
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

118

Manuscript received March 5, 2009
Manuscript revised March 20, 2009

Per-Pixel Extrusion Mapping

Akram Halli, Abderrahim Saaidi, Khalid Satori and Hamid Tairi
LIIAN Laboratory, Faculty of Science Dhar El Mahraz, Fez, Morocco

Summary
Extruded shapes and patterns are widely used by graphic
designers to increase the visual richness and realism of 3D
models and virtual environments in general. However, the
traditional approach that uses polygonal mesh is inappropriate
for real-time rendering, in which, just a limited number of
graphic primitives can be processed. Hence the interest of using
per-pixel approaches. In this paper, we introduce a new image-
based technique for rendering extruded details and shapes. We
use a single RGBA texture in which we store a binary shape, its
Euclidean Distance Transform (EDT), and the two components
of the EDT gradient. The rendering algorithm is based on a ray-
tracing like procedure, performed in texture space. The use of the
EDT allows skipping empty space and thus, minimizes the
number of ray-tracing steps. Per-pixel extrusion mapping
produces very convincing results, and runs at interactive frame
rates.
Key words:
Real-Time Rendering, Image-Based Modeling and Rendering,
Ray-Tracing in GPU, Mesostructures, Extrusion, Euclidean
Distance Transform.

1. Introduction

Rendering complex scenes with very detailed surfaces
remains one of the major problems for real-time rendering.
The traditional method consists in using high definition
meshes, having a very large number of vertices and
triangles. Therefore, a complex scene may include a
million of such primitives, making its processing
impossible for an interactive rendering. To overcome this
problem, graphics designers create less detailed scenes
having far fewer objects. However, even with techniques
like texture mapping and bump mapping used to enhance
the realism of such scenes, most surfaces look flat with
polygonized silhouettes.

The architecture of the new generation of graphics
cards, which includes a programmable pipeline, allowed
introducing an alternative to polygon-based rendering.
Indeed, Image-Based Modeling and Rendering (IBMR)
uses images to store geometry data, which will be
recreated with a ray-tracing like algorithm, running in
parallel on the vertex and pixel shader units. Thus, IBMR
avoids processing a large number of graphics primitives.
In addition, IBMR is performed in image space, so only
visible pixels are processed; unlike polygon based

rendering that uses algorithms such as visibility, culling,
or level of details, which consume significant resources
themselves.

Several IBMR techniques were introduced for adding
micro-details to simplified meshes [1]. These techniques
use 2D grayscale images called heightfield maps, and in
some cases, 3D maps. However, most of these techniques
are inappropriate for rendering extruded details, whereas
others are not yet adapted to an interactive rendering, such
as algorithms based on shell space or 3D maps, which
need considerable calculation and memory resources.

In this paper, we introduce a new technique for
rendering extruded shapes and details. We use a single
RGBA texture (the shape map) to store all the necessary
data. First, we encode the shape as a 2D binary image in
the alpha channel. Then, we compute its Euclidean
Distance Transform (EDT) which is stored in the blue
channel. Finally, in the red and green channels, we store
the unit gradient components of the EDT. The resulting
texture is then mapped on a polygonal mesh using 2D
texture coordinates.

At the rendering stage, we use a per-pixel ray-tracing
procedure to find the intersection point between the
viewing ray and the surface generated by the extrusion of
the binary shape. The EDT is used for space leaping,
which ensures a fast convergence towards the intersection
point. Then, the surface normal at the intersection point is
calculated in term of the unit gradient components.

Per-pixel extrusion mapping is rendered interactively
on current graphics cards. It is the fastest technique for
rendering extruded shapes and patterns. It also gives the
best results, and does not suffer from depth limitation or
grazing angle artifacts.

2. Related Work

The idea of using textures to simulate mesostructures was
first introduced by Blinn [2]. Bump mapping simulates the
surface details using a normal perturbation. The texture
coordinates and the geometry remain unchanged. This
technique is very fast but can't produce self-occlusions,
shadows and silhouettes.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

119

Parallax mapping [3] optionally with offset limiting
[4] or with slope information [5] uses textures augmented
with per-texel depth. In this approach the texture
coordinates along the view ray direction are shifted
according to the depth values. This technique produces
nice results at a very low cost but it is only appropriate for
irregular bumps.

Displacement mapping [6] subdivides original
geometry into a large number of micro-polygons which
are displaced perpendicularly according to a 2D height
map. This technique produces correct self-occlusions,
shadows and silhouettes. Unfortunately, displacement
mapping is unsuitable for real time rendering due to the
huge number of micro polygons to be rendered. To
overcome this problem, Patterson et Al [7] introduced the
idea of using per-Pixel displacement mapping.

Relief mapping [8], performs an image space search
to find the intersection point between the viewing ray and
a 2D depth map. It begins with a linear search using
regular intervals followed by a binary search to refine the
intersection point. This technique correctly handles self-
occlusions, shadows and inter-penetrations. However
some artefacts become visible at grazing angles, especially
with thin structures. Similar approaches to relief mapping
were presented in [9], [10], [11] and [12].

Instead of using unsafe approach, Donnelly [13] uses
sphere tracing. He creates a 3D distance map that gives a
measure of the distance between points in space and the
displaced surface. In the same way, Dummer [14] uses
top-opened cones as empty space bounding volumes
stored in a 2D cone step map. This idea was first
introduced by Paglieroni and Petersen [15] for height field

ray tracing. Other conservative approaches were proposed
like the use of pyramidal structure [16], [17].

Baboud et Al [18] introduced the use of relaxed pre-
computed volumes allowing safe binary search. They used
a safety radius allowing cylinder tracing. In the same way,
Policarpo and Oliveira [19] relaxed the rule of the
conservative cones. Techniques based on cone tracing
have been improved in [20], particularly the speed of the
preprocessing algorithms.

To resolve the problem of the flat silhouettes,
Oliveira and Policarpo use a quadratic function to
approximate curved surfaces [21]. Hirche et al [22]
extrude the triangles of the base mesh along their
respective normal directions, and then the resulting prisms
are rendered by casting rays inside and intersecting them
with the displaced surface. The prisms are subdivided into
three tetrahedrons if the main mesh is not planar.

View-Dependent Displacement Mapping [23] and
Generalized Displacement Mapping [24] do a pre-process
shell space ray tracing and store the result as a five-
dimensional function that can be queried during rendering
time. These methods produce very nice results but require
significant pre-processing and storage to operate.

3. Preprocessing Extrusion Maps

The extrusion map is an RGBA texture, which stores the
data used by per-pixel extrusion algorithm (see Figure 1).
The alpha channel encodes a profile shape as a binary
image or, more precisely, a grey scale image in which only
pixels above a certain threshold are considered part of the

Fig. 1. The shape map represented as an RGBA texture. Top: The binary shape is stored in the alpha channel, its Euclidean distance transform is stored in
the blue channel, while the red and green channels are used to encode the components of the EDT gradient. Bottom: Per-pixel extrusion rendering of a
plane mapped with the shape map shown in top using different depths.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

120

shape. The blue channel stores the Euclidean distance
transform of the shape channel. As for the red and green
channels, they are used to store the two components of the
normalized gradient of the EDT channel.

3.1 The Euclidean Distance Transform

In order to calculate the intersection point between the
viewing ray and the extruded geometry, we use the
Euclidean distance transform applied to the binary shape
channel. Unlike some arbitrary relief rendering techniques
described in [13] and [25], which use 3D textures to store
the distance transform and thus, require a significant
amount of pre-processing and storage, per-pixel extrusion
mapping use only 2D textures, and the distance transform
requires just one channel.

The EDT is defined as follow: From an n by m binary
image B made from an object O and its background O', an
Euclidean distance transformation makes an n by m output
image D, in which the value of any pixel p is the
Euclidean distance from this pixel to the object O, i.e. the
distance to the nearest pixel of O:

 { }Oq,min)(∈−= qppD

The use of the EDT for space leaping during ray-
tracing, instead of intervals with fixed sampling, allows
faster convergence, and avoids missing intersections at
grazing angles. The EDT computation is based on the
4SED algorithm described in [26]. This linear time
algorithm has the advantage of giving a satisfactory and
fast approximation of the distance transform.

3.2 Unit Gradient

The shading stage, which comes after the intersection
search, needs the normal to the geometry at the
intersection point. Usually, we should calculate the normal
in term of the gradient of the binary shape. However, in
some cases, the intersection point will not be reached
exactly, so it will not be close to the shape outline where
the gradient is non-zero. This problem will also arise for

outward extrusion, in which, the shape outline will never
be reached. To avoid this problem, we calculate the unit
gradient of the distance transform instead of the binary
shape. Because the level curves of the EDT represent
isocontours of the shape outline on all parts of the texture
(see Figure 2). The gradient can be calculated in parallel
with the EDT, since the calculation of the latter implicitly
relies on the gradient. However, we prefer the use of a
gradient filter in order to reduce aliasing artifacts.

4. Rendering Per-Pixel Extrusion

Per-pixel extrusion mapping consists of creating a virtual
geometry under the polygons of a given mesh. This
geometry represents the extruded surface, obtained from
the shape map mapped over the polygons using the
traditional 2D texture coordinates. For each fragment, we
have to calculate the intersection point between the
extrusion geometry and the viewing ray. This procedure is
performed in the texture space (see Figure 3).

The transformation of the view-ray and light vectors,
from modeling space to texture space, is performed per-
vertex. Then, these vectors are interpolated across each
fragment. The depth of the extrusion is set by the user and
can vary in real-time.

Fig. 2. Calculation of the unit gradient. Left: Underline of the EDT level
curves. Center: Unit gradient of the binary shape (red and green
channels). Right: Unit gradient of the EDT.

Fig. 3. View ray intersection with the extruded geometry generated from
the extrusion map. The use of the minimal distance (circle radius) as ray
tracing steps allows skipping safely empty space, and thus converging
quickly towards the intersection point. The bottom image underlines the
slice including the view ray.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

121

4.1 Intersection Point

Let (u,v) be the texture coordinates of the current fragment,
and p0 the search starting point with coordinates
(x0,y0,z0)=(u,v,0). And let V the viewing direction obtained
as the normalized vector from the viewpoint to the 3D p0's
position. We control the extrusion depth by dividing the z-
component of the view ray by a scale parameter (i.e.
Vz←Vz/DEPTH_SCALE). In order to converge towards the first
intersection point pj, we use the distance fields to make
safe steps along the view ray (see Figure 3).

At each step, the distance di, between the current
position pi and the extruded shape, is recovered from the
blue channel of the shape map at texture coordinates (xi,yi).
Then, the next view ray position pi+1 is easily obtained
with the following formula:

 V
xyV
id

ipip +=+1 (1)

If the shape map is not square, we use the elliptical
rectification described in [20]. Thus, we have to multiply
the distance di by the following correction factor:

222
yx

xy

VV

V

ρ−

with ρ=height/width. The equation (1) becomes:

 V
VV

d
pp

yx

i
ii ⋅

+
=+

222
1

ρ

Since the rectification depends only on the viewing
ray V, we can use the following optimization:

 ρVdpp iii ⋅+=+1 (2)

with:

 V
VV

V
yx

⋅
+

=
222

1

ρ
ρ

After the last step pj, the current fragment will be
discarded (i.e. no intersection found) if zj>1.

4.2 Normal at the Intersection Point.

In order to compute the final output color, we have to
calculate the normal to the extruded surface at the
intersection point pj=(xj,yj,zj). First, we retrieve the
components of the unit gradient (Gxj,Gyj) from the
extrusion map at position (xj,yj). Then, we remap Gxj and
Gyj to a range of [-1,1]. Since the normal is perpendicular
to the extrusion geometry, its z component is equal to zero.
Thus, the normal is defined by:

()0,, jGyjGxjN =

except at the polygon surface (i.e. pj = p0), where the
polygon normal will be used instead.

4.3 Outward Extrusion Mapping

As the level curves of the Euclidean distance transform
represent extended shapes of the original one, we can use
them to create an outward extrusion. To this end, we
replace the distance di in the formula (2) by the distance to
the outward shape:

Vedipip i ⋅−+=+),0max(1

where e is the parameter controlling the extension width in
real-time.

The outward extrusion mapping algorithm is slightly
slower, but it could be very useful for smoothing the main
shape as illustrated in Figure 4.

Fig. 4. Changing the value of the outward parameter in real-time allows smoothing the extruded shapes.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

122

5. Results and Discussion

We implemented the different algorithms described in this
paper in C++ using OpenGL and its high level shading
language GLSL. The measurements were made on a
PENTIUM IV 3GHz and a GeForce 7600GS Graphics
card.

Table 1 shows the pre-processing times of different
shape maps. We note that the complete calculation (EDT +
gradient) is performed very quickly (a few tenths of a
second). This is an important advantage for interactive
applications which must constantly update the shape map.

Table 2 gives the rendering speed of the basic and
outward per-pixel extrusion mapping, as well as some
reference techniques. The total number of iteration to find
the intersection of a given ray is 30 steps. As expected, the
basic and the outward extrusion mapping are sharply faster.
The other techniques are nevertheless rendered with an
interactive framerate. The images shown in Figure 5 are
screen shots taken during the test, in which, we can notice
that the shape box occupies the major part of the screen. It
should be noted that the difference in speed between the
various techniques is not uniform. It may depend on
several parameters like the shape map, its dimensions, the
depth, or the number of tiles.

Figure 5 shows a comparison between the extrusion
mapping and other per-pixel displacement mapping
techniques. We can notice that these techniques are clearly
not adapted for rendering extrusions. Especially for
important depths and for very fine details. In addition,
they are much slower than the extrusion mapping.

Figure 6 shows several models created by per-pixel
extrusion mapping. We can point out the variety of shapes
and patterns that can be created using this technique. The
number of graphics primitives which can be avoided is
very important, and depends naturally on the complexity
of the main shape.

6. Conclusion

In this paper we have introduced a new approach for
rendering extruded shapes and patterns. The rendering
algorithm is based on a per-pixel ray casting procedure,
and uses just a single RGBA texture for space leaping.
This shape map stores the Euclidean distance transform of
a binary image and the unit gradient of the EDT. The
proposed technique runs at interactive frame rates, and
produces very convincing rendering, unlike similar
approaches, which suffer from depth limitation or grazing
angles artifacts.

Table 1 - Preprocessing times (in seconds) of different shape maps.

Extrusion Map EDT Gradient Total

Text 512 x 512 0.094 0.093 0.187

Shapes 512 x 512 0.094 0.109 0.203

Text 1024 x 1024 0.390 0.438 0.828

Shapes 1024 x 1024 0.359 0.454 0.813

Table 2 - Rendering speeds of per-pixel extrusion mapping and some
per-pixel displacement mapping techniques in FPS (Frames Per Second).
Note that the extrusion mapping and the outward extrusion mapping are
clearly faster.

 Screen
 800 x 600

Screen
1024 x 768

 5122 10242 5122 10242

Extrusion Mapping 105 95 98 74

Outward Extrusion Mapping 97 65 80 61

Relief Mapping 78 38 66 37

Parallax Occlusion mapping 69 35 56 35

Cone Step Mapping 72 47 49 36

Fig. 5. Comparison between per-pixel displacement mapping techniques and per-pixel extrusion mapping. (a) Relief Mapping (57 fps). (b) Parallax
Occlusion Mapping (43 fps). (c) Cone Step Mapping (44 fps). (d) Per-pixel Extrusion Mapping (80 fps). The shape map size is 512x512, the screen
resolution is 1024x768, and the total steps number is 30. We can clearly note that the traditional methods are not suitable for shapes extrusion. Moreover,
they are much slower than the extrusion mapping.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

123

References

[1] L. Szirmay-Kalos and T. Umenhoffer, “Displacement
Mapping on the GPU – State of the Art, Computer Graphics
Forum”, Vol 27 (6), pp. 1567-1592, 2008

[2] J. F. Blinn. “Simulation of wrinkled surfaces”, Proc. of
Siggraph 1978, ACMPress, pp. 286–292, 1978.

[3] T. Kaneko, T. Takahei, M. Inami, N. Kawakami, Y.
Yanagida, T. Maeda, and S. Tachi, “Detailed shape
representation with parallax mapping”, Proc. of the ICAT
2001, pp. 205–208, 2001.

[4] T. Welsh. “Parallax mapping with offset limiting: A per-
pixel approximation of uneven surfaces”, Infiscape Corp.,
2004.

[5] M. Premecz, “Iterative parallax mapping with slope
information”, Central European Seminar on Computer
Graphics CESCG’06, Available online at
http://www.cescg.org/CESCG-2006/papers/ TUBudapest-
Premecz-Matyas.pdf, 2006.

[6] R. L. Cook. Shade trees, Proc. of Siggraph 1984, ACMPress,
pp. 23–231, 1984.

[7] J. W. Patterson, S. G. Hoggar, and J. R. Logie, “Inverse
displacement mapping”, Computer Graphics Forum, Vol. 10,
no 2, pp. 129–139. 1991.

[8] F. Policarpo, M.M. Oliveira, and J. L. D. Comba, “Real-
time relief mapping on arbitrary polygonal surfaces”, Proc.
of I3D’05, ACMPress, pp. 155–162, 2005.

[9] M. McGuire, “Steep parallax mapping”, I3D’05 Poster,
2005.

[10] Z. Brawley, N. Tatarchuk, “Parallax Occlusion Mapping:
Self-Shadowing, Perspective-Correct Bump Mapping Using
Reverse Height Map Tracing”, ShaderX3, 2004.

[11] N. Tatarchuk, “Dynamic parallax occlusion mapping with
approximate soft shadows”, SI3D’06, pp. 63-69, 2006.

[12] F. Policarpo, and M.M. Oliveira, “Relief Mapping of Non-
Height-Field Surface Details”, Proc. of the 2006
Symposium on Interactive 3D Graphics and Games, pp. 55–
62. 2006.

[13] W. Donnelly, “Per-pixel displacement mapping with
distance functions”; GPUGems2, Addison-Wesley, 2004.

[14] J. Dummer, “Cone Step Mapping: An Iterative Ray-
Heightfield Intersection Algorithm”, Technical Report,
Available online at: http://www.lonesock.net, 2006

[15] D.W. Paglieroni and S. M. Petersen, “Height Distributional
Distance Transform Methods for Height Field Ray Tracing”,
ACM Transactions on Graphics, Vol. 13(4), pp. 376-399,
1994.

[16] K. Oh, H. Ki, and C.H. Lee, “Pyramidal displacement
mapping: A GPU-based artifacts-free ray tracing through an
image pyramid”, ACM Symposium on Virtual Reality
Software and Technology (VRST’06), pp..75–82, 2006.

Fig. 6. Samples of models rendered using per-pixel extrusion mapping. These low polygonal meshes, mapped with extruded shapes and patterns, avoid
creating and rendering a large number of vertices and polygons.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

124

[17] A. Tevs, I. Ihrke, and H.-P. Seidel, “Maximum Mipmaps for
Fast, Accurate, and Scalable Dynamic Height Field
Rendering”, Proc. Symp. Interactive 3D Graphics and
Games, pp. 183-190, 2008.

[18] L. Baboud, and X. Décoret, “Rendering Geometry with
Relief Textures”, Proc. of Graphics Interface 2006, vol 137,
pp. 195-201, 2006.

[19] F. Policarpo and M.M. Oliveira, “Relaxed Cone Stepping
for Relief Mapping”, GPU Gems 3, pp. 409-428, 2007.

[20] A. Halli, A. Saaidi, K. Satori, and H. Tairi, “Per-Pixel
Displacement Mapping Using Cone Tracing”, International
Review on Computers and Software (I.Re.Co.S), Vol. 3(5),
September 2008.

[21] M. M. Oliveira, F. Policarpo, “An Efficient Representation
for Surface Details”, UFRGS technical report RP-351, 2005

[22] J. Hirche, A. Ehlert, S. Guthe, and M. Doggett, “Hardware
accelerated per-pixel displacement mapping”, Proc. of
Graphics Interface 2004, vol. 62, pp. 153–158, 2004.

[23] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.
Y. Shum, “View-dependent displacement mapping”, ACM
Trans. Graphics, vol. 22, no. 3, pp. 334–339, 2003.

[24] X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H. Y. Shum.
“Generalized displacement maps”, Proc. of the
Eurographics Symposium on Rendering, pp. 227-234, 2004.

[25] N. Ritsche, “Real-time shell space rendering of volumetric
geometry”. In Proceedings of GRAPHITE’06, pp. 265-274,
2006

[26] P.E. Danielsson, “Euclidean Distance Mapping”, Computer
Graphics and Image Processing, Vol. 14, pp. 227–248, 1980.

Akram Halli received the bachelor’s and
master’s degrees from USMBA-Fez
University in 2002 and 2004 respectively. He
is currently working toward the PhD degree in
the LIIAN Laboratory (Laboratoire
d’Informatique, Imagerie et Analyse
Numérique) at USMBA-Fez University. His
current research interests include real-time
rendering, Image-based rendering and virtual
reality.

Abderrahim Saaidi received the bachelor’s
and master’s degrees from USMBA-Fez
University in 1997 and 2004 respectively. He
is currently working toward the PhD degree in
the LIIAN Laboratory at USMBA-Fez
University. His current research interests
include camera self calibration, 3D
reconstruction and real-time rendering.

Khalid Satori received the PhD degree from
the National Institute for the Applied Sciences
INSA at Lyon in 1993. He is currently a
professor of computer science at USMBA-Fez
University. His is the director of the LIIAN
Laboratory. His research interests include real-
time rendering, Image-based rendering, virtual
reality, biomedical signal, camera self
calibration and 3D reconstruction.

Hamid Tairi received the PhD degree from
USMBA-Fez University in 2001. He is
currently a professor of computer science at
USMBA-Fez University. His is also a member
of the LIIAN Laboratory. His research
interests include image processing, biomedical
signal, Image-based rendering, visual tracking
for robotic control and 3D reconstruction.

