
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

168

Manuscript received March 5, 2009
Manuscript revised March 20, 2009

Gridlock Prevention by Job Split-up

Suresh S† and Poornaselvan††,

Government College of Technology, Coimbatore, Tamilnadu, India

Summary
The absence of task completion and return timing guarantees
from the remote clients in Internet based Computing papers is
largely an annoyance when the tasks comprising the shared
workload are mutually independent. When the workload’s tasks
have interdependencies, that constrain the order of execution, the
lack of timing guarantees presents a nontrivial scheduling
challenge. Such dependencies can potentially engender Gridlock
when no other tasks can be allocated for an intermediate period,
pending the execution of already allocated tasks. In a Grid
Framework, due to inter dependencies of the tasks in a tree
structured computation, one task keeps waiting for the results of
another task. The results may be delayed due to no timing
guarantees and no return of results guarantees which results in a
problem called gridlock.
Key words:
Grid computing, Job scheduling, Gridlock, Grid framework, task
interdependencies.

1. Introduction

In order to solve the problem of gridlock, two methods
were introduced.

1.1 Allocation of Tasks to Multiple Clients

In order to ensure that a task’s result is generated and
passed to its dependent tasks, a particular task is allocated
to multiple clients. However, it cannot be guaranteed
that all the clients will successfully return the results.
Moreover, this multiple allocation of tasks significantly
thins out the remote workforce.

1.2 Deadline Triggered Re Allocation of Tasks

Another suggestion to avoid the problem of Gridlock is
that, a dead-line is set to the remote client. The client’s
failure to return the results will result in re-allocation of
the task to another client. But well-planned re-allocation
of tasks requires a reliable model of clients computing
behavior. Moreover, these methods do not eliminate the
problem of Gridlock since the back-up remote clients
assigned a given task may be as dilatory as the primary
one. Thus, no such technique eliminates the danger of
gridlock.

2. Proposed System

The proposed system for Grid lock avoidance monitors the
Network for the availability using system information like
CPU idle time and memory availability the application to
be processed is split into small tasks for parallel
processing in the Grid Framework. The split up tasks are
scheduled level by level for execution using the optimized
algorithm. This avoids the problem of Gridlock due to task
interdependencies. It also schedules the eligible tasks so
as to maximize the number of eligible tasks at each step of
computation, thus making maximum utilization of the
available resources in the Grid Framework. The schematic
diagram in Fig 1 represents the working of IC scheduling
algorithm in a Grid Framework. The system information
named CPU idle time and the memory usage are
monitored and given to the Grid Framework. The job
submitted for execution by application server is split into
small tasks and given to the grid framework which in turn
schedules the eligible tasks to remote clients for parallel
processing. The results of individual tasks are aggregated
based on the task dependencies and the final result is
returned to the application server.

Fig1. Schematic Diagram of Proposed System

Grid computing simply means taking distributed
computing resources and sharing them. It offers a way of

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

169

coordinating resources sharing and problem solving in or
physically dispersed virtual organizations. Direct access to
computers, data, software, storage and other resources is
provided but with tightly controlled and clearly defined
rules as to who can access, what is to be shared. Fig.2
below shows the approach used in Grid.

3. Grid Approach

Negotiation

S/W & H/W set-up

Security provisions

Resource discovery

Local computer

Remote resource

Fig. 2 GRID Approach

3.1 Grid Computing

Grid Computing is a collection of distributed, possibly
heterogeneous resources, which can be used as an
ensemble to execute large-scale applications.
Grid computing is a form of distributed computing that
involves coordinating and sharing computing, application,
data, storage, or network resources across dynamic and
geographically dispersed organizations. Grid technologies
promise to change the way organizations tackle complex
computational problems. Grid computing is an evolving
area of computing, where standards and technology are
still being developed to enable this new paradigm.
Today the Internet itself is changing to become a
computing platform called the Grid. The grid is a
dependable, universal computing infrastructure builds on
the power of the net. Grid technology distributes
computing jobs and database across numerous servers, has
largely been an academic phenomenon. Grids are clusters
of interconnected computers that can collectively tackle
large computational problems or provide quicker access to
very large bodies of data. Grid is a type of parallel and
distributed system that enables the sharing, selection, and
aggregation of resources distributed across “multiple”
administrative domains based on the resource availability,
capability, performance, cost, and user’s quality of service
requirements. Grid computing allows coupling

geographically distributed resources and offers consistent
and inexpensive access to resources irrespective of their
physical location or access point.

3.2 GRIDLOCK

Absence of task completion and return timing guarantees
from remote clients in IC papers is largely an annoyance
when workload’s tasks have inter-dependencies that
constraint the order of execution. Such dependencies can
potentially engender Gridlock when no tasks can be
allocated for an intermediate period pending the execution
of already allocated tasks.

4. GRID Infrastructure

This technology allows us to access a much more
powerful virtual computing infrastructure. A grid
infrastructure, which is shown in the Fig 3, needs to
provide more functionality than the Internet on which it
rests, but it must also remain simple. And of course, the
need remains for supporting the resources that power the
grid, such as high-speed data movement, caching of large
datasets and on-demand access to computing. Grid tools
are concerned with resource discovery, data management,
scheduling of computation, security, etc.

Fig. 3 GRID Infrastructure

 Just as it is possible to tap into a power grid to access
additional electricity on demand, it is also possible to tap
into a computer grid to access additional computing power
on demand using the cheapest possible resource: idle
processing cycles on the existing machines. Basically,
when a job is submitted to the grid through an interface on
the computer, it serves as a portal to the grid. Special grid-

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

170

management software accepts the job and breaks it down
into hundreds or even thousands of independent tasks then
locates idle processors and distributes the tasks among
them. Finally, it aggregates the work and split out the
results.

5. Importance of GRID

Organizations that depend on access to computational
power to advance their business objectives often sacrifice
or scale back new papers, design ideas, or innovations due
to sheer lack of computational bandwidth. Paper demands
simply outstrip computational power, even if an
organization has significant investments in dedicated
computing resources.
Even given the potential financial rewards from additional
computational access, many enterprises struggle to balance
the need for additional computing resources with the need
to control costs. Upgrading and purchasing new hardware
is a costly proposition, and with the rate of technology
obsolescence, it is eventually a losing one. By better
utilizing and distributing existing compute resources, Grid
computing will help alleviate this problem.

5.1 Benefits of GRID

Many companies want to take advantage of the cost and
efficiency benefits that come from a grid infrastructure
today, without being locked in to a system that will not
grow with their needs.

• Lower Computing Costs
On a price-to-performance basis, the Grid platform gets
more work done with less administration and budget than
dedicated hardware solutions. Depending on the size of
your network, the price-for-performance ratio for
computing power can literally improve by an order of
magnitude.

• Faster Paper Results
The extra power generated by the Grid platform can
directly impact an organization's ability to win in the
marketplace by shortening product development cycles
and accelerating research and development processes.

• Better Product Results
Increased, affordable computing power means not having
to ignore promising avenues or solutions because of a
limited budget or schedule. The power created by the
Grid platform can help to ensure a higher quality product
by allowing higher-resolution testing and results, and can
permit an organization to test more extensively prior to
product release.

6. GRIDLOCK Avoidance Scheduling

Fig. 4 System Diagram

The input expression is validated and evaluated using the
w3eval algorithm to split the expression into individual
tasks. The tasks that are independent of results of other
tasks are identified as eligible tasks. The system
information like CPU usage and memory availability of
the resources is used to identify the free clients. The
eligible tasks are scheduled to free clients and the result of
the expression evaluated is displayed finally. The Fig. 3.
1 represents the system diagram.

7. Module Description

This section describes the modules in the paper.
1. Network Monitoring
2. Job Splitting
3. Tasks Scheduling

7.1 Network Monitoring

Network Monitoring is the module that monitors the
remote clients for their availability. Availability of these
clients is decided based on the amount of their CPU cycles
and their Memory capacity being used for any on-going
executions. Such system information is retrieved using
native languages such as C, C++ or C#.
Load Balancing [4] is the technique wherein a scheduling
that minimizes the maximum completion time for a job is
aimed at. This scheduling technique collects the system
information of all clients in a Grid Framework. The

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

171

system information like CPU idle time and memory
availability are used to decide the availability of a client.

Fig. 5 Network Monitoring

The System waits for clients with low utilization of CPU
and memory before scheduling the tasks as shown in the
Fig. 3. 2.

7.1.1 CPU Usage

CPU Usage is the data that represents the amount of CPU
cycles being spent at the remote client for local processes.
This data is to be taken into account because busy
processes should not be overloaded with more tasks which
may lead to system failure or hang up.It is calculated
based on the Operating System versions. On Windows
NT, CPU usage counter is '% Total processor time' whose
index is 240 under 'System' object whose index is 2. And,
in Win2K/XP, Microsoft moved that counter to '%
processor time' whose index is 6 under '_Total' instance of
'Processor' object whose index is 238. The index value is
specified as a parameter to the method that finds the CPU
Usage information using performance counters.

7.1.2 Memory Usage

Memory Usage is one another information to be measured
to find the availability of remote clients. Memory Usage is
the amount of main memory capacity occupied by the
program being executed and to store its intermediate
results. A remote client in the Grid Framework is available
for use only if a minimum of 50% of its main memory is
free.

7.2 Job Splitting

The application to be processed is split into small tasks for
parallel processing in the Grid Framework. This module
has two sub-modules: Expression Validation and
Expression Evaluation.

7.2.1 Expression Validation

This sub module checks whether the input job is valid for
processing. The input expression is checked for invalid
characters, invalid sequence of operators and operands and
for unpaired braces. Error message is displayed in case
any error of such kinds is found.

Table 7. 1 VALID TOKENS

Characters a-h
A-H

Operators

Addition : +
Subtraction : -
Multiplication : *
Division : /

Parentheses Open Parenthesis : (
Close Parenthesis :)

Table 7. 2 LEGAL TOKEN SEQUENCES

 Characters Operators ()

Characters X X

Operators X X

(X X

) X X

Table 7.1 shows the list of valid characters that can be
given in the input expression. The token on the X-axis
can follow the token on the Y-axis if their meeting place is
marked with an X in Table 7.2.

7.2.2 Expression Evaluation

The job checked for validity is then split up into several
levels of inter dependent tasks. A close brace in the
expression is identified first. Its corresponding open brace
pair is identified then by traversing back through the
expression. The characters between this brace pair are
concatenated to a string variable that is a part of string
array that represent a task. The level and the task number
are kept in track.

 Example Job: (((a+b)*(c+d))-((e+f)*(g+e)))

L0

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

172

Fig. 6 Take Split Up

T1, T2, T3, T4, T5, T6, T7 – Task Number
L0, L1, L2 – Levels in Tree Structure

Fig.6. depicts the expression evaluated into individual
tasks and the levels and task number assumed with each
and every task.

7.3 Task Scheduling

The split up tasks are scheduled level by level for
execution, in this module. Tasks are scheduled based on
two different algorithms to show the difference between
the existing system and proposed system. Scheduling is
the process of allocating the tasks to available clients in
the Grid Framework.

8. IC Scheduling Algorithm

Arnold L. Rosenberg in his study [1] used IC Scheduling
algorithm to avoid the problem of Gridlock that occurs
due to inter dependencies of the tasks. IC Scheduling
algorithm aimed at avoidance of Gridlock, schedules all
the tasks level by level. Since the tasks are scheduled only
with the guarantee that all parent task results are available,
no clients will be waiting with a task at hand. With the
results of parent tasks readily available, tasks are executed
immediately after they are scheduled. Since no waiting
is involved with remote clients, the problem of Gridlock is
avoided. To ensure this, the tasks whose parent tasks
results are available, are marked as Eligible ones. Eligible
tasks are then scheduled and the results are updated
simultaneously. The following analysis shows how to
schedule tree-structured computations IC Optimally.
Considering l-level tree T that has S leaves (source nodes)
with Sl source nodes at each level l, for l Є {0, 1, 2… l-
1}. At step t of the computation, each level l of T has El
ELIGIBLE nodes and Xl EXECUTED nodes. Let c be
the smallest level number. The EXECUTED nodes at level
l of T are sibling-paired if there is at most one
EXECUTED node α at level l whose sibling node β is not
EXECUTED. The aggregate number of ELIGIBLE nodes

at step t is maximized if the EXECUTED nodes along
each level of T are sibling-paired. A Schedule for Tree
Structured computation is IC optimal if it is parent-
oriented, i.e. , it always executes a node of a reduction-tree
and its sibling in consecutive steps. Further, the algorithm
is optimized to ensure the efficient use of the available
client resources. For this, the eligible tasks stored in an
array are retrieved in a First in First out fashion,
representing queue model instead of stack model. A result
of Rosenberg [5] characterizes optimization of IC
scheduling algorithm. He proved that a schedule for
reduction trees is IC optimal if, and only if, it is parent
oriented, that is it always executes a node of the reduction
tree and its sibling in consecutives steps. The graph for IC
Optimal Scheduling is depicted in the following Fig 3. 4

Fig. 7 Optimized IC Scheduling

S- Next eligible source node
R- No of levels executed
X- Executed Part

The steps in the ICOS algorithm are

1. Identify Eligible tasks. All unexecuted nodes

having no parents, upon whose prior execution they
depend, are eligible for execution

2. No task is allocated to clients until it becomes
“Eligible”

3. When a client’s System Configuration is high and
CPU Usage, Memory Usage values are low, tasks
are allocated for execution

4. If no task is eligible, no allocation is done
5. When a client returns a task result, identify the tasks

that become eligible with the obtained results
6. Ensure that all tasks are executed eventually

The Optimized IC Scheduling Algorithm used for
Avoidance of the problem of Gridlock is shown below.

8.1 Algorithm ICOS

Repeat until Halt
 If the root of Tree is Eligible for execution
 Then Execute the root; Halt

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

173

 Else Determine the lowest level-number l of the Tree
that contains an Eligible Sibling-pair.

Execute the left-most Sibling-pair at level l

9. Conclusion

An Optimized IC Scheduling algorithm is developed to
avoid the problem of Gridlock that occurs due to inter
dependencies of tasks at various levels. The algorithm
schedules the eligible tasks so as to maximize the number
of eligible tasks at each step of computation, thus making
maximum utilization of the available resources in the Grid
Framework. Further the system can be enhanced to
develop optimized algorithms to schedule tasks of
butterfly computations that are present in Digital Signal
Processing problems.

References
[1] Rajkumar Buyya and Kris Bubendorfer (eds.), Market

Oriented Grid and Utility Computing, ISBN:
9780470287682, Wiley Press, New York, USA, 2009.

[2] Rajiv Ranjan, Aaron Harwood, Rajkumar Buyya, Peer-to-

Peer Based Resource Discovery in Global Grids: A Tutorial,
IEEE Communications Surveys and Tutorials, Volume 10,
Number 2, Pages: 6-33, ISSN: 1553-877X, IEEE
Communications Society Press, USA, 2008.

[3] Arnold L. Rosenberg (2004), “On Scheduling Mesh-

Structured Computations for Internet-Based Computing”,
IEEE Transactions on Computers, vol 53, pp. 1176-1186.

[4] Joshy Joseph, Craig Fellenstein (2004), “Grid Computing”,

Pearson Education Publications

[5] D. Kondo, H. Casanova, E. Wing and F. Berman

(2002), “Models and Scheduling guidelines for Global
Computing Applications”, Proceedings of International
Parallel and Distributed Processing Symposium, pp 437 –
443

[6] Rosenberg, A. L (2003), “On Scheduling Mesh-Structured

Computations for Internet”, Proceedings of International
Parallel and Distributed Processing Symposium, pp 115-139

