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Summary 
Extruded shapes and patterns are widely used by graphic 
designers to increase the visual richness and realism of 3D 
models and virtual environments in general. However, the 
traditional approach that uses polygonal mesh is inappropriate 
for real-time rendering, in which, just a limited number of 
graphic primitives can be processed. Hence the interest of using 
per-pixel approaches. In this paper, we introduce a new image-
based technique for rendering extruded details and shapes. We 
use a single RGBA texture in which we store a binary shape, its 
Euclidean Distance Transform (EDT), and the two components 
of the EDT gradient. The rendering algorithm is based on a ray-
tracing like procedure, performed in texture space. The use of the 
EDT allows skipping empty space and thus, minimizes the 
number of ray-tracing steps. Per-pixel extrusion mapping 
produces very convincing results, and runs at interactive frame 
rates. 
Key words: 
Real-Time Rendering, Image-Based Modeling and Rendering, 
Ray-Tracing in GPU, Mesostructures, Extrusion, Euclidean 
Distance Transform. 

1. Introduction 

Rendering complex scenes with very detailed surfaces 
remains one of the major problems for real-time rendering. 
The traditional method consists in using high definition 
meshes, having a very large number of vertices and 
triangles. Therefore, a complex scene may include a 
million of such primitives, making its processing 
impossible for an interactive rendering. To overcome this 
problem, graphics designers create less detailed scenes 
having far fewer objects. However, even with techniques 
like texture mapping and bump mapping used to enhance 
the realism of such scenes, most surfaces look flat with 
polygonized silhouettes. 

The architecture of the new generation of graphics 
cards, which includes a programmable pipeline, allowed 
introducing an alternative to polygon-based rendering. 
Indeed, Image-Based Modeling and Rendering (IBMR) 
uses images to store geometry data, which will be 
recreated with a ray-tracing like algorithm, running in 
parallel on the vertex and pixel shader units. Thus, IBMR 
avoids processing a large number of graphics primitives. 
In addition, IBMR is performed in image space, so only 
visible pixels are processed; unlike polygon based 

rendering that uses algorithms such as visibility, culling, 
or level of details, which consume significant resources 
themselves. 

Several IBMR techniques were introduced for adding 
micro-details to simplified meshes [1]. These techniques 
use 2D grayscale images called heightfield maps, and in 
some cases, 3D maps. However, most of these techniques 
are inappropriate for rendering extruded details, whereas 
others are not yet adapted to an interactive rendering, such 
as algorithms based on shell space or 3D maps, which 
need considerable calculation and memory resources. 

In this paper, we introduce a new technique for 
rendering extruded shapes and details. We use a single 
RGBA texture (the shape map) to store all the necessary 
data.  First, we encode the shape as a 2D binary image in 
the alpha channel. Then, we compute its Euclidean 
Distance Transform (EDT) which is stored in the blue 
channel. Finally, in the red and green channels, we store 
the unit gradient components of the EDT. The resulting 
texture is then mapped on a polygonal mesh using 2D 
texture coordinates.  

At the rendering stage, we use a per-pixel ray-tracing 
procedure to find the intersection point between the 
viewing ray and the surface generated by the extrusion of 
the binary shape. The EDT is used for space leaping, 
which ensures a fast convergence towards the intersection 
point. Then, the surface normal at the intersection point is 
calculated in term of the unit gradient components. 

Per-pixel extrusion mapping is rendered interactively 
on current graphics cards. It is the fastest technique for 
rendering extruded shapes and patterns. It also gives the 
best results, and does not suffer from depth limitation or 
grazing angle artifacts.  

2. Related Work 

The idea of using textures to simulate mesostructures was 
first introduced by Blinn [2]. Bump mapping simulates the 
surface details using a normal perturbation. The texture 
coordinates and the geometry remain unchanged. This 
technique is very fast but can't produce self-occlusions, 
shadows and silhouettes. 
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Parallax mapping [3] optionally with offset limiting 
[4] or with slope information [5] uses textures augmented 
with per-texel depth. In this approach the texture 
coordinates along the view ray direction are shifted 
according to the depth values. This technique produces 
nice results at a very low cost but it is only appropriate for 
irregular bumps. 

Displacement mapping [6] subdivides original 
geometry into a large number of micro-polygons which 
are displaced perpendicularly according to a 2D height 
map. This technique produces correct self-occlusions, 
shadows and silhouettes. Unfortunately, displacement 
mapping is unsuitable for real time rendering due to the 
huge number of micro polygons to be rendered. To 
overcome this problem, Patterson et Al [7] introduced the 
idea of using per-Pixel displacement mapping. 

Relief mapping [8], performs an image space search 
to find the intersection point between the viewing ray and 
a 2D depth map. It begins with a linear search using 
regular intervals followed by a binary search to refine the 
intersection point. This technique correctly handles self-
occlusions, shadows and inter-penetrations. However 
some artefacts become visible at grazing angles, especially 
with thin structures. Similar approaches to relief mapping 
were presented in [9], [10], [11] and [12]. 

Instead of using unsafe approach, Donnelly [13] uses 
sphere tracing. He creates a 3D distance map that gives a 
measure of the distance between points in space and the 
displaced surface. In the same way, Dummer [14] uses 
top-opened cones as empty space bounding volumes 
stored in a 2D cone step map. This idea was first 
introduced by Paglieroni and Petersen [15] for height field 

ray tracing. Other conservative approaches were proposed 
like the use of pyramidal structure [16], [17]. 

Baboud et Al [18] introduced the use of relaxed pre-
computed volumes allowing safe binary search. They used 
a safety radius allowing cylinder tracing. In the same way, 
Policarpo and Oliveira [19] relaxed the rule of the 
conservative cones. Techniques based on cone tracing 
have been improved in [20], particularly the speed of the 
preprocessing algorithms. 

To resolve the problem of the flat silhouettes, 
Oliveira and Policarpo use a quadratic function to 
approximate curved surfaces [21]. Hirche et al [22] 
extrude the triangles of the base mesh along their 
respective normal directions, and then the resulting prisms 
are rendered by casting rays inside and intersecting them 
with the displaced surface. The prisms are subdivided into 
three tetrahedrons if the main mesh is not planar. 

View-Dependent Displacement Mapping [23] and 
Generalized Displacement Mapping [24] do a pre-process 
shell space ray tracing and store the result as a five-
dimensional function that can be queried during rendering 
time. These methods produce very nice results but require 
significant pre-processing and storage to operate. 

3. Preprocessing Extrusion Maps 

The extrusion map is an RGBA texture, which stores the 
data used by per-pixel extrusion algorithm (see Figure 1). 
The alpha channel encodes a profile shape as a binary 
image or, more precisely, a grey scale image in which only 
pixels above a certain threshold are considered part of the 

 
Fig. 1. The shape map represented as an RGBA texture. Top: The binary shape is stored in the alpha channel, its Euclidean distance transform is stored in 
the blue channel, while the red and green channels are used to encode the components of the EDT gradient. Bottom: Per-pixel extrusion rendering of a 
plane mapped with the shape map shown in top using different depths. 
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shape. The blue channel stores the Euclidean distance 
transform of the shape channel. As for the red and green 
channels, they are used to store the two components of the 
normalized gradient of the EDT channel. 

3.1 The Euclidean Distance Transform 

In order to calculate the intersection point between the 
viewing ray and the extruded geometry, we use the 
Euclidean distance transform applied to the binary shape 
channel. Unlike some arbitrary relief rendering techniques 
described in [13] and [25], which use 3D textures to store 
the distance transform and thus, require a significant 
amount of pre-processing and storage, per-pixel extrusion 
mapping use only 2D textures, and the distance transform 
requires just one channel. 

The EDT is defined as follow: From an n by m binary 
image B made from an object O and its background O', an 
Euclidean distance transformation makes an n by m output 
image D, in which the value of any pixel p is the 
Euclidean distance from this pixel to the object O, i.e. the 
distance to the nearest pixel of O: 

 { }Oq,min)( ∈−= qppD  

The use of the EDT for space leaping during ray-
tracing, instead of intervals with fixed sampling, allows 
faster convergence, and avoids missing intersections at 
grazing angles. The EDT computation is based on the 
4SED algorithm described in [26]. This linear time 
algorithm has the advantage of giving a satisfactory and 
fast approximation of the distance transform. 

3.2 Unit Gradient 

The shading stage, which comes after the intersection 
search, needs the normal to the geometry at the 
intersection point. Usually, we should calculate the normal 
in term of the gradient of the binary shape. However, in 
some cases, the intersection point will not be reached 
exactly, so it will not be close to the shape outline where 
the gradient is non-zero. This problem will also arise for 

outward extrusion, in which, the shape outline will never 
be reached. To avoid this problem, we calculate the unit 
gradient of the distance transform instead of the binary 
shape. Because the level curves of the EDT represent 
isocontours of the shape outline on all parts of the texture 
(see Figure 2). The gradient can be calculated in parallel 
with the EDT, since the calculation of the latter implicitly 
relies on the gradient. However, we prefer the use of a 
gradient filter in order to reduce aliasing artifacts. 

4. Rendering Per-Pixel Extrusion 

Per-pixel extrusion mapping consists of creating a virtual 
geometry under the polygons of a given mesh. This 
geometry represents the extruded surface, obtained from 
the shape map mapped over the polygons using the 
traditional 2D texture coordinates. For each fragment, we 
have to calculate the intersection point between the 
extrusion geometry and the viewing ray. This procedure is 
performed in the texture space (see Figure 3).  

The transformation of the view-ray and light vectors, 
from modeling space to texture space, is performed per-
vertex. Then, these vectors are interpolated across each 
fragment. The depth of the extrusion is set by the user and 
can vary in real-time. 

Fig. 2. Calculation of the unit gradient. Left: Underline of the EDT level 
curves. Center: Unit gradient of the binary shape (red and green 
channels). Right: Unit gradient of the EDT. 

 

Fig. 3. View ray intersection with the extruded geometry generated from 
the extrusion map. The use of the minimal distance (circle radius) as ray 
tracing steps allows skipping safely empty space, and thus converging 
quickly towards the intersection point. The bottom image underlines the 
slice including the view ray. 
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4.1 Intersection Point  

Let (u,v) be the texture coordinates of the current fragment, 
and p0 the search starting point with coordinates 
(x0,y0,z0)=(u,v,0). And let V the viewing direction obtained 
as the normalized vector from the viewpoint to the 3D p0's 
position. We control the extrusion depth by dividing the z-
component of the view ray by a scale parameter (i.e.  
Vz←Vz/DEPTH_SCALE). In order to converge towards the first 
intersection point pj, we use the distance fields to make 
safe steps along the view ray (see Figure 3). 

At each step, the distance di, between the current 
position pi and the extruded shape, is recovered from the 
blue channel of the shape map at texture coordinates (xi,yi). 
Then, the next view ray position pi+1 is easily obtained 
with the following formula: 

 V
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If the shape map is not square, we use the elliptical 
rectification described in [20]. Thus, we have to multiply 
the distance di by the following correction factor: 
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Since the rectification depends only on the viewing 
ray V, we can use the following optimization: 
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After the last step pj, the current fragment will be 
discarded (i.e. no intersection found) if zj>1. 

4.2 Normal at the Intersection Point. 

In order to compute the final output color, we have to 
calculate the normal to the extruded surface at the 
intersection point pj=(xj,yj,zj). First, we retrieve the 
components of the unit gradient (Gxj,Gyj) from the 
extrusion map at position (xj,yj). Then, we remap Gxj and 
Gyj to a range of [-1,1]. Since the normal is perpendicular 
to the extrusion geometry, its z component is equal to zero. 
Thus, the normal is defined by: 

 
( )0,, jGyjGxjN =

 
except at the polygon surface (i.e. pj = p0 ), where the 
polygon normal will be used instead. 

4.3 Outward Extrusion Mapping 

As the level curves of the Euclidean distance transform 
represent extended shapes of the original one, we can use 
them to create an outward extrusion. To this end, we 
replace the distance di in the formula (2) by the distance to 
the outward shape: 

 
Vedipip i ⋅−+=+ ),0max(1  

where e is the parameter controlling the extension width in 
real-time. 

The outward extrusion mapping algorithm is slightly 
slower, but it could be very useful for smoothing the main 
shape as illustrated in Figure 4. 

Fig. 4. Changing the value of the outward parameter in real-time allows smoothing the extruded shapes. 
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5. Results and Discussion 

We implemented the different algorithms described in this 
paper in C++ using OpenGL and its high level shading 
language GLSL. The measurements were made on a 
PENTIUM IV 3GHz and a GeForce 7600GS Graphics 
card. 

Table 1 shows the pre-processing times of different 
shape maps. We note that the complete calculation (EDT + 
gradient) is performed very quickly (a few tenths of a 
second). This is an important advantage for interactive 
applications which must constantly update the shape map. 

Table 2 gives the rendering speed of the basic and 
outward per-pixel extrusion mapping, as well as some 
reference techniques. The total number of iteration to find 
the intersection of a given ray is 30 steps. As expected, the 
basic and the outward extrusion mapping are sharply faster. 
The other techniques are nevertheless rendered with an 
interactive framerate. The images shown in Figure 5 are 
screen shots taken during the test, in which, we can notice 
that the shape box occupies the major part of the screen. It 
should be noted that the difference in speed between the 
various techniques is not uniform. It may depend on 
several parameters like the shape map, its dimensions, the 
depth, or the number of tiles. 

Figure 5 shows a comparison between the extrusion 
mapping and other per-pixel displacement mapping 
techniques. We can notice that these techniques are clearly 
not adapted for rendering extrusions. Especially for 
important depths and for very fine details. In addition, 
they are much slower than the extrusion mapping. 

Figure 6 shows several models created by per-pixel 
extrusion mapping. We can point out the variety of shapes 
and patterns that can be created using this technique. The 
number of graphics primitives which can be avoided is 
very important, and depends naturally on the complexity 
of the main shape. 

6. Conclusion 

In this paper we have introduced a new approach for 
rendering extruded shapes and patterns. The rendering 
algorithm is based on a per-pixel ray casting procedure, 
and uses just a single RGBA texture for space leaping. 
This shape map stores the Euclidean distance transform of 
a binary image and the unit gradient of the EDT. The 
proposed technique runs at interactive frame rates, and 
produces very convincing rendering, unlike similar 
approaches, which suffer from depth limitation or grazing 
angles artifacts.  

Table 1 - Preprocessing times (in seconds) of different shape maps. 

Extrusion Map EDT Gradient Total 

Text  512 x 512 0.094 0.093  0.187 

Shapes 512 x 512 0.094 0.109  0.203 

Text 1024 x 1024 0.390 0.438 0.828 

Shapes 1024 x 1024 0.359 0.454 0.813 

Table 2 - Rendering speeds of per-pixel extrusion mapping and some 
per-pixel displacement mapping techniques in FPS (Frames Per Second). 
Note that the extrusion mapping and the outward extrusion mapping are 
clearly faster. 

 Screen 
 800 x  600 

Screen 
1024 x 768 

 5122 10242 5122 10242

Extrusion Mapping 105 95  98 74 

Outward Extrusion Mapping 97  65 80 61 

Relief Mapping 78 38 66 37 

Parallax Occlusion mapping 69 35 56 35 

Cone Step Mapping 72 47 49 36 

 

Fig. 5. Comparison between per-pixel displacement mapping techniques and per-pixel extrusion mapping. (a) Relief Mapping (57 fps). (b) Parallax 
Occlusion Mapping (43 fps). (c) Cone Step Mapping (44 fps). (d) Per-pixel Extrusion Mapping (80 fps). The shape map size is 512x512, the screen 
resolution is 1024x768, and the total steps number is 30. We can clearly note that the traditional methods are not suitable for shapes extrusion. Moreover, 
they are much slower than the extrusion mapping. 
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