buff_7, which has size of a half row of 
data (1 x N/2). This arrangement of these buffers is due to 
the nature of the computation system for vertical filtering 
to calculate the HH, LH, HL, and LL sub-bands. So, only 
2N ((6xN/4) + N/2) size of internal buffers are used to 
store the intermediate data between horizontal filtering and 
vertical filtering. The raison that the data is stored into 
separate buffers is to perform read and write operations at 
the same clock cycle and to reduce the complexity of 
FIFOs control.  
For multiple decompositions, The LL sub-band FIFO will 
be read by the 1D-DWT block. The proposed architecture 
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works until five levels of decomposition, and the 
multiplexer component is used to select the appropriate 
data input between tile image data or the LL_FIFO data. 
Beyond one level of decomposition, the LL1 sub-band is 
read and we apply the 2D-DWT transform in order to 
produce HH2, LH2, HL2 and LL2 sub-bands. Similarly, 
for the third decomposition, the LL2 sub-band is read to 
produce HH3, LH3, HL3 and LL3. For other higher levels 
of decomposition, the same procedure is repeated. 

4. Implementation and performance analysis 

The proposed architecture is described with VHDL 
language (VHSIC Hardware Description Language). All 
of the system components have been described with 
structural architecture using generic parameters which 
allow changing the number of stages of the filter, the word 
length or the number of decomposition as desired. The 
ModelSim HDL was used to simulate separately each 
component and the top of the proposed architecture. The 
2D-DWT algorithm for (9, 5) filter was also developed 
using C language (ISO/IEC 15444-1 [1] compatibility) to 
validate the architecture by comparison with the hardware 
behavioral. The architecture has been synthesized for an 
ALTERA Cyclone II and Stratix III [24] [25] FPGAs. In 
table 2, we shown the area results and the maximum clock 
frequency for the proposed architecture. We can see that 
our design needs only 8K bits memory of intermediate 
buffers and it also needs 512K bits size memory for LL 
buffer in multi levels decomposition. The architecture 
system spent 1.1 K gates which represents around 1% of 
the total Stratix slices and performs at 350 MHz clock 
frequency. 
 

 
Table 2 Synthesis results of EBCOT block implemented in a Altera 

Cyclone II and stratix III. 
 

    Cyclone II  Stratix III
Total logic elements 1,112 (2%) 1,112 (1%)

Total registers 286 163 
Total memory bits 8190 (7%) 8190 (3%)

CLK (2-DDWT) 290 MHz 350 MHz 

4.1 Performance comparison 

The previous 2-D DWT architectures have the average N2 
computation time for NxN image. For performance 
analysis, we compare the number of multipliers, adders 
and memory size and computation time. The performance 
comparisons of our architecture and other similar 
architectures are listed in Table 3. 
 

Table 3 Performance of the proposed architecture compared with those 
of other works. 
 

Architectures Adders Multipliers 
Internal  
memory   

size 

Computation 
time 

Conventional 
Lifting 16 12 N2 + N2/4 ∑
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0 2
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8 
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N
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2

2

 
 
From Table 3, the proposed architecture may need the 
same hardware cost than Andra architectures [12]. 
However, our architecture needs fewer memories size and 
has shorten critical path than the above one. In addition, 
the proposed architecture does not waste any clock cycle 
to handle the boundary side. In order to compare our 
architecture with the Andra’s one, we have implemented 
Andra’s architecture on the same FPGA Altera Stratix III. 
The total number of the used gate and the estimated work 
frequency for the (9,7) lifting architecture is provided in 
Table 4. 
 
Table 4 The total number of the used gate and the estimated work 

frequency.  
 

   Architecture Total gates Clock frequency 
Andra [12] 2,103 (2%) 260 MHz 

Proposed  1,112 (1%) 350 MHz 
 
A high processing frequency is achieved with a suitable 
number of the clock cycles/image, thus the proposed 
architecture is faster, with low number of the required 
clock cycles. This increasing in the speed of the 2D-DWT 
is mainly due to a pipeline structure, memory efficient and 
reducing the size of the embedded buffers.  
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 4.2 Power consumption  

In this section, we provide energy measurements for the 
implementations. We provide on-chip energy results, 
excluding the image memory. To estimate the on-chip 
power consumption of each schedule, we have used the 
Stratix-power-estimator tool offered by Altera Quartus 
v.8.1. We need multiple voltage supplies to power our 
FPGA. We have used the default values in the Stratix-
power-estimator: Vccint 1.2V and Vccpd 3.3V. The IO 
pins consume a large power since these are designed in a 
larger geometry than the core to support sinking currents 
for all of the IO standards. However, since all our designs 
have the same IO pins, the power consumed would be 
similar. IO power is approximately 0.02W for our designs. 
The formulas used for power calculations in the program 
are based on the intended behavior of our digital hardware 
design. 

                           EFCVP 2=                                 (7) 
 
Where, P is the power in mW, C is the load capacitance in 
Farads, E is the switching activity for the element and F is 
the frequency of operation in Hz. The Stratix-power-
estimator tool requires design information such as the 
resource utilization (LUTs, IOs, registers, DSPs), clock 
frequency, clock fanout and the toggle rates to estimate the 
dynamic power for our design. 
Fig. 14 presents the energy consumed for the execution of 
the proposed 2D-DWT architecture and conventional 
lifting, relative to different image size N and 5 levels of 
decomposition. Thus, the power consumption of the 
proposed architecture starts at 135 mW for image size N= 
256 and stretches to 487 mW for N = 1024. The power 
consumption of conventional lifting is at relatively higher 
levels, starting at 435 mW (N=256) and reaching 723 mW 
(N=1024). This is due to the large number of cycles 
associated with access to memory and the size of the 
embedded buffer. The number of cycles is once more the 
dominant factor in the energy calculations. That is, the 
significantly smaller computation time (see table 3) results 
in lower power consumption than others works. 
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Fig. 14 Power consumption comparison between conventional Lifting 

and the proposed architecture for (9, 7) filter. 
 
Finally, the proposed architecture is faster than others 
previous works. Our design has two important advantages 
than others works:  
- It only uses 2xN size of embedded buffer and employs 
an adder block to calculate the sum of three inputs vectors 
in one clock cycle. 
 - It has almost lower power consumption compared with 
the conventional lifting.  

5. Conclusion  

In this paper, we have proposed an efficient VLSI 
architecture for the 2D-DWT to meet the requirements of 
real-time image and video processing. The advantages of 
the proposed architecture are saving embedded memories, 
fast computing time, low power consumption, and low 
control complexity. This hardware is designed to be used 
as part of a complete high performance and low power 
JPEG2000 encoder system for digital cinema applications. 
The proposed architecture has been correctly verified by 
the VHDL Language. It routed in Altera Stratix III to 
work at 350 MHz and Cyclone II FPGA at 290 MHz. The 
FPGA implementation can code 48 frames (4096 x 2160) 
per second with 24 bpp. Moreover, it can be applied very 
well to the implementation of the coder used in real time 
video processing, such as MPEG-4. 
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